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Dwarf galaxies pose significant challenges for cosmological models. In par-
ticular, current models predict a dark matter density that i s divergent at the
center, in sharp contrast with observations which indicatean approximately
constant central density core. Energy feedback, from supernova explosions
and stellar winds, has been proposed as a major factor shaping the evolution
of dwarf galaxies. We present detailed cosmological simulations with sufficient
resolution both to model the relevant physical processes and to directly assess
the impact of stellar feedback on observable properties of dwarf galaxies. We
show that feedback drives large-scale, bulk motion of the interstellar gas re-
sulting in significant gravitational potential fluctuation s and a consequent re-
duction in the central matter density, bringing the theoretical predictions in
agreement with observations.

Dwarf galaxies are the most common galaxy type (1). In the hierarchical picture of cos-
mic structure formation, dwarf galaxies form first, later becoming building blocks for larger
galaxies. Thanks to their proximity in the local universe (around 18 galaxies are located within
300 kpc of the Sun), several of these galaxies have been studied in detail. By measuring line-of-
sight velocities for hundreds of stars, accurate modeling of the mass distribution has revealed
features that pose severe challenges for the standard cosmological model. It appears, for ex-
ample, that the distribution of dark matter (which is the dominant mass component of these
galaxies) is of almost constant density in a central region that is comparable in size to the stellar
body of the galaxy (2, 3, 4, 5, 6). In the best studied systems, Fornax and Ursa Minor, the radius
of this region is∼ 400 pc and∼ 300 pc, respectively (6). This core is at odds with existing cos-
mological models, which reliably predict the dark matter tohave a divergent density (a cusp) at
the galactic center (7). Some dwarf spheroidal galaxies also exhibit radial gradients in the stellar
population, with stars more deficient in heavy elements (andtherefore presumed older) having

1

http://arxiv.org/abs/0711.4803v1


a more extended distribution and being kinematically warmer than more metal-rich stars (8, 9).
Further, the presence of globular clusters in many dwarfs ispuzzling since these massive, com-
pact systems of many thousands of stars would have suffered gravitational drag as they moved
through the dark matter background of the galaxy halo. This dynamical friction would have
caused the globular clusters to spiral into the galaxy center on time scales much shorter than the
age of the galaxy (the Fornax dwarf spheroidal galaxy is notable in this regard (5)).

It is well established that massive stars inject large amounts of energy into the surround-
ing medium via stellar winds and supernova explosions, resulting in large-scale (hundreds of
parsecs in large galaxies) random bulk motions of the interstellar gas at close to sonic speeds
(∼ 10 km s−1 for the typical gas temperature of104 K) (10, 11, 12). The effect of such per-
turbations is larger for dwarf galaxies, as they have lower gas pressure due to the lesser depth
of their gravitational potential wells. This stellar feedback has been invoked to explain at least
some of the puzzling properties of dwarf galaxies. In particular, there has been considerable
debate as to whether or not it can turn the theoretically predicted central dark matter cusp into a
core (13, 14, 15, 16).

Previous theoretical work has included both non-cosmological and cosmological model-
ing. High resolution, non-cosmological numerical models with detailed descriptions of relevant
physical processes (10, 17, 18) suffer from unrealistically symmetric initial conditions and a
static description of the dark matter potential, and from the lack of gas accretion from the ambi-
ent cosmic medium. Prior attempts at self-consistent hydrodynamic cosmological simulations
have tended to focus on the formation of the very first small galaxy progenitors (19, 20), or
on dwarf galaxy models without sufficient resolution or the relevant physics to properly model
star formation and feedback because of the substantial computational challenges involved in
self-consistent modelling (21, 22).

