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Abstract

The physics at the event horizon resembles the behavior of waves in moving media.
Horizons are formed where the local speed of the medium exceeds the wave velocity. We
use ultrashort pulses in microstructured optical fibers to demonstrate the formation of an
artificial event horizon in optics. We observed a classical optical effect, the blue-shifting of
light at a white-hole horizon. We also show by theoretical calculations that such a system
is capable of probing the quantum effects of horizons, in particular Hawking radiation.
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Laboratory analogues of black holes [1, 2, 3] are inspired by a simple and intuitive idea [4]:
the space-time geometry of a black hole resembles a river [5, 6], a moving medium flowing
towards a waterfall, the singularity. Imagine that the river carries waves propagating against the
current with speed c′. The waves play the role of light where c′ represents c, the speed of light in
vacuum. Suppose that the closer the river gets to the waterfall the faster it flows and that at some
point the speed of the river exceeds c′. Clearly, beyond this point waves can no longer propagate
upstream. The point of no return corresponds to the horizon of the black hole. Imagine another
situation: a fast river flowing out into the sea, getting slower. Waves cannot enter the river
beyond the point where the flow speed exceeds the wave velocity; the river resembles an object
that nothing can enter, a white hole.

Nothing, not even light, can escape from a gravitational black hole. Yet according to quan-
tum physics, the black hole is not entirely black, but emits waves in thermal equilibrium [7, 8, 9].
The waves consist of correlated pairs of quanta, one originates from inside and the other from
outside the horizon. Seen from one side of the horizon, the gravitational black hole acts as a
thermal black-body radiator sending out Hawking radiation [7, 8, 9]. The effective tempera-
ture depends on the surface gravity [7, 8, 9] that, in the analogue model, corresponds to the
flow-velocity gradient at the horizon [1, 2, 3, 4, 5].

The Hawking temperature of typical black holes lies far below the temperature of the cosmic
microwave background, so an observation of Hawking radiation in astrophysics seems unlikely.
However, laboratory demonstrations of analogues of Hawking radiation could be feasible. One
type of recent proposal [10, 11, 12] suggests the use of ultracold quantum gases such as alkali
Bose-Einstein condensates or ultracold alkali Fermions [12]. When a condensate in a waveguide
is pushed over a potential barrier it may exceed the speed of sound (typically a few mm/s) and is
calculated to generate a Hawking temperature of about 10nK [11]. Helium-3 offers a multitude
of analogues between quantum fluids and the standard model, including Einsteinian gravity [2].
For example, the analogy between gravity and surface waves in fluids [13] has inspired ideas for
artificial event horizons at the interface between two sliding superfluid phases [14], but, so far,
none of the quantum features of horizons has been measured in Helium-3. Proposals for optical
black holes [15, 16] have relied on slowing down light [17] such that it matches the speed of the
medium [15] or on bringing light to a complete standstill [16], but in these cases absorption may
pose a severe problem near the horizon where the spectral transparency window [17] vanishes.

On the other hand, is it necessary to physically move a medium for establishing a horizon?
What really matters are only the effective properties of the medium. If they change, for example
as a propagating front, but the medium itself remains at rest, the situation is essentially indis-
tinguishable from a moving medium. Such ideas have been discussed for moving solitons and
domain walls [18] in superfluid Helium-3 [2] and more recently for microwave transmission
lines with variable capacity [19], but they have remained impractical so far.

Here we report the first experimental observation of the classical optical effects of horizons,
the blue-shifting of light at a white-hole horizon, and show theoretically that our scheme com-
bines several promising features for demonstrating quantum Hawking radiation in the optical
domain. Our idea, illustrated in Fig. 1, is based on the nonlinear optics of ultrashort light pulses
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in optical fibers [20] where we exploit the remarkable control of the nonlinearity, birefringence
and dispersion in microstructured fibers [22, 21].

Using a Titanium-Sapphire laser we create 70fs-long non-dispersive pulses (solitons) at
803nm carrier wavelength and 80MHz repetition rate inside 1.5m of microstructured fiber (NL-
PM-750B from Crystal Fibre A/S). Each pulse modifies the optical properties of the fiber due
to the Kerr effect [20]: the effective refractive index of the fiber, n0, gains an additional con-
tribution δn that is proportional to the instantaneous pulse intensity I at position z and time
t,

n = n0 + δn, δn ∝ I(z, t) . (1)

This contribution to the refractive index n moves with the pulse. The pulse thus establishes a
moving medium, although nothing material is moving. This effective medium naturally moves
at the speed of light in the fiber, because it is made by light itself.

