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Abstract

We show that from the R? high order gravity theory it is possible to
produce, in the linearized approch, particles which can be seen like massive
modes of gravitational waves (GWs). The presence of the mass generates
a longitudinal force in addition of the transverse one which is proper of
the massless gravitational waves and the response an interferometer to the
effect is computed. This could be, in principle, important to discriminate
among the gravity theories. The presence of the mass could also have
important applications in cosmology because the fact that gravitational
waves can have mass could give a contribution to the dark matter of the
Universe.

PACS numbers: 04.80.Nn, 04.30.Nk, 04.50.+h

1 Introduction

The data analysis of interferometric GWs detectors has recently started (for the
current status of GWs interferometers see [I1, 2, 3], [4] [5 [6, [7, 8]) and the scientific
community hopes in a first direct detection of GWs in next years. The results of
these detectors will have a fundamental impact on astrophysics and gravitation
physics. There will be lots of experimental data to be analyzed, and theorists
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will be forced to interact with lots of experiments and data analysts to extract
the physics from the data stream.

Detectors for GWs will be important for a better knowledge of the Universe
and also to confirm or ruling out the physical consistency of General Relativity
or of any other theory of gravitation [9] [10] [13 [14]. This is because, in
the context of Extended Theories of Gravity, some differences between General
Relativity and the others theories can be pointed out starting by the linearized
theory of gravity [9] 10} 12, 14].

In this paper the production and the potential detection with interferometers
of a hypotetical massive component of gravitational radiation which arises from
the R? theory of gravity, which was the first and simplest high order gravity
theory proposed [15], is shown.

In the second Section of this paper it is shown that a massive mode of
gravitational radiation arises from the high order action [15]

S = /d4x\/—_g(R +aR?) + Ly, (1)

Equation () is a particular choice with respect the well known canonical
one of general relativity (the Einstein - Hilbert action [I6] [I7]) which is

= / d e/ GR + Lo, (2)

where R is the Ricci scalar curvature. We empahsize that the presence of
the mass could also have important applications in cosmology because the fact
that gravitational waves can have mass could give a contribution to the dark
matter of the Universe. We also recall that an alternative way to resolve the
dark matter and dark energy problems using high order gravity is shown in ref.

[18].

In Section three it is shown that the massive component generates a longi-
tudinal force in addition of the transverse one which is proper of the massless
case.

After this, in Section four, the potential interferometric detection of this
longitudinal component is analyzed and the response of an interferometer is
computed. This could be, in principle, important to discriminate among several
gravity theories which are today considered.

2 The production of a massive mode of gravita-
tional radiation in the R? theory of gravity

If the gravitational Lagrangian is nonlinear in the curvature invariants the Ein-
stein field equations has an order higher than second [9, 12 [13]. For this reason
such theories are often called higher-order gravitational theories. This is exactly
the case of the action ().



By varying this action with respect to g, (see refs. [12, [I3] for a parallel
computation) the field equations are obtained (note that in this paper we work
withG=1,c=1and h=1):

G = 2;%;?1 {"'TlE:/n) - %glﬂ’aR2+

(3)
+2aR,,., — 209, 0R}

with associed a Klein - Gordon equation for the Ricci curvature scalar

OR = m?*(R + 87GT), (4)
where (0 is the d’ Alembertian operator and the mass m has been introduced
for dimensional motivations: m? = —6%, thus « has to be negative [15].

In the above equations T,ST) is the ordinary stress-energy tensor of the matter
and G is a dimensional, strictly positive, constant [9, 12| 13]. The Newton
constant is replaced by the effective coupling

1
Gesp = — 5o
=7 30RaR+1)

which is different from G. General relativity is obtained when o = 0.

(5)

To study gravitational waves the linearized theory in vacuum (T;ST) = 0) has
to be analyzed, with a little perturbation of the background, which is assumed
given by the Minkowskian background. In this case the Ricci scalar is assumed
slowly varying near zero: R~ 0+ 6R = hpg.

Putting

Guv = Nuv + h,uu (6)

to first order in A, , calling E,wpg , E;w and R the linearized quantity which
correspond to Ruup0 , Ry and R, the linearized field equations are obtained

[12, 13, 16, 17:

fé;u/ - %nuu = ap,au-é + anDhR (7)
DhR = mQhR.

