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Abstrat

We show that from the R
2
high order gravity theory it is possible to

produe, in the linearized approh, partiles whih an be seen like massive

modes of gravitational waves (GWs). The presene of the mass generates

a longitudinal fore in addition of the transverse one whih is proper of

the massless gravitational waves and the response an interferometer to the

e�et is omputed. This ould be, in priniple, important to disriminate

among the gravity theories. The presene of the mass ould also have

important appliations in osmology beause the fat that gravitational

waves an have mass ould give a ontribution to the dark matter of the

Universe.

PACS numbers: 04.80.Nn, 04.30.Nk, 04.50.+h

1 Introdution

The data analysis of interferometri GWs detetors has reently started (for the

urrent status of GWs interferometers see [1, 2, 3, 4, 5, 6, 7, 8℄) and the sienti�

ommunity hopes in a �rst diret detetion of GWs in next years. The results of

these detetors will have a fundamental impat on astrophysis and gravitation

physis. There will be lots of experimental data to be analyzed, and theorists
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will be fored to interat with lots of experiments and data analysts to extrat

the physis from the data stream.

Detetors for GWs will be important for a better knowledge of the Universe

and also to on�rm or ruling out the physial onsisteny of General Relativity

or of any other theory of gravitation [9, 10, 11, 12, 13, 14℄. This is beause, in

the ontext of Extended Theories of Gravity, some di�erenes between General

Relativity and the others theories an be pointed out starting by the linearized

theory of gravity [9, 10, 12, 14℄.

In this paper the prodution and the potential detetion with interferometers

of a hypotetial massive omponent of gravitational radiation whih arises from

the R2
theory of gravity, whih was the �rst and simplest high order gravity

theory proposed [15℄, is shown.

In the seond Setion of this paper it is shown that a massive mode of

gravitational radiation arises from the high order ation [15℄

S =

∫
d4x

√−g(R + αR2) + Lm. (1)

Equation (1) is a partiular hoie with respet the well known anonial

one of general relativity (the Einstein - Hilbert ation [16, 17℄) whih is

S =

∫
d4x

√−gR + Lm, (2)

where R is the Rii salar urvature. We empahsize that the presene of

the mass ould also have important appliations in osmology beause the fat

that gravitational waves an have mass ould give a ontribution to the dark

matter of the Universe. We also reall that an alternative way to resolve the

dark matter and dark energy problems using high order gravity is shown in ref.

[18℄.

In Setion three it is shown that the massive omponent generates a longi-

tudinal fore in addition of the transverse one whih is proper of the massless

ase.

After this, in Setion four, the potential interferometri detetion of this

longitudinal omponent is analyzed and the response of an interferometer is

omputed. This ould be, in priniple, important to disriminate among several

gravity theories whih are today onsidered.

2 The prodution of a massive mode of gravita-

tional radiation in the R
2
theory of gravity

If the gravitational Lagrangian is nonlinear in the urvature invariants the Ein-

stein �eld equations has an order higher than seond [9, 12, 13℄. For this reason

suh theories are often alled higher-order gravitational theories. This is exatly

the ase of the ation (1).
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By varying this ation with respet to gµν (see refs. [12, 13℄ for a parallel

omputation) the �eld equations are obtained (note that in this paper we work

with G = 1, c = 1 and ~ = 1):

Gµν = −4πG̃
2αR+1{+T

(m)
µν − 1

2gµναR
2+

+2αR;µ;ν − 2αgµν�R}
(3)

with assoied a Klein - Gordon equation for the Rii urvature salar

�R = m2(R+ 8πG̃T ), (4)

where � is the d' Alembertian operator and the mass m has been introdued

for dimensional motivations: m2 ≡ − 1
6α , thus α has to be negative [15℄.

In the above equations T
(m)
µν is the ordinary stress-energy tensor of the matter

and G̃ is a dimensional, stritly positive, onstant [9, 12, 13℄. The Newton

onstant is replaed by the e�etive oupling

Geff = − 1

2(2αR+ 1)
, (5)

whih is di�erent from G. General relativity is obtained when α = 0.

To study gravitational waves the linearized theory in vauum (T
(m)
µν = 0) has

to be analyzed, with a little perturbation of the bakground, whih is assumed

given by the Minkowskian bakground. In this ase the Rii salar is assumed

slowly varying near zero: R ≃ 0 + δR ≡ hR.
Putting

gµν = ηµν + hµν (6)

to �rst order in hµν , alling R̃µνρσ , R̃µν and R̃ the linearized quantity whih

orrespond to Rµνρσ , Rµν and R, the linearized �eld equations are obtained

[12, 13, 16, 17℄:

R̃µν − eR
2 ηµν = ∂µ∂νR̃ + ηµν�hR

�hR = m2hR.

(7)

R̃µνρσ and eqs. (7) are invariants for gauge transformations [12, 13℄

hµν → h′

µν = hµν − ∂(µǫν)

hR → h′

R = hR;
(8)

then

h̄µν ≡ hµν − h

2
ηµν + ηµνhR (9)

an be de�ned, and, onsidering the transform for the parameter ǫµ
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�ǫν = ∂µh̄µν , (10)

a gauge parallel to the Lorenz one of eletromagneti waves an be hoosen:

∂µh̄µν = 0. (11)

In this way �eld equations read like

�h̄µν = 0 (12)

�hR = m2hR (13)

Solutions of eqs. (12) and (13) are plan waves:

h̄µν = Aµν(−→p ) exp(ipαxα) + c.c. (14)

hR = a(−→p ) exp(iqαxα) + c.c. (15)

where

kα ≡ (ω,−→p ) ω = p ≡ |−→p |

qα ≡ (ωm,−→p ) ωm =
√
m2 + p2.