We also launch a continuous wave of light, a probe, that follows the pulse with slightly
higher group velocity, attempting to overtake it. In order to distinguish the probe from the
pulse, it oscillates at a significantly different frequency ω. Our probe-light laser is tunable
over wavelengths 2πc/ω from 1460nm to 1540nm. While approaching the pulse, the Kerr
contribution δn slows down the probe until the probe’s group velocity reaches the speed of the
pulse. The trailing end of the pulse establishes a white-hole horizon, an object that light cannot
enter, unless it tunnels through the pulse. Conversely, the front end creates a black-hole horizon
for probe light that is slower than the pulse. As δn is small, the initial group velocity of the
probe should be sufficiently close to the speed of the pulse. In microstructured fibers [22] the
group-velocity dispersion of light is engineered by arrangements of air holes (sub-µm wide
hollow cylinders along the fiber). We selected a fiber where the group velocity of pulses near
the 800nm carrier wavelength of mode-locked Ti:Sapphire lasers matches the group velocities
of probes in the infrared telecommunication band around 1500nm, whereas standard optical
fibers [20] do not have this property.

At the horizon of an astrophysical black hole light freezes, reaching wavelengths shorter
than the Planck scale where the physics is unknown. (The Planck length is given by

√
2πh̄G/c3

where G is the gravitational constant.) Some elusive Trans-Planckian mechanism must regular-
ize this behavior [23, 24]. In our case, the fiber-optical analogue of Trans-Planckian physics is
known and simple — it is contained in the frequency-dependance of the refractive index n, the
dispersion of the fiber: at the trailing end of the pulse the incoming probe modes are compressed,
oscillating with increasing frequency; they are blue-shifted. In turn, the dispersion limits the
frequency shifting by tuning the probe out of the horizon. In the case of normal group-velocity
dispersion the blue-shifted light falls behind. At the black-hole horizon the reverse occurs: a
probe slower than the pulse is red-shifted and then moves ahead of the pulse.

Figure 2 shows the difference in the spectrum of the probe light — incident with ω1 —
with and without the pulses, clearly displaying a blue-shifted peak at ω2. To quantitatively
describe this effect, we consider the frequency ω′ in a co-moving frame that is connected to the
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laboratory-frame frequency ω by the Doppler formula

ω′ =
(

1− nu

c

)
ω . (2)

For a stable pulse, ω′ is a conserved quantity, whereas ω follows the contours of fixed ω′ when
δn varies with the intensity profile of the pulse (Fig. 3). For sufficiently large δn, the frequency
ω completes an arch from the initial ω1 to the final ω2; it is blue-shifted by the white-hole
horizon. At a black-hole horizon, the arch is traced the other way round from ω2 to ω1. For the
frequency at the center of the arches an infinitesimal δn is sufficient to cause a frequency shift;
at this frequency the group velocity of the probe matches the group-velocity of the pulse. Figure
2 shows that both the blue-shifted and probe light are spectrally broadened. These features are
easily explained: the horizon acts only during the time while probe and pulse propagate in the
fiber, where only a finite fraction of the probe is frequency-shifted, forming a blue-shifted pulse
and also a gap in the probe light, a negative pulse; these pulses have a characteristic spectrum
with a width that is inversely proportional to the fiber length. We compared the measured
spectra with the theory of light propagation in the presence of horizons, and found very good
agreement [25].

Imagine instead of a single probe a set of probe modes. The modes should be sufficiently
weakly excited such that they do not interact with each other via the Kerr effect, but they experi-
ence the cross Kerr effect of the pulse, the presence of the medium (1) moving with the velocity
u. The modes constitute a quantum field of light in a moving medium [25, 26]. Classical light
is a real electromagnetic wave. So, according to Fourier analysis, any amplitude oscillating as
exp(−iωτ) at a positive angular frequency ω must be accompanied by the complex conjugate
amplitude at −ω. In quantum field theory [8, 9, 25], the positive-frequency modes correspond
to the annihilation and the negative-frequency modes to the creation operators [26]. Processes
that mix positive and negative frequencies in the laboratory frame (in the glass of the fiber) thus
create observable light quanta.

In the near ultraviolet around 300nm, the dispersion of microstructured fibers [22] is dom-
inated by the bare dispersion of glass where n0 rapidly grows with frequency [20], exceeding
c/u. For such ultraviolet modes, the medium moves at superluminal speed. We see from the
Doppler formula (2) that these superluminal modes oscillate with negative frequencies ω′ in the
co-moving frame for positive frequencies ω in the laboratory frame, and vice versa. Moreover,
each subluminal mode with positive ω has a superluminal partner oscillating at the same co-
moving frequency ω′, but with negative laboratory frequency. The pulse does not change ω′,
but it may partially convert sub- and superluminal partner modes into each other, thus creating
photons [8, 9]. Even if all the modes are initially in their vacuum states, the horizon sponta-
neously creates photon pairs. This process represents the optical analogue of Hawking radiation
[7] and it occurs at both the black-hole and white-hole horizon [25]. Photons with positive ω′

correspond to the particles created at the outside of the black hole [8, 9], while the negative-
frequency photons represent their partners beyond the horizon. In our case, the photon pairs
are distinguishable from the intense pulse, because their polarization can be orthogonal to the
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pulse and their frequencies differ from the carrier frequency by an octave. Furthermore, one
can discriminate the Hawking effect from other nonlinear optical processes, such as Four Wave
Mixing, because it is not subject to their phase-matching conditions [20]. Moreover, in addi-
tion to observing Hawking radiation per se, one could detect the correlations of the Hawking
partners — a feat that is impossible in astrophysics, because there the partner particles are lost
beyond the horizon of the black hole.

