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It will be introduced a new symmetry principle in the space-time geometry through the elimination
of the classical idea of rest, by including a universal minimum limit of speed in the subatomic world.
Such a lowest limit, unattainable by particles, represents a preferred reference frame associated
with a universal background field that breaks Lorentz symmetry. Thus the structure of space-time
is extended due to the presence of a vacuum energy density, which leads to a negative pressure at
cosmological length scales. The tiny values of the cosmological constant and the vacuum energy
density will be successfully obtained, being in good agreement with current observational results.
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I. INTRODUCTION

Driven by a search for new fundamental symmetries
in Nature[1], we will attempt to implement a uniform
background field into the flat space-time. Such a back-
ground field connected to a uniform vacuum energy den-
sity represents a preferred reference frame, which leads
us to postulate a universal minimum limit of speed for
particles with very large wavelengths (very low energies).

The hypothesis of a lowest limit of speed in the space-
time leads to the following physical reasoning:

- The plane wave for a free particle is an idealization
that is impossible to conceive under physical reality. In
the event of an idealized plane wave, it would be possible
to find with certainty the reference frame that cancels
its momentum (p = 0), and the uncertainty on its po-
sition would be ∆x = ∞. However, the presence of an
unattainable minimum limit of speed emerges in order
to forbid the ideal case of a plane wave (p = constant
or ∆p = 0). This means that there is no perfect iner-
tial motion (v = constant) like a plane wave, except the
privileged reference frame of a universal background field
connected to an unattainable minimum limit of speed V ,
where p would vanish. But, since we should consider
that such a minimum speed V (universal background
frame) is unattainable for the particles with low energies
(large length scales), actually their momenta can never
vanish when one tries to be closer to such a preferred
frame (V ). On the other hand, according to Special Rel-
ativity (SR), their momenta cannot be infinite since the
maximum speed c is also unattainable for such massive
particles, except the photon (v = c) as it is a massless
particle. This reasoning allows us to think that the elec-
tromagnetic radiation (photon:“c − c′′ = c) as well as
the massive particle (“v − v′′ > V (6= 0) for v < c ) are
in equal-footing in the sense that it is not possible to
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find a reference frame at rest (vrelative = 0) for both
through any speed transformation in a space-time with a
maximum and minimum limit of speed. Therefore such
a deformed special relativity will be denominated Sym-
metrical Special Relativity (SSR). We will look for new
speed transformations of SSR in the next section.
The dynamics of particles in the presence of a univer-

sal background reference frame connected to V is within
a context of the ideas of Sciama[2], Schrödinger[3] and
Mach[4], where there should be an “absolute” inertial
reference frame in relation to which we have the iner-
tia of all moving bodies. However, we must emphasize
that the approach used here is not classical as machian
ideas, since the lowest (unattainable) limit of speed V
plays the role of a privileged (inertial) reference frame of
background field instead of the “inertial” frame of fixed
stars.
It is very curious to notice that the idea of universal

background field was sought in vain by Einstein[5], moti-
vated firstly by Lorentz. It was Einstein who coined the
term ultra-referential as the fundamental aspect of Real-
ity to represent a universal background field[6]. Basing
on such concept, let us call ultra-referential SV to be the
universal background field of a fundamental inertial ref-
erence frame connected to V .

II. TRANSFORMATIONS OF SPACE-TIME

AND VELOCITY IN THE PRESENCE OF THE

ULTRA-REFERENTIAL SV

SSR should contain 3 postulates, namely:
1) -the constancy of the speed of light (c).
2) -the non-equivalence (asymmetry) of the reference

frames in such a space-time, i.e., we cannot exchange the
speed v (of S′) for −v (of SV ) by the inverse transforma-
tions, since we cannot find the rest for S′ (“v− v′′ > V )
(see Fig.1). Such an asymmetry will be clarified later.
3) -the covariance of the ultra-referential (background

frame) SV connected to an unattainable minimum limit
of speed V (Fig.1). This third postulate is directly re-
lated to the second one above. Such a connection will be
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FIG. 1: S
′ moves with a velocity v with respect to the back-

ground field of the covariant ultra-referential SV . If V → 0,
SV is eliminated (empty space) and thus the Galilean frame
S takes place, recovering Lorentz transformations.