Here we present the results of cosmological simulations of dwarf galaxy formation and evo-
lution that adequately resolve and model the processes of star formation and stellar feedback.
In good agreement with our previous semi-analytical results (16), our self-consistent model
demonstrates that in small galaxies random bulk gas motionsdriven by stellar feedback play a
critical role in determining the structure of the galactic center. The key result is the transforma-
tion of the central density profile from a cusp to a large core.This is a consequence of resonant
heating of dark matter in the fluctuating potential that results from the bulk gas motions. We
also demonstrate that the same mechanism can explain other puzzling features of dwarf galax-
ies, such as the stellar population gradients, low decay rate for globular cluster orbits and the
low central stellar density.

The simulations were run using the cosmological parallel tree code Gasoline (23). This
code represents dark and stellar matter as a collection of dark matter and star particles and uses
the smoothed particle hydrodynamics (SPH) formalism to describe gas evolution. A detailed
description of the code, including the prescriptions for star formation and supernova feedback,
can be found in refs. (24,25). The very high resolution achieved in our models required the ad-
dition of two key features to the standard cosmological code. First, low temperature (< 104 K)
radiative cooling from de-excitation of fine structure and metastable lines of heavy elements
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Figure 1: A zoom-in on the central part of the simulated forming dwarf galaxy at redshift
z = 5.3. This time was chosen to illustrate the very clumpy gas distribution following a star
burst. Gas is shown in blue and stars in red. (A) Global view. (B) View of the galaxy. (C) The
central part of the galaxy. A number of star clusters are visible in panelC, the oldest (marked)
has an age of 200 Myr.

was necessary to correctly model gas cooling in small galaxies (25). Second, since our mass
resolution (< 200 M⊙) is sufficient to resolve individual supernovae, we introduced a new,
stochastic, prescription for stellar feedback (25).

We created cosmological initial conditions with input constraints designed to produce a
dwarf galaxy with total mass∼ 109 M⊙ at redshiftz = 6 within a box of size 4 co-moving
Mpc. A central, high resolution, sphere with radius 0.4 co-moving Mpc was populated with gas
particles. The particle masses inside the high resolution sphere were 1,900 M⊙ for dark matter
and 370 M⊙ for gas. The mass of particles generated to represent stars was∼ 120 M⊙. At the
end of the simulations, the total numbers of dark matter, gas, and star particles were1.1× 107,
4.5 × 106, and4.5 × 105, respectively. The gravitational softening length was held constant at
12 pc. Further model details, including the description of numerical convergence tests and free
parameter studies, can be found in (25).

Two primary simulations were run. The first one included all the key physical effects: gas
dynamics, star formation, and stellar feedback. (This was by far the most computationally
expensive, consuming6 × 105 CPU hours.) The second one was a dark-matter-only control
simulation. The simulations started atz = 150, and ended atz = 5.

In the simulations, the matter distribution develops the classic web-like or filamentary struc-
ture on large scales, with the most massive galaxy forming aroundz = 10 at the intersection
of the major filaments near the center of the computational box (Figure 1). The evolution of
the galaxy is relatively smooth (no major mergers) betweenz = 8 and 5. The star forma-
tion in the dwarf galaxy is very bursty, with major star bursts repeating approximately every
∼ 80 Myr, consistent with the non-cosmological models of (10). Stars form predominantly
in clusters, but many of them quickly disperse. Starting atz = 6.2, when the galactic stellar
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mass reaches∼ 107 M⊙, clusters which survive until the end of the simulation start forming.
These long-lived clusters have broadly the same sizes (∼ 10 pc, essentially unresolved in our
simulations), masses (∼ 105 M⊙), and heavy element abundance (∼ 3% of solar) as globular
clusters observed in the local universe. It is noteworthy that in the Local Group no old (early-
type) dwarfs with stellar mass< 107 M⊙ have globular clusters, whereas all brighter dwarfs
(with the exception of M32, which is severely tidally stripped by its host galaxy, M31) have
globular clusters (1). This suggests that a galaxy has to be large enough (> 107 M⊙ in baryons)
to produce globular clusters, in good agreement with our simulations.