R, p0 and eqs. (@) are invariants for gauge transformations [12 [13]
h;w — h;w = h,“, — 8(#6,/)
hR — th = hR;

then

. h
huu = huu - §nuu + 77,th (9)

can be defined, and, considering the transform for the parameter



Oe, = 5”]71,“,, (10)

a gauge parallel to the Lorenz one of electromagnetic waves can be choosen:

OMhy, = 0. (11)

In this way field equations read like

DRy =0 (12)

Ohg = m?hg (13)
Solutions of eqs. ([I2) and (I3) are plan waves:

Py = Au (T) exp(ip®zq) + c.c. (14)

hr = a(7P)exp(iq®xs) + c.c. (15)

where
k= (w, ) w=p=|7|
q* = (wmvﬁ) Wm =/ m? +p2-

In eqs. ([I2) and ([I4) the equation and the solution for the waves like in
standard general relativity [16, [I7] have been obtained, but eqs. ([I3) and (T3]
are respectively the equation and the solution for the massive mode (see also
[12] [13]) arising from the Starobinsky’s high order gravity theory.

The fact that the dispersion law for the modes of the massive field hg is not
linear has to be emphatized. The velocity of every tensorial mode i_LW is the
light speed ¢, but the dispersion law (the second of eq. (IG))) for the modes of
hg is that of a massive field which can be discussed like a wave-packet [13].
Also, the group-velocity of a wave-packet of hr centered in P is

(16)

=z )

which is exactly the velocity of a massive particle with mass m and momen-

tum ?

From the second of eqs. (I8) and eq. (7)) it is simple to obtain:

2 _ 2
va= YY" T (18)
w

Then, wanting a constant speed of our wave-packet, it has to be [12] [13]

m=/(1 —v})w. (19)

The relation ([I9) is shown in fig. 1 for a value vg = 0.9.
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Figure 1: the mass-frequency relation for a massive graviiatonal wave arising
from the R? high order gravity theory and propagating with a speed of 0.9c¢ :
for the mass it is 1Hz = 10~ eV



Now the analisys can remain in the Lorenz gauge with trasformations of the
type Oe, = 0; this gauge gives a condition of transversality for the tensorial
part of the field: k#A,, = 0, but does not give the transversality for the total
field hy,,. From eq. (@) it is

h
ny §nuu + 77,th- (20)

>

hyw =
At this point, if being in the massless case [17], it could been put

e =0
_ (21)
(9”6“ = —% + hg,

which gives the total transversality of the field. But in the massive case this
is impossible. In fact, applying the Dalembertian operator to the second of egs.
I) and using the field equations ([I2)) and (I3]) it results

O = m2hpg, (22)

which is in contrast with the first of eqs. ZI)). In the same way it is possible
to show that it does not exist any linear relation between the field h,, and hg.
Thus a gauge in wich h,, is purely spatial cannot be chosen (i.e. it cannot be
put hyuo = 0, see eq. ([20)) . But the traceless condition to the field h,,, can be
put:

Oet* =0
. (23)
Ope! = —%.
These equations imply
9" R = 0. (24)
To save the conditions 8,]#“’ and h = 0 transformations like
Le* =0
(25)
Oue* =0

can be used and, taking 7 in the z direction, a gauge in which only A,
Ago, and Ao = Aoy are different to zero can be chosen. The condition h = 0
gives A1 = —Ass. Now, putting these equations in eq. (20) it results

how(t, z) = At (t — z)el(;:) + AX(t — z)efjj + hr(t — va2) - (26)

The term AT (t — z)e,(f,t) +AX(t— z)e,(ﬁ,) describes the two standard polariza-
tions of gravitational waves which arise from General Relativity, while the term
hr(t — vgz)nu is the massive polarization arising from the R? theory.