clarified by studying the new velocity transformations to
be obtained soon.
Let us assume the reference frame S′ with a speed v in

relation to the ultra-referential SV according to Fig. 1.
So, to simplify, consider the motion only at one spatial

dimension, namely (1+1)D space-time with background
field SV . So we write the following transformations:

dx′ = Ψ(dX − β∗cdt) = Ψ(dX − vdt+ V dt), (1)

where β∗ = βǫ = β(1 − α), being β = v/c and α = V/v,
so that β∗ → 0 for v → V or α → 1.

dt′ = Ψ(dt− β∗dX

c
) = Ψ(dt− vdX

c2
+

V dX

c2
), (2)

being ~v = vxx. We have Ψ =
√
1−α2√
1−β2

. If we make V → 0

(α → 0), we recover Lorentz transformations, where the
ultra-referential SV is eliminated and simply replaced by
the Galilean frame S at rest for the classical observer.
In order to get the transformations (1) and (2) above,

let us consider the following more general transforma-
tions: x′ = θγ(X − ǫ1vt) and t′ = θγ(t − ǫ2vX

c2 ), where
θ, ǫ1 and ǫ2 are factors (functions) to be determined.
We hope all these factors depend on α, such that, for
α → 0 (V → 0), we recover Lorentz transformations
as a particular case (θ = 1, ǫ1 = 1 and ǫ2 = 1). By
using those transformations to perform [c2t′2 − x′2], we
find the identity: [c2t′2 − x′2] = θ2γ2[c2t2 − 2ǫ1vtX +

2ǫ2vtX − ǫ21v
2t2 +

ǫ2
2
v2X2

c2 − X2]. Since the metric ten-
sor is diagonal, the crossed terms must vanish and so we
assure that ǫ1 = ǫ2 = ǫ. Due to this fact, the crossed
terms (2ǫvtX) are cancelled between themselves and fi-

nally we obtain [c2t′2 − x′2] = θ2γ2(1− ǫ2v2

c2 )[c2t2 −X2].

For α → 0 (ǫ = 1 and θ = 1), we reinstate [c2t′2 − x′2] =
[c2t2 − x2] of SR. Now we write the following trans-
formations: x′ = θγ(X − ǫvt) ≡ θγ(X − vt + δ) and
t′ = θγ(t − ǫvX

c2 ) ≡ θγ(t − vX
c2 + ∆), where we assume

δ = δ(V ) and ∆ = ∆(V ), so that δ = ∆ = 0 for V → 0,
which implies ǫ = 1. So from such transformations we

extract: −vt + δ(V ) ≡ −ǫvt and − vX
c2 + ∆(V ) ≡ − ǫvX

c2 ,

from where we obtain ǫ = (1 − δ(V )
vt ) = (1 − c2∆(V )

vX ).
As ǫ is a dimensionaless factor, we immediately con-
clude that δ(V ) = V t and ∆(V ) = VX

c2 , so that we find

ǫ = (1− V
v ) = (1−α). On the other hand, we can deter-

mine θ as follows: θ is a function of α (θ(α)), such that
θ = 1 for α = 0, which also leads to ǫ = 1 in order to
recover Lorentz transformations. So, as ǫ depends on α,
we conclude that θ can also be expressed in terms of ǫ,
namely θ = θ(ǫ) = θ[(1 − α)], where ǫ = (1 − α). There-
fore we can write θ = θ[(1 − α)] = [f(α)(1 − α)]k, where
the exponent k > 0. The function f(α) and k will be
estimated by satisfying the following conditions:

i) as θ = 1 for α = 0 (V = 0), this implies f(0) = 1.

ii) the function θγ = [f(α)(1−α)]k

(1−β2)
1

2

= [f(α)(1−α)]k

[(1+β)(1−β)]
1

2

should have a symmetrical behavior, that is to say it goes
to zero closer to V (α → 1) in the same way it goes to
infinite closer to c (β → 1). In other words, this means
that the numerator of the function θγ, which depends
on α should have the same shape of its denumerator,
which depends on β. Due to such conditions, we natu-
rally conclude that k = 1/2 and f(α) = (1 + α), so that

θγ = [(1+α)(1−α)]
1

2

[(1+β)(1−β)]
1

2

= (1−α2)
1

2

(1−β2)
1

2

=

√
1−V 2/v2√
1−v2/c2

= Ψ, where

θ =
√
1− α2 =

√

1− V 2/v2.