In order to give a quantitative argument for the Hawking effect in optical fibers, we describe
the propagation distance z in terms of the time ζ it takes for the pulse to traverse it, ζ = z/u,
and introduce the retarded time τ = t− z/u. The phase ϕ of each mode evolves as

ϕ = −
∫

(ωdτ + ω′dζ) . (3)

We assume that the mode conversion occurs in a narrow interval of retarded time τ near a
horizon around τ = 0, where we linearize δn in τ such that

1− nu

c
= α′τ . (4)

We obtain from the phase integral (3) and the Doppler formula (2) the characteristic logarithmic
phase at a horizon [8, 9]. We use the standard result [8, 9, 25]: Hawking radiation is Planck-
distributed with the temperature

kBT
′ =

h̄α′

2π
, (5)

where kB denotes Boltzmann’s constant. For evaluating α′ we consider δn at τ = 0, where

α′ = −u
c

∂n

∂τ

∣∣∣∣∣
0

= −u
c

∂δn

∂τ

∣∣∣∣∣
0

. (6)

Note that T ′ denotes the Hawking temperature in the co-moving frame, defined with respect to
the Doppler-shifted frequencies ω′, a temperature that is characterized by the Doppler-shifted
Hawking frequency α′ in regions away from the pulse. We use the Doppler formula (2) with
the refractive index (1) and the linearization (4) taken at τ = 0, and obtain

α′ =
(

1− n0
u

c

)
α =

u

c
δn
∣∣∣∣
0
α . (7)

Consequently, the Hawking temperature T in the laboratory frame is

kBT =
h̄α

2π
, α = − 1

δn

∂δn

∂τ

∣∣∣∣∣
0

. (8)

As T does not depend on the magnitude of δn, even the typically very small refractive-index
variations of nonlinear fiber optics [20] may lead to a substantial Hawking temperature when
δn varies on the scale of an optical wavelength. This is achievable with few-cycle optical pulses
[27, 28].
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Note that the Kerr nonlinearity [20] not only influences the probe modes, but the pulse as
well [20]. This self Kerr effect shapes the pulse while it propagates in the fiber. Regions of high
intensity lag behind, because for them the effective refractive index is increased. The black-
hole horizon at the front is stretched, but the trailing edge becomes extremely steep, infinitely
steep in theory [20]: the pulse develops an optical shock [20]. The steep white-hole horizon will
dominate the Hawking effect of the pulse. In practice, dispersion combined with other nonlinear
optical processes in the fiber, in particular Stimulated Raman Scattering [20], limit the optical
shock. Assuming that the steepness at the shock front is comparable to twice the frequency
of the pulse carrier, 8 × 1014Hz, the Hawking temperature (8) reaches 103K, many orders of
magnitude higher than condensed-matter analogues of the event horizon [10, 11, 12, 18].

Our scheme thus solves two problems at once in a natural way: how to let an effective
medium move at superluminal speed and how to generate a steep velocity profile at the horizon;
the various aspects of the physics of artificial black holes conspire together, in contrast to most
other proposals [1, 2, 3, 4, 10, 11, 12, 13, 14, 15, 16].
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Figure 1: Fiber-optical horizons. A a light pulse in a fiber slows down infrared probe light attempting to
overtake it. The diagrams below are in the co-moving frame of the pulse. B Classical horizons. The probe
is slowed down by the pulse until its group velocity matches the pulse speed at the points indicated in the
figure, establishing a white-hole horizon at the back and a black-hole horizon at the front of the pulse.
The probe light is blue-shifted at the white hole until the optical dispersion releases it from the horizon.
C Quantum pairs. Even if no probe light is incident, the horizon emits photon pairs corresponding to
waves of positive frequencies from the outside of the horizon paired with waves at negative frequencies
from beyond the horizon. An optical shock has steepened the pulse edge, increasing the luminosity of
the white hole.
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Figure 2: Measurement of blue shifting at a white-hole horizon. The black curve shows the power
spectrum of probe light that has not interacted with the pulses, while the green curve displays the result
of the interaction; both curves are represented on a logarithmic scale. The difference between the spectra
on a linear scale, shown in red, exhibits a characteristic peak around the blue-shifted wavelength (ω2)
and another peak around the spectral line of the probe laser (ω1) due to a gap in the probe light; both
features indicate the presence of a horizon.
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Figure 3: Doppler contours. The Doppler-shifted frequency ω′ of the probe is a conserved quantity. The
pulse shifts the laboratory frequency ω along the contour lines of ω′ as a function of the instantaneous
δn; the same applies to the wavelength λ = 2πc/ω. If the pulse is sufficiently intense such that δn
reaches the top of a contour, the probe light completes an arch on the diagram while leaving the pulse; it
is red- or blue-shifted, depending on its initial frequency.
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