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Abstract

The Emparan–Teo non–extremal black dihole solution is reparametrized
using Komar quantities and the separation distance as arbitrary pa-
rameters. We show how the potential A3 can be calculated for the
magnetic analogs of this solution in the Einstein–Maxwell and Einstein–
Maxwell–dilaton theories. We also demonstrate that, similar to the
extreme case, the external magnetic field can remove the supporting
strut in the non–extremal black dihole too.
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1 Introduction

Several years ago Emparan proposed the name black diholes [1] for
the two–body configurations consisting of separated equal black holes
carrying opposite electric or magnetic charges. Since then the dihole
solutions have been obtained and studies in different non–linear field
theories, and one of the approaches to finding new diholes was the
use of the known exact solutions of the Einstein–Maxwell equations
as starting point in the generation techniques (see, e.g., [2]). In the
paper [3] Emparan and Teo worked out an electrostatic non–extremal
dihole solution (henceforth referred to as ETS) belonging to a class
of the stationary axisymmetric Einstein–Maxwell fields [4], and then
generalized it to the case of the Einstein–Maxwell–dilaton theory and
also to the U(1)4 theories arising from compactified field string/M–
theory. Among the three arbitrary parameters of ETS only m is the
physical mass of each black hole, whereas the remaining parameters q
and k do not represent exactly the physical charge and the coordinate
distance between the black–hole constituents. Probably, precisely this
fact forced the authors of [3] speak about a complicated form of their
solution, even though the physical characteristics of the dihole in those
parameters looked quite simple.

Fortunately, as was shown in [5], there exists a nice possibility
of introducing the individual Komar quantities [6] into the multi–
black–hole systems via the boundary Riemann–Hilbert problem that
simplifies the study of the solutions and makes their physical meaning
more transparent; so one of the objectives of our communication is
presentation of ETS in terms of the parameters M , Q, R which are,
respectively, the physical mass, physical charge of each black hole and
the coordinate distance between the centers of the black hole horizons.
This particular purpose will be accomplished by using the results of
the recent paper of one of the authors [7] on the general double–
Reissner–Nordström solution.

Another interesting question related to ETS and called “a formidable
task” in [3] concerns the construction of the potential A3 for the mag-
netic analogs of ETS. Emparan and Teo found an important relation
between magnetic potentials of the Einstein–Maxwell and Einstein–
Maxwell-dilaton theories, but did not exploit it, most probably being
unaware that Sibgatullin’s method [8] provides one with a procedure
for the calculation of A3 without a need to solve the corresponding
system of differential equations. The construction of the potential A3
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for the magnetic analog of ETS will be carried out by us with the
aid of the integral formulae of paper [9]. We show that the exterior
magnetic field permits one to achieve equilibrium of the magnetically
charged constituents in the non–extremal black dihole.

2 ETS in physical parameters and its

magnetic analog

A key point in the reparametrization of ETS is the formulae for the
irreducible masses of two charged black holes obtained in [5]. Since
the black holes of ETS are identical and have opposite charges, they
possess the same irreducible mass which is defined by the formula [5]

σ =
√
M2 −Q2 + 4κMQ, κ ≡ Q/(2M +R), (1)

where M is the Komar mass of each black hole, Q is the physical
charge of the upper constituent (the charge of the lower constituent
is −Q) and R is the coordinate distance between the centers of the
black hole horizons (see Fig. 1).

The knowledge of σ turns out to be sufficient for obtaining the
form of the corresponding Ernst potentials [10] on the symmetry axis,
which in turn allows for working out the expressions of the Ernst
potentials and metric functions of ETS in the whole space. For our
calculations we used independently the general formulae of N = 2
Bretón–Manko–Aguilar electrostatic solution [11] and the expressions
defining the double–Reissner–Nordström solution [7]. For the Ernst
potentials E and Φ in both cases we have arrived at the formulae

E =
A− B
A+ B , Φ =

C
A+ B ,

A = σ2[(R2 − 2M2 + 2κ2R2)(R+ +R−)(r+ + r−)

+ 4(M2 + κ2R2)(R+R− + r+r−)] + 2[M4 + κ2(4M4 +Q2R2)

− 4κ3MQR2](R+ −R−)(r+ − r−),

B = 2σMR(1 + 4κ2)[σR(R+ +R− + r+ + r−)

− 2M2(R+ −R− − r+ + r−)],

C = 2σQR(R − 2M)[σ(R+ +R− − r+ − r−)

+ 2κ2R(R+ −R− + r+ − r−)], (2)
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where the functions R± and r± have the form

R± =
√
ρ2 + (z + 1

2
R± σ)2, r± =

√
ρ2 + (z − 1

2
R± σ)2. (3)

Notice, that these functions are defined in a different way than in the
paper [3]: in our formulae, r± determine the location of the upper
constituent and R± of the lower one (see Fig. 1), whereas in [3], for
instance, location of the upper black hole is determined by R− and
r−.