The transformations shown in (1) and (2) are the direct
transformations from SV [Xµ = (X, ict)] to S′ [x′ν =
(x′, ict′)], where we have x′ν = Ων

µX
µ (x′ = ΩX), so

that we obtain the following matrix of transformation:

Ω =

(

Ψ iβ(1− α)Ψ
−iβ(1− α)Ψ Ψ

)

, (3)

such that Ω → L (Lorentz matrix of rotation) for α → 0
(Ψ → γ).

We obtain detΩ = (1−α2)
(1−β2) [1 − β2(1 − α)2], where

0 < detΩ < 1. Since V (SV ) is unattainable (v > V ),
this assures that α = V/v < 1 and therefore the ma-
trix Ω admits inverse (detΩ 6= 0 (> 0)). However Ω
is a non-orthogonal matrix (detΩ 6= ±1) and so it does
not represent a rotation matrix (detΩ 6= 1) in such a
space-time due to the presence of the privileged frame of
background field SV that breaks strongly the invariance
of the norm of the 4-vector (limit v → V in (15) or (16)).
Actually such an effect (detΩ ≈ 0 for α ≈ 1) emerges
from a new relativistic physics of SSR for treating much
lower energies at infrared regime closer to SV (very large
wavelengths).

We notice that detΩ is a function of the speed v with
respect to SV . In the approximation for v >> V (α ≈
0), we obtain detΩ ≈ 1 and so we practically reinstate
the rotation behavior of Lorentz matrix as a particular
regime for higher energies. If we make V → 0 (α → 0),
we recover detΩ = 1.

The inverse transformations (from S′ to SV ) are
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dX = Ψ′(dx′ + β∗cdt
′) = Ψ′(dx′ + vdt′ − V dt′), (4)

dt = Ψ′(dt′ +
β∗dx

′

c
) = Ψ′(dt′ +

vdx′

c2
− V dx′

c2
). (5)

In matrix form, we have the inverse transformation
Xµ = Ωµ

νx
′ν (X = Ω−1x′), so that the inverse matrix is

Ω−1 =

(

Ψ′ −iβ(1− α)Ψ′

iβ(1− α)Ψ′ Ψ′

)

, (6)

where we can show that Ψ′=Ψ−1/[1−β2(1−α)2], so that
we must satisfy Ω−1Ω = I.
Indeed we have Ψ′ 6= Ψ and therefore Ω−1 6= ΩT . This

non-orthogonal aspect of Ω has an important physical
implication. In order to understand such an implication,
let us consider firstly the orthogonal (e.g: rotation) as-
pect of Lorentz matrix in SR. Under SR, we have α = 0,
so that Ψ′ → γ′ = γ = (1 − β2)−1/2. This symmetry
(γ′ = γ, L−1 = LT ) happens because the Galilean ref-
erence frames allow us to exchange the speed v (of S′)
for −v (of S) when we are at rest at S′. However, under
SSR, since there is no rest at S′, we cannot exchange v
(of S′) for −v (of SV ) due to that asymmetry (Ψ′ 6= Ψ,
Ω−1 6= ΩT ). Due to this fact, SV must be covariant,
namely V remains invariant for any change of reference
frame in such a space-time. Thus we can notice that the
paradox of twins, which appears due to that symmetry
by exchange of v for −v in SR should be naturally elimi-
nated in SSR where only the reference frame S′ can move
with respect to SV . So SV remains covariant (invariant
for any change of reference frame). Such a covariance
will be verified soon.
We have detΩ = Ψ2[1− β2(1 − α)2] ⇒ [(detΩ)Ψ−2] =