3 The presence of a longitudinal force

The analysis of the two standard polarization is well known in the literature
[16] [I7]. For a the pure polarization arising by the R? theory eq. (Z8) can be
rewritten as

hyw (t —vaz) = hr(t —vaz)nu (27)

and the corrispondent line element is the conformally flat one

ds® = [1 + hr(t — vg2)](=dt* + dz? + dz? + dy?). (28)

But, in a laboratory environment on Earth, the coordinate system in which
the space-time is locally flat is typically used and the distance between any
two points is given simply by the difference in their coordinates in the sense of
Newtonian physics [12}, 13|, 16} [I7]. This frame is the proper reference frame of
a local observer, located for example in the position of the beam splitter of an
interferometer. In this frame gravitational waves manifest themself by exerting
tidal forces on the masses (the mirror and the beam-splitter in the case of an
interferometer). A detailed analysis of the frame of the local observer is given
in ref. [I7], sect. 13.6. Here only the more important features of this coordinate
system are recalled:

the time coordinate xg is the proper time of the observer O;

spatial axes are centered in O;

in the special case of zero acceleration and zero rotation the spatial coor-
dinates x; are the proper distances along the axes and the frame of the local
observer reduces to a local Lorentz frame: in this case the line element reads

7]
ds? = —(da®)? + 6;;dx'da? + O(|27|*)dadx”. (29)
The effect of the gravitational wave on test masses is described by the equa-
tion
@ = =Ry, (30)
which is the equation for geodesic deviation in this frame.

_ Thus, to study the effect of the massive gravitational wave on test masses,
R, has to be computed in the proper reference frame of the local observer.

But, because the linearized Riemann tensor R,,,, is invariant under gauge
transformations [12] 13 [I7], it can be directly computed from eq. (21).
From [I7] it is:
~ 1
lepg = 5{6u65ha,, + 8,,8ahu3 - 8a8ﬂhw, — (9Mal,ha3}, (31)
that, in the case eq. (27)), begins

~ 1
Riyo = 519%0ohrnoy + 000yhrdg — 0%0yhrmoo — dodohrdy};  (32)



the different elements are (only the non zero ones will be written):

0?hr for a=~v=0
8“80hR7707 == (33)
—0,0thg  for a=3;v=0

2hr  for a=v=0
000yhRré§ = (34)
0:0.hr for a=0;v=3

—0?hg  for a=v=0

0’hr for a=~v=3
— 0%0yhrnoo = 0%0vhr = (35)
—0:0,hg for a=0;7y=3

0,0thg  for a=3;7v=0

— 0oOoh Ry = —0?hr  for a=-~ . (36)
Now, putting these results in eq. (32)) it results:
E(l)lo = _%BR
R0 = —ihg (37)
R}y = 0hp.
But, putting the field equation (I3)) in the third of eqs. (B7) it is
~ 1
R, = §m2hR, (38)

which shows that the field is not transversal.
Infact, using eq. (B0) it results

1.
T = —hRJJ, (39)
2
1.
Y= §hRy (40)
and
. 1 5
Z=-gm hr(t —vgz)z. (41)

Then the effect of the mass is the generation of a longitudinal force (in
addition to the transverse one). Note that in the limit m — 0 the longitudinal
force vanishes.



4 The interferometer’s response to the longitudi-
nal component

Before starting the analysis it has to be discussed if there are fenomenogical
limitations to the mass of the wave [12] [I3]. Treating hp like a classical wave,
that acts coherently with the interferometer, it has to be m <« 1/L , where
L = 3 kilometers in the case of Virgo and L = 4 kilometers in the case of LIGO.
Thus it has to be approximately m < 10~%eV. However there is a stronger
limitation coming from the fact that the massive wave needs a frequency which
falls in the frequency-range for earth based gravitational antennas that is the
interval 100Hz < f < 10KHz [3, [ [5] [6], (7, [8]. For a massive gravitational
wave, from the second of eqs. ([I0) it is:

2nf =w =+/m? + p?, (42)

were p is the momentum [I3]. Thus it needs

0eV <m <10 MeV. (43)

For these light particles their effect can be still discussed as a coherent grav-
itational wave. For the discussion of this longitudinal effect we start directly
from the gauge (28)).

Eq. (28) can be rewritten as

dt .o dv., dy., ,dz.s 1
(dr) (dT) (dr) (dr) - (L+hg)’
where 7 is the proper time of the test masses.

From eqs. (28) and @) the geodesic equations of motion for test masses
(i.e. the beam-splitter and the mirrors of the interferometer), can be obtained

(44)

d*x _

= 0

Py _

T = 0

(45)

&t 10(+hr)

ar? T 3 (1thn)?