Feedback from the bursty and clustered star formation results in a dramatically perturbed
interstellar gas distribution on large scales (hundreds ofparsecs; Figures 1 and 2 and Movie S1).
This is consistent with the observed (irregular) distribution of gas in dwarf galaxies (1). Note
that at high-redshift this feedback does not expel gas from the galaxy, in contrast to the maxi-
mum stellar feedback mechanism (14). Instead, supernova explosions compress gas into large
shells and filaments, which are confined to the central part ofthe galaxy and move with speeds
∼ 10 − 20 km s−1 (comparable to the speeds of dark matter particles). We showed previ-
ously (16) that gas motion with these characteristics results in efficient gravitational heating of
the central dark matter and flattening of the cusp.

The heating of dark matter in our model dwarf galaxy is highlyeffective (Figures 2–4).
Whereas both density,ρ, and velocity dispersion,σ, of the particles are strongly affected by
the variable content of gas and stars at the galactic center,the phase-space density,F = ρ/σ3,
is much less sensitive to adiabatic compression of dark matter by baryons (Figure 2). In the
dark-matter-only simulation,F stays approximately constant, whereas in the hydrodynamic
simulation,F gradually decreases with time as the result of the stellar feedback, becoming a
factor of 10 lower than for the dark-matter-only simulations at the end of the evolution.

The dark matter density is strongly affected by the stellar feedback only in the central region
of the galaxy (Figure 3). This is the region in which the enclosed gas mass occasionally domi-
nates that of the dark matter, and is where the gas is most strongly affected by the feedback. At
the end of the hydrodynamic simulations, the dark matter density at the smallest resolved radius
becomes a factor of seven smaller than in the dark-matter-only simulations.

Whereas the dwarf galaxy halo in the dark-matter-only simulation develops a central cusp
with logarithmic slope ofγ = −0.95, consistent with previous predictions of the standard
model (7), in the hydrodynamic simulations, resonant heating due tostellar feedback turns the
cusp into a flat core with radius400 pc (Figure 4) and average density0.2 M⊙ pc−3. These
core parameters are close to those inferred for Fornax,∼ 400 pc (6) and∼ 0.1 M⊙ pc−3 (1),
respectively. The same mechanism produces a core of somewhat smaller radius (∼ 300 pc) in
the distribution of stars, and, significantly, pushes newlyformed globular clusters away from the
galactic center. The four oldest globular clusters, for example, were born with radial distance
dispersionσr = 37 pc (essentially at the galactic center), but after∼ 200 Myr of evolution this
distance had grown to a time-averaged value ofσr = 280 pc (comparable to the stellar core ra-
dius). We suggest that resonant gravitational heating can at least partially explain why globular
clusters in Fornax, and in some other dwarfs, are located at large distances from the galactic
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Figure 2: Evolution of the central quantities in the model dwarf galaxy. In the upper panel,
solid lines correspond to changes in the dark matter (black), gas (blue), and stellar (red) masses
enclosed within the central 100 pc as a function of the redshift, z. The dashed blue line shows
the evolution of the enclosed gas mass within the central 1.6kpc (half the virial radius). In
the lower panel, green and black lines show the evolution of the central dark matter phase-
space density,F , for the hydrodynamic and dark-matter-only simulations, respectively. We
also show the evolution of the velocity anisotropy,η, for the same dark matter particles as
were used to calculateF (magenta line; horizontal black line marksη = 0). Hereη ≡ (σ2

r −

σ2
t )/(σ

2
r + σ2

t ), whereσr andσt are, respectively, the one-dimensional radial and tangential
velocity dispersions.
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Figure 3: Evolution of the enclosed dark matter masses in themodel galaxy at different radii.
Dashed lines correspond to the dark-matter-only simulation, and solid lines correspond to the
hydrodynamic simulation.
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Figure 4: Radial profiles for the model galaxy at redshiftz = 5.2. At this time the central
gas density is very low, minimizing the adiabatic compression of dark matter due to baryons
(which makes it appropriate for comparison with presently observed gas-poor dwarfs). Green
and red lines show the dark matter and stellar density (ρ) profiles, respectively, in the hydro-
dynamic simulation. The thick black line corresponds to thedark matter density profile for the
dark-matter-only simulation. The magenta line shows the velocity anisotropy,η (see caption to
Figure 2 for the definition), profile for the dark matter (in the hydrodynamic simulation).

center (5). Two mechanisms contribute to the effect: first, the feedback flattens the central cusp,
which reduces the efficiency of dynamical friction in the central regions (5); second, stellar
feedback would have continued to heat the globular cluster orbits until stars stopped forming,
around 200 Myr ago in Fornax (9).