[1 − β2(1 − α)2]. So we can alternatively write
Ψ′=Ψ−1/[1−β2(1−α)2] = Ψ−1/[(detΩ)Ψ−2] = Ψ/detΩ.
By inserting this result in (6) to replace Ψ′, we obtain the
relationship between the inverse matrix and the trans-
posed matrix of Ω, namely Ω−1 = ΩT /detΩ. Indeed Ω is
a non-orthogonal matrix, since we have detΩ 6= ±1.
By dividing (1) by (2), we obtain the following speed

transformation:

vRel =
v′ − v + V

1− v′v
c2 + v′V

c2

, (7)

where we have considered vRel = vRelative ≡ dx′/dt′ and
v′ ≡ dX/dt. v′ and v are given with respect to SV , and
vRel is related between them. Let us consider v′ > v.
(see Fig.2)
If V → 0, the transformation (7) recovers the Lorentz

velocity transformation where v′ and v are given in re-
lation to a certain Galilean frame S0 at rest. Since (7)
implements the ultra-referential SV , the speeds v′ and

FIG. 2: SV is the covariant ultra-referential of background
field. S represents the reference frame for a massive particle
with speed v in relation to SV , where V < v < c. S′ represents
the reference frame for a massive particle with speed v

′ in
relation to SV . In this case, we consider V < v ≤ v

′
≤ c.

v are now given with respect to SV , which is covariant
(absolute). Such a covariance is verified if we assume
that v′ = v = V in (7). Thus, for this case, we obtain
vRel = “V − V ′′ = V .
Let us also consider the following cases in (7):
a) v′ = c and v ≤ c ⇒ vRel = c. This just verifies the

well-known invariance of c.
b) if v′ > v(= V ) ⇒ vRel = “v′ − V ” = v′. For

example, if v′ = 2V and v = V ⇒ vRel = “2V −V ” = 2V .
This means that V really has no influence on the speed of
the particles. So V works as if it were an “absolute zero
of movement”, being invariant and having the same value
in all directions of space of the isotropic background field.
c) if v′ = v ⇒ vRel = “v − v′′(6= 0) = V

1− v2

c2
(1−V

v
)
.

From (c) let us consider two specific cases, namely:
-c1) assuming v = V ⇒ vRel = “V −V ” = V as verified

before.
-c2) if v = c ⇒ vRel = c, where we have the interval

V ≤ vRel ≤ c for V ≤ v ≤ c.
This last case (c) shows us in fact that it is impossible

to find the rest for the particle on its own reference frame
S′, where vRel(v) (≡ ∆v(v)) is a function that increases
with the increasing of v . However, if we make V → 0,
then we would have vRel ≡ ∆v = 0 and therefore it would
be possible to find the rest for S′, which would become
simply a Galilean reference frame of SR.
By dividing (4) by (5), we obtain

vRel =
v′ + v − V

1 + v′v
c2 − v′V

c2

(8)

In (8), if v′ = v = V ⇒ “V + V ′′ = V . Indeed V is
invariant, working like an absolute zero state in SSR. If
v′ = c and v ≤ c, this implies vRel = c. For v′ > V and
considering v = V , this leads to vRel = v′. As a specific
example, if v′ = 2V and assuming v = V , we would have
vRel = “2V +V ′′ = 2V . And if v′ = v ⇒ vRel = “v+v” =

2v−V

1+ v2

c2
(1−V

v
)
. In newtonian regime (V << v << c), we

recover vRel = “v + v” = 2v. In relativistic (einsteinian)
regime (v → c), we reinstate Lorentz transformation for
this case (v′ = v), i.e., vRel = “v + v” = 2v/(1 + v2/c2).
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By joining both transformations (7) and (8) into just
one, we write the following compact form:

vRel =
v′ ∓ ǫv

1∓ v′ǫv
c2

=
v′ ∓ v(1 − α)

1∓ v′v(1−α)
c2

=
v′ ∓ v ± V

1∓ v′v
c2 ± v′V

c2

, (9)

being α = V/v and ǫ = (1 − α). For α = 0 (V = 0) or
ǫ = 1, we recover Lorentz speed transformations.
Transformations for (3 + 1)D and also a new group

algebra for SSR will be treated elsewhere.