Pz _10:(1+hr)

a2 T T3 (1thn)?

The first and the second of eqs. (@3] can be immediately integrated obtaining

do = (1 = const. (46)
dr
dy = (Cy = const. (47)
dr



In this way eq. (@) becomes

e (18)
T T (14 hgr)

If we assume that test masses are at rest initially we get Ch7 = Cy = 0. Thus
we see that, even if the GW arrives at test masses, we do not have motion of
test masses within the x — y plane in this gauge. We could understand this
directly from eq. (28] because the absence of the x and of the y dependences in
the metric implies that test masses momentum in these directions (i.e. C and
(5 respectively) is conserved. This results, for example, from the fact that in
this case the z and y coordinates do not esplicitly enter in the Hamilton-Jacobi
equation for a test mass in a gravitational field [16].

Now we will see that, in presence of the GW, we have motion of test masses
in the z direction which is the direction of the propagating wave. An analysis
of eqs. (@A) shows that, to simplify equations, we can introduce the retarded
and advanced time coordinates (u,v):

u=t—vgz

(49)
v=t-+uvgz.
From the third and the fourth of eqs. (@3] we have
dd [l+h
L Ol + hr(u)] =0. (50)
drdr (14 hgr(u))?
This equation can be integrated obtaining
du,
du_ 51
ar (51)
where « is an integration constant. From eqs. [@8) and (&), we also get
dv 15}
- = 592
dr 1+ hgr ( )
where § = é, and
T=Pu+7, (53)

where the integration constant v correspondes simply to the retarded time
coordinate translation w. Thus, without loss of generality, we can put it equal
to zero. Now let us see what is the meaning of the other integration constant
B. We can write the equation for z from eqs. (&I and (G2):

dz 1 32

&~ 25T 0,

—1). (54)

10



When it is hg = 0 (i.e. before the GW arrives at the test masses) eq. (54)
becomes p .
o 2
— == —1). 35
=55 ) (55)
But this is exactly the initial velocity of the test mass, so we have to choose
8 =1 because we suppose that test masses are at rest initially. This also imply
a=1.
To find the motion of a test mass in the z direction we see that from eq.

(B3) we have dr = du, while from eq. ((2) we have dv = %. Because it is

vgz = “5+ we obtain

1 dr
2= —(—— —
2vg 1+ hg

du), (56)

which can be integrated as

z=zo+ﬁf(1sz—du)=

(57)

o 1 t—vgz hR(u)
- 2vg f—oo 1+hr(u) du,

where zg is the initial position of the test mass. Now the displacement of
the test mass in the z direction can be written as

1 ft—vczo—chz hr(u) d

ANz =2—29=

~ g Jooo TFhn(u)
(58)
1 t—vgzo hgr(u)
- 2ug ffoo ’ 1+2R(u) du
We can also rewrite our results in function of the time coordinate ¢:
x(t) = zg
y(t) = Yo
t hr(u) (59)
_ 1 —vGz u
2(t) = 20— 55 /07 The )

T(t) = t —vgz(t),

Calling [ and L+ the unperturbed positions of the beam-splitter and of the
mirror and using the third of eqs. (B9) the varying position of the beam-splitter
and of the mirror are given by

2ps(t) =1 — 5 ft_vcl hr(w) d(u)

2vg J—oo  1+hg(u)

(60)

t—va (L+1 hr(u
an(t) = L+ 1—gh 10! >1+I;;(L)d(u)

But we are interested in variations in the proper distance (time) of test
masses, thus, in correspondence of eqs. (60)), using the fourth of eqs. ([B9) we

11



get

ms(t) =t —val = § [1 1 T d(u)

(61)
t—vg(L+1 hr(u
mn(t) = t —vaL —val — & [1270¢ >1+;§71<?(L) (w)-
Then the total variation of the proper time is given by
A 1 t—vg (L+1) hR(U)
t) = t) — t) =vgl — = ———d(u). 62
) =)~ st =vol—y [T w2