The distribution of velocities is isotropic within the core, and shows slight radial anisotropy
outside the core (Figure 4), whereas the core remains isotropic throughout the evolution (Fig-
ure 2). This behavior is inconsistent with a mechanism (26) employing massive gas clouds,
passively orbiting (not driven by feedback) near the galactic center, which flatten the dark mat-
ter cusp via heating due to dynamical friction. It has been shown (27) that this would result
in the development of significant tangential anisotropy within the core, which is not observed
in our simulations. On the other hand, the gravitational resonance heating (16) naturally pro-
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duces isotropic cores due to the fact that the feedback-driven bulk gas motions have random
directions.

These results also provide a natural explanation for the stellar population gradients seen in
many early-type dwarfs (8, 9). In our simulations star formation is concentrated towardthe
galactic center. Over time, feedback gradually heats the population of stars, resulting in older
(and more metal-poor) stars being kinematically warmer andhaving a larger spatial extent than
younger (and more metal-rich) stellar populations. Hence we can reproduce, qualitatively, the
age, metallicity, and velocity dispersion gradients observed in dwarf galaxies.

Our simulations were stopped atz = 5 as continuing beyond this point would require a much
larger computational box to correctly model the growth of larger structures and an infeasible
increase in computation time. Furthermore, the impact of external ionizing radiation, ignored
in our model, can become significant afterz = 6.5. Nevertheless, we can reasonably infer the
subsequent evolution of our model galaxy. If it is to become one of the early-type galaxies in
the local universe (which are gas-poor), some mechanism will have to remove most or all of its
interstellar medium. Some combination of a powerful star burst, increased metagalactic ionizing
radiation, and ram-pressure stripping could result in the dwarf losing most of its gas (28). It is
also likely that only a fraction of its star clusters will survive until the present time. As a result,
our model galaxy would end up resembling a large dwarf spheroidal galaxy in the local universe:
low stellar density; metal-poor with old stellar populations having pronounced radial population
gradients; large stellar and dark matter cores (comparablein size and density to those in dwarf
spheroidals); and perhaps a few globular clusters. In many respects, the galaxy would resemble
the Fornax dwarf.

Our non-cosmological modeling (16) suggested that stellar feedback can be directly respon-
sible for the absence of dark matter cusps only in small galaxies, with total masses< 1010 M⊙:
in larger galaxies the dark matter particle velocities become significantly larger than the veloc-
ity of the random gas bulk motions,∼ 10 km s−1. Our current, cosmological simulations are
consistent with this result (the mass of our galaxy reaches2 × 109 M⊙ by z = 5). Numerical
simulations (29) have suggested that a universal halo density profile (either cuspy or cored),
once set is preserved through subsequent hierarchical evolution (which is consistent with the
analytical result that the collisionless dark matter phase-space density can only decrease over
time), implying that our mechanism may also lead to dark matter cores in larger galaxies.