III. COVARIANCE OF THE MAXWELL WAVE

EQUATION IN THE PRESENCE OF THE

ULTRA-REFERENTIAL SV

Let us assume a light ray emitted from the frame S′.
Its equation of electrical wave at this reference frame is

∂2 ~E(x′, t′)

∂x′2
− 1

c2
∂2 ~E(x′, t′)

∂t′2
= 0 (10)

As it is already known, when we make the exchange by
conjugation on the spatial and temporal coordinates, we
obtain respectively the following operators: X → ∂/∂t
and t → ∂/∂X ; also x′ → ∂/∂t′ and t′ → ∂/∂x′. Thus
the transformations (1) and (2) for such differential op-
erators are

∂

∂t′
= Ψ[

∂

∂t
− βc(1 − α)

∂

∂X
)], (11)

∂

∂x′
= Ψ[

∂

∂X
− β

c
(1 − α)

∂

∂t
)], (12)

where β = v/c and α = V/v (see Fig.1).
By squaring (11) and (12), inserting into (10) and after

performing the calculations, we will finally obtain

detΩ

(

∂2 ~E

∂X2
− 1

c2
∂2 ~E

∂t2

)

= 0, (13)

where detΩ = Ψ2[1− β2(1− α)2] (see (3)).
As the ultra-referential SV is definitely inaccessible for

any particle, we always have α < 1 (or v > V ), which
always implies detΩ = Ψ2[1−β2(1−α)2] > 0. And as we
already have shown in the last section, such a result is
in agreement with the fact that we must have detΩ > 0.
Therefore this will always assure

∂2 ~E

∂X2
− 1

c2
∂2 ~E

∂t2
= 0 (14)

By comparing (14) with (10), we verify the covariance
of the electromagnetic wave equation propagating in the
background field of the ultra-referential SV .

IV. THE FLAT SPACE-TIME AND THE

ULTRA-REFERENTIAL SV

Let us consider the ultra-referential SV as a uniform
background field that fills the whole flat space-time as a
perfect fluid, playing the role of a kind of de-Sitter (dS)
space-time[7] shown in the next section (Λ > 0). So let
us define the following metric:

ds2 = Θgµνdx
µdxν , (15)

where gµν is the well-known Minkowski metric. Θ is a
scale factor that increases for very large wavelengths (cos-
mological scales) governed by vacuum (dS), that is to say
for much lower energies, where we have Θ → ∞. On the
other hand, Θ decreases to 1 for smaller scales of length,
namely for higher energies (Θ → 1) where dS space-time
approximates to the Minkowski metric as a special case.
Θ breaks strongly the invariance of ds only for very large
distances governed by vacuum of the ultra-referential SV .
For smaller scales of length governed by matter, we nat-
urally restore Lorentz symmetry and the invariance of
ds. Following such considerations, let us consider Θ to
be a function of speed v with respect to the background
field-SV , namely:

Θ = Θ(v) =
1

(1− V 2

v2 )
, (16)

such that Θ ≈ 1 for v >> V (Lorentz symmetry regime)
and Θ → ∞ for v → V (regime of ultra-referential SV

that breaks strongly ds invariance, so that ds → ∞).
The total energy E of a particle in SV is

E = θ(γmc2) = Ψmc2 = mc2

√

1− V 2

v2

√

1− v2

c2

, (17)

where θ = Θ−1/2 =
√
1− α2 and γ = 1/

√

1− β2, being
α = V/v and β = v/c. v is given in relation to SV .
In (17), we observe that E → 0 for v → V (SV ). For

the case v = v0 =
√
cV , we obtain θγ = Ψ(v0) = 1 ⇒

E = mc2. Actually, as a massive particle always has
motion v (V (SV ) < v < c) with respect to the unattain-
able ultra-referential SV , its proper energy mc2 requires
a non-zero motion v(= v0) in relation to SV (see Fig.3).
The momentum of the particle in relation to SV is

~P = m~v

√

1− V 2

v2

√

1− v2

c2

. (18)

From (17) and (18), we show the following energy-

momentum relation: c2 ~P 2 = E2 −m2c4(1− V 2

v2 ).
The de-Broglie wavelength of the particle in SV is due

to its motion v with respect to SV , namely:

λ =
h

P
=

h

mv

√

1− v2

c2
√

1− V 2

v2

, (19)
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FIG. 3: v0 represents the speed in relation to SV , from where
we get the proper energy of the particle (E0 = mc

2), being
Ψ0 = Ψ(v0) = 1. For v << v0 or closer to SV (v → V ), a
new relativistic correction on energy arises, so that E → 0.

from where we have used the momentum (18) given with
respect to SV .
If v → c ⇒ λ → 0 (spatial contraction), and if

v → V (SV ) ⇒ λ → ∞ (spatial dilation to the infi-
nite, breaking strongly Lorentz symmetry in SSR), which
means we have cosmological wavelengths. This leads to
Θ → ∞ (see (16)).