For the metric functions f and γ which enter Weyl’s line element

ds2 = f−1[e2γ(dρ2 + dz2) + ρ2dϕ2]− fdt2, (4)

and for the electric potential A0 we then get

f =
A2 − B2 + C2

(A+ B)2 , e2γ =
A2 − B2 + C2

K0R+R−r+r−
, A0 = − C

A+ B ,

K0 = 16σ4R4(1 + 4κ2)2. (5)

Formulae (1)–(5) fully determine the reparametrized ETS.
It is straightforward to check using, for instance, formulae (3.8) of

[11] that the parameters M and Q (−Q) are indeed the Komar mass
and charge of the upper (lower) black hole, respectively. The physical
meaning of the parameter Q can also be verified with the aid of the
simple formula (32) of [3] if one takes into account that Emparan and
Teo’s quantities m and κ± are related to our parameters as

m = M, κ+ = R/2, κ− = σ. (6)

We conclude the presentation of ETS in terms of physical param-
eters by observing that the electric dipole moment of the dihole is
Q(R− 2M), and that the formula (29) of [3] for the area of the black
hole horizons rewrites as

Abh = 4π
(R+ 2M)2(σ +M)2

R(R+ 2σ)
, (7)

whence the case of the isolated Reissner–Nordström black hole is easily
recovered in the limit R → ∞.

We now turn to the magnetic analog of ETS within the framework
of the Einstein–Maxwell theory. By considering Q (−Q) as a magnetic

charge of the upper (lower) black hole, the Ernst potentials E and Φ
take the form

E =
A− B
A+ B , Φ =

i C
A+ B , (8)
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with the same A, B and C as in (8), but the potential Φ already being
a pure imaginary function. The corresponding magnetic potential A3

is defined by the function Φ2 from the formula (3.13) of [9] in the
particular N = 2 case. Then, proceeding in the same way as for the
calculation of E and Φ, and taking into account that A3 = Φ2 in the
magnetostatic case, we finally obtain

A3 = −I + (z + 2M)C
A+ B ,

I = Q(R − 2M){4M [σ2(R+R− + r+r−) + κ2R2(R+r+ +R−r−)]

− 2M(1 + κ2)[2M2(R+r− +R−r+) + σR(R+r− −R−r+)]

− R(1 + κ2)[σ2R(R+ +R− + r+ + r−) + 6σM2

× (R+ −R− − r+ + r−)− 4M3(R+ +R− − r+ − r−)]

+ 4κ2MR2[R(R+ +R− − r+ − r−)− 2σ(R+ −R− + r+ − r−)]

− 8σ2MR2(1 + κ2)}, (9)

the magnetic dipole moment of the configuration being Q(R − 2M).
The metric functions f and γ of the magnetic dihole are the same as
of ETS, so that the magnetic analog of ETS is completely defined by
the above formulae.

The main advantage of having the analytical expression for the
potential A3 is a possibility to consider the behavior of a non–extreme
black dihole in the external “uniform” magnetic field via the Harrison
transformation [12], as this was done in the extreme case by Emparan
[1]. Recall that the metric functions f̃ , γ̃ and the magnetic poten-
tial Ã3 after the action of the Harrison transformation on the known
axially symmetric magnetostatic solution f , γ, A3 have the form

f̃ = λ2f, e2γ̃ = λ4e2γ , Ã3 = 2[λ−1(1 + 1

2
BA3)− 1]/B,

λ = (1 + 1

2
BA3)

2 + 1

4
B2ρ2f−1, (10)

where B is a real constant defining the exterior magnetic field.
By acting now with (10) on f , γ and A3 defined by (5), (2) and

(9), we arrive at the solution in which B can be chosen in such a
way that the strut between the non–extreme black–hole constituents
of the dihole will be removed. Indeed, since A3 = 0 on the upper and
lower parts of the z–axis (ρ = 0, |z| > 1

2
R + σ), the constant K0 in

the expression for γ̃ is the same as in (5). On the strut, i.e. on the
segment ρ = 0, |z| < 1

2
R−σ, the potential A3 takes the constant value

2Q, so that the equilibrium condition exp(−γ̃0) = 1, where γ̃0 is the
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value of γ̃ on the strut, reads as

R2(1 + 4κ2)

(R2 − 4M2)(1 +BQ)4
= 1, (11)

whence for the magnetic field stabilizing the non–extreme magnetic
dihole we obtain

B =
1

Q

(
± 4

√
R2(1 + 4κ2)

R2 − 4M2
− 1

)
. (12)

Formula (12) generalizes Emparan’s expression (formula (12) of [1])
derived for the extremal Bonnor’s dihole [13]. The latter expression
can be easily recovered from (12) if one takes into account that in the
extreme case (σ = 0)

R = 2
√
M2 + a2, Q2 = M2r2+/a

2, (13)

where r+ and a are the parameters employed in the paper [1] (the
mass parameter M is the same for both cases).