Our simulations indicate that the gravitational heating ofmatter resulting from feedback-
powered bulk gas motions is a critical determinant of the properties of dwarf galaxies. Large
dark matter cores are an unavoidable consequence of early star formation in dwarf galaxies. Our
model indicates that, in primordial dwarf galaxies, globular clusters are formed in the most nat-
ural place—near the center, where the gas pressure is highest—and are then pushed by feedback
to much larger distances. This mechanism also ensures that globular clusters and unclustered
stars have a comparable distribution, as is observed in early-type dwarfs (30). Additionally, the
low stellar density and stellar population gradients observed in dwarf galaxies are also expected
from the model. Finally, it is also worth noting that large cores have serious implications for
direct searches of dark matter, as a flat core will produce a much weaker gamma ray annihilation
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signal than a cusp.
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Methods

Model

We used GASOLINE (S1), a parallel TreeSPH particle code that has individual particle timesteps.
In several respects our run parameters were similar to thoseused for the galaxy formation simu-
lations run with GASOLINE reported in (S2). In what follows we will highlight the differences
required to simulate small galaxies at high redshift. The code includes Compton cooling, atomic
cooling based on collisional equilibrium and low-temperature cooling due to metals. The cos-
mic ultraviolet background is assumed to be low at the redshifts we considered (S3) and was
omitted.

We model the low-temperature (< 104 K) radiative cooling of gas through fine structure
and metastable lines of C, N, O, Fe, S, and Si following the prescription in (S4). To derive
the cooling function, the authors assumed that the above elements are maintained in ionization
equilibrium by locally produced cosmic rays, and that the cosmic ray ionization rate is scaled
from the Galactic value byZ/Z⊙, whereZ/Z⊙ is the metallicity of gas in solar units. We found
that for temperaturesT = 20 . . . 104 K their cooling function can be approximated very well by
the following empirical expression:

log(Λ/n2

H) = −24.81 + 2.928x− 0.6982x2 + log(Z/Z⊙),

wherex ≡ log(log(log(T ))). HerenH is the number density of hydrogen atoms (in cm−3), and
Λ/n2

H is in erg cm3 s−1 units.
The star formation algorithms we used were very similar to those that were extensively

tested by Stinson et al. (S5) and Governato et al. (S2). In order for gas to form stars it has to be
Jeans unstable, to be colder than15, 000 K, to have a minimum physical density of10 atoms/cc
and to have a minimum overdensity of 1,000. Star creation would then proceed at an average
rate, in terms of solar masses per unit volume per unit time, of 0.05 times the gas density divided
by the dynamical time. Star particles were created stochastically, as described in (S5), with a
mass of 120 solar masses each. The probability that a star would be created in any million year
interval was proportional to the average star formation rate of the parent gas particle multiplied
by the time interval divided by the star mass.

A Kroupa (S6) initial stellar mass function was used to determine the rate of supernovae per
solar mass of stars. Each supernova was assumed to depositESN = 0.4× 1051 ergs into the gas
in net (allowing for some loss in the process). Our high mass resolution made it inappropriate
to average the feedback effects due to a large population of stars when describing the feedback
due to an individual star particle. Instead, we employed stochastic feedback by translating
the time-averaged feedback into a probability that an individual supernova would occur in that
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time. Thus the energy is injected in discrete supernova events. For larger star particle masses
the energy output converges to the result with continuous feedback. Star particles select nearby
gas particles in the manner described in (S5) to receive feedback energy. However, the energy
was added in a volume-weighted rather than mass-weighted manner which better respects the
isotropic nature of the energy injection.

Initial conditions

In our simulations, we used the following values of the cosmological parameters (S7): matter
densityΩm = 0.27, baryonic densityΩb = 0.044, Hubble constantH0 = 71 km s−1 Mpc−1,
amplitude of fluctuationsσ8 = 0.84, and spectral indexns = 0.93. We assumed that the
universe is flat (Ωm + ΩΛ = 1, whereΩΛ is the cosmological constant.)

Constrained cosmological initial conditions were constructed using the package COSMICS
(S8). We used two concentric spherical Gaussian ball constraints. The first constraint had
a Gaussian scale length ofR1 = 0.119 co-moving Mpc and an initial overdensity ofδ1 =
1.686D(0)/D(zcoll), whereD(z) is the linear growth factor, andzcoll = 5.92 is the targeted
collapse redshift. This was designed to produce a halo with the mass of∼ 109 M⊙ by z ∼ 6.
After a few tests we realized that for our large box size (4 co-moving Mpc) one constraint was
not enough to produce an isolated dwarf galaxy byz = 5. We chose a second constraint, with
scale length ofR2 = 0.357 co-moving Mpc and initial overdensity ofδ2 = δ1[0.5(R2/R1)

2 +
0.5]3/2 = 0.0894δ1. (The value ofδ2 assumes an isolated density peak in an empty universe.)