In this way, recalling that in the used units the unperturbed proper distance
(time)is T' = L, the difference between the total variation of the proper time in
presence and the total variation of the proper time in absence of the GW is

t—vg (L+1) w
57(t) = Ar(t) — L= —L{ve + 1) — %/t_ | HhRT(R(L)d(u). (63)

This quantity can be computed in the frequency domain, defining the Fourier
transform of hg as

hp(w) = / Tt hg(t) exp(iwt). (64)

— 00

and using the translation and derivation Fourier theorems, obtaining

07(w) = L(1 = v) expliwL(1 +ve)] + sorpi—e

[exp[2iwL](vg + 1)3(=2i + wL(vg — 1) + 2L expliwL(1 + vg)] (65)

(6ivg + 2ivE, — wL + wLvd) + L(ve + 1)3(=2i + wL(vg + 1)) hg.

A “signal” can be also defined:

S(w) = T2 = (1 - vg) expliwL(l +ve)] + srre—y

[exp[2iwL](vg + 1)3(=2i + wL(vg — 1) + 2 expliwL(1 + vg)] (66)

(6ivg + 203, — wL + wlvg) + (va + 1)3(—2i + wL(vg + 1))]hg.
Then the function
Ty(w) = (1 - vg) expliwl(l +v6)] + srrr—

[exp[2iwL](vg 4+ 1)3(—2i + wL(vg — 1) + 2 expliwL(1 + vg)] (67)

(6ivg + 2ivE — wL + wLvd) + (v + 1)3(—2i + wL(vg + 1))],

12
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Figure 2: the absolute value of the longitudinal response function (63]) of the
Virgo interferometer (L = 3Km) to a GW arising from the R? high order gravity
theory and propagating with a speed of 0.1¢ (non relativistic case).

is the response function of an arm of our interferometer located in the z-axis,
due to the longitudinal component of the massive gravitational wave arising from
the R? high order gravity theory and propagating in the same direction of the
axis.

For vg — 1 it is T;(w) — 0.

In figures 2, 3 and 4 are shown the response functions (67)) for an arm of the
Virgo interferometer (L = 3Km) for vg = 0.1 (non-relativistic case), vg = 0.9
(relativistic case) and v = 0.999 (ultra-relativistic case). We see that in the
non-relativistic case the signal is stronger as it could be expected (for m — 0
we expectY;(w) — 0). In figures 5, 6, and 7 the same response functions are
shown for the Ligo interferometer (L = 4K'm).

5 Conclusions
We have shown that from the R? high order gravity theory it is possible to pro-
duce, in the linearized approch, particles which can be seen like massive modes

of gravitational waves. The presence of the mass generates a longitudinal force
in addition of the transverse one which is proper of the massless gravitational

13

10000



0.21 ¢
IH(f) |
0. 205
Hz
2000 4000 6000 8000 10000
0.195 -
0.19

Figure 3: the absolute value of the longitudinal response function ([63) of the
Virgo interferometer (L = 3Km) to a GW arising from the R? high order gravity
theory and propagating with a speed of 0.9 (relativistic case).
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Figure 4: the absolute value of the longitudinal response function (63)) of the
Virgo interferometer (L = 3Km) to a GW arising from the R? high order gravity
theory and propagating with a speed of 0.999 (ultra relativistic case).
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Figure 5: the absolute value of the longitudinal response function (63)) of the
LIGO interferometer (L = 4Km) to a GW arising from the R? high order
gravity theory and propagating with a speed of 0.1¢ (non relativistic case).
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Figure 6: the absolute value of the longitudinal response function (63)) of the
LIGO interferometer (L = 4Km) to a GW arising from the R? high order
gravity theory and propagating with a speed of 0.9¢ (relativistic case).
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Figure 7: the absolute value of the longitudinal response function ([63) of the
LIGO interferometer (L = 4Km) to a GW arising from the R? high order
gravity theory and propagating with a speed of 0.999¢ (ultra relativistic case).
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waves and the response an interferometer to the effect has been computed. The
presence of the mass could also have important applications in cosmology be-
cause the fact that gravitational waves can have mass could give a contribution
to the dark matter of the Universe. As a final remark, we recall that the po-
tential detection of a longitudinal component of GWs could be, in principle,
an useful tool to discriminate among several gravity theories which are today
considered.
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