3 Dilatonic magnetic dihole

In the case of the Einstein–Maxwell–dilaton theory (see, e.g., [14, 15])
which arises from the Lagrangian

L =
1

16π

√−g [R − 2(∇φ)2 − e−2αφF 2], (14)

where φ is the dilaton field and α the coupling constant (α =
√
3 for

the Kaluza–Klein theory, α = 1 for the low energy effective limit of
string theory and α = 0 for the pure Einstein–Maxwell fields), the
solution–generating procedure developed in [3] consists in the follow-
ing.

Let f , γ and A3 be a known magnetostatic solution of the Einstein–
Maxwell equations. Then the corresponding magnetostatic solution
(f̂ , γ̂, Â3, φ) of the Einstein–Maxwell–dilaton theory is given by the
formulae

f̂ = f
1

1+α
2 e−2αφ0 , γ̂ =

1

1 + α2
γ + γ0,

Â3 =
1√

1 + α2
A3, e−2φ = f

α

1+α
2 e2φ0 , (15)
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where f̂ and γ̂ are the metric coefficients in the line element

ds2 = f̂−1[e2γ̂(dρ2 + dz2) + ρ2dϕ2]− f̂ dt2, (16)

Â3 is the magnetic potential, φ0 an arbitrary harmonic function and
γ0 is obtainable from φ0 in quadratures via

dγ = (1 + α2)[ρ(φ2
0,ρ − φ2

0,z)dρ+ 2ρφ0,ρφ0,zdz]. (17)

The application of the procedure (15) to the magnetic dihole solu-
tion considered in the previous section leads to the dilatonic magnetic
dihole of the form

f̂ =

[A2 − B2 + C2

(A+ B)2
] 1

1+α
2

e−2αφ0 ,

e2γ̂ =

[ A2 − B2 + C2

K0R+R−r+r−

] 1

1+α
2

e2γ0 ,

Â3 = − 1√
1 + α2

I + (z + 2M)C
A+ B , (18)

where A, B, C, I are the same as in (2), (9), and

e2φ0 =

[(
R+ +R− − 2σ

R+ +R− + 2σ

)(
r+ + r− − 2σ

r+ + r− + 2σ

)]− α

1+α
2

,

e2γ0 =

[
R+R− + ρ2 + (z + 1

2
R)2 − σ2

2R+R−

× r+r− + ρ2 + (z − 1

2
R)2 − σ2

2r+r−

× R+r− + ρ2 + z2 − (1
2
R+ σ)2

R+r+ + ρ2 + (z + σ)2 − 1

4
R2

× R−r+ + ρ2 + z2 − (1
2
R− σ)2

R−r− + ρ2 + (z − σ)2 − 1

4
R2

] α
2

1+α
2

. (19)

Note that the choice of φ0 and γ0 in (19) is the same as in the paper [3],
so we simply give these functions using a different parametrization and
different notations for R± and r±. Formulae (18), (19), (1), (2) and (9)
entirely define the magnetic analog of the dilatonic ETS, and one only
has to take into account that due to the presence of the dilaton field
the exact physical interpretation of the parameters M and Q slightly
changes; for instance, the magnetic charge of the upper black–hole
constituent is equal to Q/(1+α)1/2. Obviously, the dilatonic magnetic
dihole exhibits essentially the same physical properties as its electric
counterpart obtained and analyzed in [3].
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4 Conclusion

Quite surprisingly, the introduction of the Komar quantities into ETS
have not complicated the form of that dihole solution but, on the con-
trary, only simplified it, making specific physical characteristics of the
two–body configuration more visible. So we anticipate that this could
make the dihole solutions accessible to a wider physical audience, and
not exclusively to experts acquainted with solution–generating tech-
niques. We have also shown that the non–extremal magnetic dihole
solutions do not have any serious technical problem of finding the
corresponding magnetic potential since Sibgatullin’s method gives a
straightforward procedure of its calculation; therefore, the choice of
the magnetic or electric dihole solution in a particular application
now becomes purely a matter of the scientific context of the problem
to be considered. Like in the case of the extremal Bonnor–type di-
hole, the external magnetic field is able to stabilize the non–extremal
dihole constituents by regularizing the part of the axis which sepa-
rates them. Lastly, we mention that our results can be also extended
to the non–extreme dihole solutions of the U(1)4 model coming from
string/M–theory and reported in [3].
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Figure 1: Location of the black dihole on the symmetry axis and interpre-

tation of R±, r±, R and σ. The upper constituent is the one related to

r±.
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