We used COSMICS to produce a cube populated with10243 dark matter particles atz0 =
150. The central sphere, with radius of 0.4 co-moving Mpc and containing∼ 4.6 × 106 dark
matter particles, was then populated with the same number ofgas particles (each gas particle
initially overlaying a dark particle and being assigned thesame velocity). Following (S9), the
initial temperature of gas was set to2.73(1 + z0)

2/(1 + 200) K= 310 K. (The above expres-
sion assumes that the temperature of gas is the same as that ofcosmic microwave background
radiation untilz = 200 and is set by adiabatic expansion thereafter.)

To make the simulations computationally feasible, we lowered the resolution outside the
central sphere by averaging coordinates and velocities forgroups of adjacent particles. Between
radii 0.4 and 0.8 co-moving Mpc, the number of particles was reduced by a factor of23, and
in the remainder of the computational box by a factor of83. These low-resolution particles
are needed to reproduce tidal torques from large scales on structures inside the central high-
resolution sphere. Particles in the low resolution regionsare collisionless and account for the
mass of both dark matter and gas in those regions.

The standard numerical code does not have the required physics (such as non-equilibrium
molecular hydrogen chemistry and radiative transfer) to self-consistently describe star forma-
tion in small progenitor galaxies with virial temperatureTvir < 104 K. Proper modeling of these
galaxies is important as they pre-enrich the intergalacticmedium (out of which our model dwarf
galaxy will be built) with trace amounts of heavy elements. We circumvented this limitation by
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running the hydrodynamic simulations with a simplified prescription for star formation until
z = 9.6 (before our model galaxy was assembled), and then switchingto our default star for-
mation recipe. The simplified portion of the simulations hadno low-temperature (< 104 K)
cooling due to heavy elements, and employed simple gas density (overdensity> 100 and den-
sity > 1 cm−3) and temperature (T < 3 × 104 K) criteria to select star-forming particles. At
z = 9.6, our model galaxy had a heavy element abundance of∼ 0.001 solar units, which is
comparable to the lower stellar metallicity cutoff observed in nearby early-type dwarf galax-
ies (S10). (At the end of the simulations, the average metallicity ofgas in the model galaxy
reached 0.014 solar units.) Despite these significant simplifications, in the initial phase of the
simulations we produce the correct abundance of heavy elements in the intergalactic medium.
We also explored a range of heavy elements abundances atz = 9.6, by scaling the metallicity
of all gas particles by a constant factor in the rangeξ = 0.2 to 5 (see the next section). Af-
ter z = 9.6, we ran the simulations with the full physics (low-temperature cooling and Jeans
instability criterion).

Numerical tests

To estimate the smallest resolved radius at the center of ourmodel galaxy, we carried out addi-
tional dark-matter-only simulations which had 8 times lower mass resolution than our fiducial
model. The initial conditions for this run were generated from the initial conditions for the high
resolution run by binning together groups of 8 adjacent particles (reducing the effective resolu-
tion by a factor of two in each linear dimension). We chose thegravitational softening length
for the new run to be twice larger (ε = 24 pc) than for the fiducial run.

Figure S1 shows the final radial density profiles for both highand low resolutions runs.
One can see that both profiles converge around radius∼ 80 pc (or 3.3ε), implying that our
high resolution model should resolve radii down to∼ 40 pc. The actual resolution is probably
somewhat smaller in the fiducial run. At the radius where the low and high resolution models
start diverging, the low resolution run exhibits both a break in the density profile (becomes
shallower) and the one-sigma spread becomes significantly wider (see Figure S1). For the high
resolution run, the same behavior is observed at a radius of 25 pc, or2ε. Thus we are confident
that in the fiducial models we resolve central radii to at least 40 pc, and perhaps to 25 pc. This is
sufficient for our purposes, as stellar feedback significantly perturbs the distribution of galactic
gas on scales> 100 pc.