V. COSMOLOGICAL IMPLICATIONS

A. Energy-momentum tensor in the presence of

the ultra-referential-SV

Let us write the 4-velocity in the presence of SV , as
follows:

Uµ =





√

1− V 2

v2

√

1− v2

c2

,
vα

√

1− V 2

v2

c
√

1− v2

c2



 , (20)

where µ = 0, 1, 2, 3 and α = 1, 2, 3. If V → 0, we recover
the 4-velocity of SR.
The well-known energy-momentum tensor to deal with

perfect fluid is of the form

T µν = (p+ ǫ)UµUν − pgµν , (21)

where Uµ is given in (20). p represents a pressure and ǫ
an energy density.
From (20) and (21), performing the new component

T 00, we obtain

T 00 =
ǫ(1− V 2

v2 ) + p(v
2

c2 − V 2

v2 )

(1− v2

c2 )
(22)

If V → 0, we recover the old component T 00.
Now, as we are interested only in obtaining T 00 in

absence of matter, i.e., the vacuum limit connected to

the ultra-referential SV , we perform the limit of (22) as
follows:

limv→V T
00 = T 00

vacuum =
p(V

2

c2 − 1)

(1 − V 2

c2 )
= −p. (23)

From (22), we notice that the term ǫγ2(1 − V 2/v2)
for representing matter vanishes naturally in the limit of
vacuum-SV (v → V ), and therefore just the contribution
of vacuum prevails. As we always must have T 00 > 0, we
get p < 0 in (23). This implies a negative pressure for
vacuum energy density of the ultra-referential SV . So we
verify that a negative pressure emerges naturally from
such a new tensor in the limit of SV .
We can obtain T µν

vacuum by calculating the limit of
vacuum-SV for (21), by considering (20), as follows:

T µν
vacuum = limv→V T

µν = −pgµν, (24)

where we conclude that ǫ = −p. In (20), we see that the
new 4-velocity vanishes in the limit of the vacuum-SV

(v → V ), namely Uµ
vac. = (0, 0). So T µν

vac. is in fact a
diagonalized tensor as we hope to be. The vacuum-SV

inherent to such a space-time works like a sui generis
fluid in equilibrium with negative pressure, leading to a
cosmological anti-gravity.

B. The cosmological constant Λ

The well-known relation[16] between the cosmological
constant Λ and the vacuum energy density ρ(Λ) is

ρ(Λ) =
Λc2

8πG
(25)

Let us consider a spherical universe with its Hubble
radius filled by a uniform vacuum energy density. On
the surface of such a sphere (frontier of the observable
universe), the bodies (galaxies) experiment an acceler-
ated expansion (anti-gravity) due to the whole “dark
mass” of vacuum inside the sphere. So we could think
that each galaxy is a proof body interacting with that
big sphere like in the simple case of two bodies inter-
action, however we need to show that there is an anti-
gravitational interaction. But before this, let us first
start from the well-known simple model of a massive
particle that escapes from a classical gravitational po-
tential φ on the surface of a spherical mass, namely
E = mc2(1 − v2/c2)−1/2 ≡ mc2(1 + φ/c2), where E
is its relativistic energy. Here the interval of velocity
0 ≤ v < c is associated with the interval of potential
0 ≤ φ < ∞, where we stipulate φ > 0 to be the attractive
potential. Now it is important to notice that the strong
influence of the background field (vacuum energy) con-
nected to the ultra-referential SV leads to a strong repul-
sive (negative) gravitational potential (φ << 0) for very
low energies (E → 0). This modified (non-classical) as-
pect of gravitation[8] prevails only for cosmological scales
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of length governed by vacuum-SV . In order to see such
an aspect, we write the approximation for much lower
energies in (17), as follows:

E ≈ mc2(1− V 2/v2)1/2 ≡ mc2(1 + φ/c2), (26)

where, for E → 0, this implies v → V , which leads
to φ → −c2. So, the non-classical minimum potential
φ(= −c2) connected to vacuum SV is responsible for the
cosmological anti-gravity. We interpret this result as-
suming that only an exotic “particle” of the vacuum-SV

can escape from the anti-gravity (φ = −c2) generated by
the own cosmological vacuum-SV . Therefore, ordinary
proof bodies like galaxies and any matter on the surface
of the sphere cannot escape from its anti-gravity, being
accelerated for away.
According to (26), we should note that such an exotic

“particle” of vacuum (at SV ) has an infinite mass since
we should consider v = V (θ = 0) in order to have a
finite value of E, other than the photon (v = c) with
a null mass (see (17)). So we conclude that an exotic
“particle” of vacuum works like a counterparty of the
photon, namely an infinitely massive boson.
In (26) the most negative potential (for v = V ) related

to the cosmological constant (vacuum energy) is

φΛ = φ(V ) = −c2 (27)

Such a negative potential depends directly on Λ,
namely, φΛ = φ(Λ) = φ(V ) = −c2. To show that, let
us consider that simple model of spherical universe with
a radius Ru, being filled by a uniform vacuum energy
density ρ(Λ), so that the total vacuum energy inside the

sphere is EΛ = ρ(Λ)Vu = −pVu = MΛc
2. Vu is its vol-

ume and MΛ is the total dark mass associated with the
dark energy for Λ (w = −1). Therefore the repulsive
gravitational potential on the surface of such a sphere is

φΛ = −GMΛ

Ru
= −

Gρ(Λ)Vu

Ruc2
=

4πGpR2
u

3c2
, (28)

where p = −ρ(Λ), with w = −1.

By introducing (25) into (28), we find

φΛ = φ(Λ) = −ΛR2
u

6
(29)

Finally, by comparing (29) with (27), we extract

Λ =
6c2

R2
u

, (30)

where ΛSu = 24πc2, being Su = 4πR2
u.

And also by comparing (28) with (27), we have

ρ(Λ) = −p =
3c4

4πGR2
u

, (31)

where ρ(Λ)Su = 3c4/G. (31) and (30) satisfy (25).
In (30), Λ is a kind of cosmological scalar field, extend-

ing the old concept of Einstein about the cosmological
constant for stationary universe. From (30), by consider-
ing the Hubble radius, with Ru = RH0

∼ 1026m, we ob-
tain Λ = Λ0 ∼ (1017m2s−2/1052m2) ∼ 10−35s−2. To be
more accurate, we know the age of the universe T0 = 13.7
Gyr, being RH0

= cT0 ≈ 1.3 × 1026m, which leads to
Λ0 ≈ 3 × 10−35s−2. This tiny positive value is very
close to the observational results[9][10][11][12][13]. The
vacuum energy density[14][15] given in (31) for RH0

is
ρ(Λ0) ≈ 2× 10−29g/cm3, which is also in agreement with
observations. For scale of the Planck length, where Ru =
lP = (G~/c3)1/2, from (30) we find Λ = ΛP = 6c5/G~ ∼
1087s−2, and from (31) ρ(Λ) = ρ(ΛP ) = T 00

vac.P =

ΛP c
2/8πG = 3c7/4πG2

~ ∼ 10113J/m3(= 3c4/4πl2PG ∼
1043kgf/SP ∼ 10108atm ∼ 1093g/cm3). So just at that
past time, ΛP or ρ(ΛP ) played the role of an inflationary
vacuum field with 122 orders of magnitude[16] beyond of
those ones (Λ0 and ρ(Λ0)) for the present time.
It must be stressed that our assumption for obtaining

the tiny positive value of Λ starts from first principles re-
lated to a new symmetry in the spacetime, i.e., the idea of
a background reference frame for the vacuum energy con-
nected to an invariant and unattainable minimum speed
given in the quantum world.
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