Next we explored model sensitivity to the three important model parameters:ESN (the en-
ergy deposited into the interstellar medium by a single supernova); the low-temperature cooling
factor,κ (see the description below); and the initial metallicity factor, ξ. (The fiducial values
areESN = 0.4 × 1051 ergs,κ = 1, andξ = 1.) It would be computationally prohibitive to
run full-scale simulations for different values of the above parameters. Instead, we ran a se-
quence of small-box simulations. Atz = 9.6, we cut out a sphere centered on our model galaxy
with radius 6.1 kpc (three virial radii at that epoch). We then ran eight different cosmological
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Figure S1: Radial density profiles for the model galaxy for dark-matter-only simulations at
z = 5. Solid blue and red lines show the dark matter density profiles averaged over the last 50
snapshots for the fiducial model and the model with 8 times lower mass resolution, respectively.
The dotted blue and red lines show the corresponding one-sigma deviations from the averaged
profiles. The vertical solid green line is at 80 pc, the radiuswhere the low and high resolution
models converge. The vertical dashed green line corresponds to the estimated smallest resolved
radius (40 pc) for the high resolution run.

simulations, with the extracted sphere placed in an empty universe. Two of the runs had identi-
cal parameters to the fiducial full-box simulations (a dark-matter-only run and a hydrodynamic
run). Six other small-box simulations were run with two different values for each of the three
free parameters, with the rest of the parameters kept at their fiducial values.

In Figures S2–4 we show the evolution of the central dark matter phase space density,F ,
measured in the same way as in the full-box simulations (see the main text of the paper). Specif-
ically, it was measured for the central 5000 dark matter particles, typically located within the
central∼ 200 pc. This quantity is relatively insensitive to the variableadiabatic compression
of dark matter caused by baryons (gas and stars). Black and green lines correspond to fidu-
cial values of the parameters for the dark-matter-only and hydrodynamic small-box simulations
respectively (these lines are repeated in all three figures).
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Figure S2: Evolution of the central dark matter phase-spacedensity,F , for small-box simula-
tions with different values ofESN. Black and green lines correspond to the dark-matter-only
and hydrodynamic fiducial models (ESN = 0.4 × 1051 ergs). Blue and red lines correspond to
the models with four times lower (0.1×1051 ergs) and four times larger (1.6×1051 ergs) values
of the parameterESN, respectively.
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Figure S3: Evolution of the central dark matter phase space density,F , for small-box simu-
lations with different values ofκ. Black and green lines correspond to the dark-matter-only
and hydrodynamic fiducial models (κ = 1). Blue and red lines correspond to the models with
κ = 0.2 and 5, respectively.
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Figure S4: Evolution of the central dark matter phase space density,F , for small-box simu-
lations with different values ofξ. Black and green lines correspond to the dark-matter-only
and hydrodynamic fiducial models (ξ = 1). Blue and red lines correspond to the models with
ξ = 0.2 and 5, respectively.
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Figure S5: Evolution of the mass-to-light ratio within the central 200 pc,(M/L)0, for small-box
simulations with different values ofESN. Blue, green, and red lines correspond to the models
with ESN = (0.1, 0.4, 1.6)× 1051 ergs, respectively.

A comparison of Figures S2–4 with the bottom panel of Figure 2from the main text, shows:
(a) for the dark-matter-only models, in the small-box simulations the quantityF behaves sim-
ilarly to the case of the full-box simulations (converges toan approximately constant value);
and (b) gravitational dark matter heating due to stellar feedback manifests itself in both large-
and small-box simulations, but the magnitude of the effect is smaller in the smaller box case.
The latter result is not unexpected, as in the small-box run the amount of dark matter and gas
available for the build-up of the model galaxy is much smaller than in the full-box simulations,
resulting in much less energetic star formation after the initial strong star burst aroundz ≃ 7.7.

Reducing the energy input from supernovae by a factor of fourdoes not affect appreciably
gravitational heating of dark matter (see Figure S2). Four times larger energy input results in
somewhat stronger effect. The effect is clearly seen for thewhole range ofESN tested.

Figure S5 demonstrates that we produce quite dark galaxies,with the central value of the
total mass-to-light ratio,(M/L)0, reaching 2, 5, and 9 byz = 5 for the models withESN =
(0.1, 0.4, 1.6) × 1051 ergs, respectively. (In calculating(M/L)0 we adopted the mass-to-light
ratio of 1 for stars (S11), and ignored gas, as current dwarf spheroidal galaxies have very little
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gas.) These values are close to the observed ones; e.g., Leo Iand Fornax have(M/L)0 = 3 and
5, respectively (S12).

As discussed in§ 1, the low-temperature (T < 104 K) radiative cooling function we use in
our model is based on several assumptions. We investigated the sensitivity of the assumptions
by running small-box simulations with the original coolingfunction multiplied by a constant
factor,κ, equal to 0.2, 1, and 5. The impact of stellar feedback on the central phase space density
of dark matter is quite insensitive to the efficiency of low-temperature cooling as shown in
Figure S4. We emphasize, however, that to properly resolve star formation and stellar feedback
in dwarf galaxies, some form of low-temperature cooling hasto be present in the model. In our
runs with no radiative cooling forT < 104 K, the shortest Jeans length for gas particles inside
the galaxy was∼ 10 kpc – much larger that the size of the galaxy. As a result, the galactic
disk was absolutely gravitationally stable, and any star formation prescription produced stars
at random locations inside the disk. In this case stars are not formed in clusters and stellar
feedback does not produce large-scale gas bulk motions (instead heating the interstellar gas
almost uniformly). Not surprisingly, in such models the dark matter experiences essentially no
gravitational heating due to the feedback.

The last parameter we explored was the initial abundance of heavy elements inside the
model galaxy. The fiducial gas metallicity atz = 9.6 was∼ 0.001 solar units (see§ 1). We
ran two small-box models with the metallicity of each gas particle multiplied by a factorξ
equal to0.2 and 5. Figure S5 shows that both the lower and higher metallicity cases resulted
in a somewhat stronger gravitational heating effect. This may be due to either a significant
non-linear dependence of the strength of the effect on gas metallicity, or (more likely) on the
stochastic nature of our star formation and stellar feedback prescriptions. Again, for the range
of ξ tested, gravitational heating due to stellar feedback is significant.

To summarize, the small-box simulations demonstrated thatour main result—that stellar
feedback results in significant gravitational heating of dark matter at the centers of primordial
dwarf galaxies—is largely insensitive to the values of the model parametersESN, κ, andξ when
they vary within reasonable ranges. We believe that this is because small galaxies are effectively
“pressure cookers” in which star formation and feedback areconfined to the central parts of the
halos. A combination of model parameters that results in more energy being pumped into the
interstellar gas will result in individual star bursts thathave a stronger effect on dark matter, but
the interval between star bursts becomes longer (it takes longer for hotter gas to cool down), so
the overall cumulative effect is qualitatively similar.

It follows from our numerical experiments that to accurately model formation and evolution
of a dwarf galaxy in a cosmological context, the following conditions have to be met: (a) The
model has to include a prescription for low-temperature (< 104 K) radiative gas cooling due
to heavy elements. This makes the simulations significantly(by at least a factor of 10) more
expensive, but is absolutely necessary if one wants to to resolve the critical star formation and
feedback processes. (b) In SPH codes, the gas mass resolution has to be high enough (a few
hundred M⊙, or better) to properly resolve the extremely low density gas inside supernovae
remnants: it is the thermal pressure of this hot (> 106 K) gas that drives the large-scale bulk
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motions of the interstellar gas.
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