(16)

In eqs. (12) and (14) the equation and the solution for the waves like in

standard general relativity [16, 17℄ have been obtained, but eqs. (13) and (15)

are respetively the equation and the solution for the massive mode (see also

[12, 13℄) arising from the Starobinsky's high order gravity theory.

The fat that the dispersion law for the modes of the massive �eld hR is not

linear has to be emphatized. The veloity of every tensorial mode h̄µν is the

light speed c, but the dispersion law (the seond of eq. (16)) for the modes of

hR is that of a massive �eld whih an be disussed like a wave-paket [12, 13℄.

Also, the group-veloity of a wave-paket of hR entered in

−→p is

−→vG =
−→p
ω
, (17)

whih is exatly the veloity of a massive partile with mass m and momen-

tum

−→p .
From the seond of eqs. (16) and eq. (17) it is simple to obtain:

vG =

√
ω2 −m2

ω
. (18)

Then, wanting a onstant speed of our wave-paket, it has to be [12, 13℄

m =
√
(1 − v2G)ω. (19)

The relation (19) is shown in �g. 1 for a value vG = 0.9.
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Figure 1: the mass-frequeny relation for a massive graviiatonal wave arising

from the R2
high order gravity theory and propagating with a speed of 0.9c :

for the mass it is 1Hz = 10−15eV
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Now the analisys an remain in the Lorenz gauge with trasformations of the

type �ǫν = 0; this gauge gives a ondition of transversality for the tensorial

part of the �eld: kµAµν = 0, but does not give the transversality for the total

�eld hµν . From eq. (9) it is

hµν = h̄µν − h̄

2
ηµν + ηµνhR. (20)

At this point, if being in the massless ase [17℄, it ould been put

�ǫµ = 0

∂µǫ
µ = − h̄

2 + hR,

(21)

whih gives the total transversality of the �eld. But in the massive ase this

is impossible. In fat, applying the Dalembertian operator to the seond of eqs.

(21) and using the �eld equations (12) and (13) it results

�ǫµ = m2hR, (22)

whih is in ontrast with the �rst of eqs. (21). In the same way it is possible

to show that it does not exist any linear relation between the �eld h̄µν and hR.

Thus a gauge in wih hµν is purely spatial annot be hosen (i.e. it annot be

put hµ0 = 0, see eq. (20)) . But the traeless ondition to the �eld h̄µν an be

put:

�ǫµ = 0

∂µǫ
µ = − h̄

2 .

(23)

These equations imply

∂µh̄µν = 0. (24)

To save the onditions ∂µh̄
µν

and h̄ = 0 transformations like

�ǫµ = 0

∂µǫ
µ = 0

(25)

an be used and, taking

−→p in the z diretion, a gauge in whih only A11,

A22, and A12 = A21 are di�erent to zero an be hosen. The ondition h̄ = 0
gives A11 = −A22. Now, putting these equations in eq. (20) it results

hµν(t, z) = A+(t− z)e(+)
µν +A×(t− z)e(×)

µν + hR(t− vGz)ηµν . (26)

The term A+(t−z)e
(+)
µν +A×(t−z)e

(×)
µν desribes the two standard polariza-

tions of gravitational waves whih arise from General Relativity, while the term

hR(t− vGz)ηµν is the massive polarization arising from the R2
theory.
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3 The presene of a longitudinal fore

The analysis of the two standard polarization is well known in the literature

[16, 17℄. For a the pure polarization arising by the R2
theory eq. (26) an be

rewritten as

hµν(t− vGz) = hR(t− vGz)ηµν (27)

and the orrispondent line element is the onformally �at one

ds2 = [1 + hR(t− vGz)](−dt2 + dz2 + dx2 + dy2). (28)

But, in a laboratory environment on Earth, the oordinate system in whih

the spae-time is loally �at is typially used and the distane between any

two points is given simply by the di�erene in their oordinates in the sense of

Newtonian physis [12, 13, 16, 17℄. This frame is the proper referene frame of

a loal observer, loated for example in the position of the beam splitter of an

interferometer. In this frame gravitational waves manifest themself by exerting

tidal fores on the masses (the mirror and the beam-splitter in the ase of an

interferometer). A detailed analysis of the frame of the loal observer is given

in ref. [17℄, set. 13.6. Here only the more important features of this oordinate

system are realled:

the time oordinate x0 is the proper time of the observer O;

spatial axes are entered in O;

in the speial ase of zero aeleration and zero rotation the spatial oor-

dinates xj are the proper distanes along the axes and the frame of the loal

observer redues to a loal Lorentz frame: in this ase the line element reads

[17℄

ds2 = −(dx0)2 + δijdx
idxj +O(|xj |2)dxαdxβ . (29)

The e�et of the gravitational wave on test masses is desribed by the equa-

tion

ẍi = −R̃i
0k0x

k, (30)

whih is the equation for geodesi deviation in this frame.

Thus, to study the e�et of the massive gravitational wave on test masses,

R̃i
0k0 has to be omputed in the proper referene frame of the loal observer.

But, beause the linearized Riemann tensor R̃µνρσ is invariant under gauge

transformations [12, 13, 17℄, it an be diretly omputed from eq. (27).

From [17℄ it is:

R̃µνρσ =
1

2
{∂µ∂βhαν + ∂ν∂αhµβ − ∂α∂βhµν − ∂µ∂νhαβ}, (31)

that, in the ase eq. (27), begins

R̃α
0γ0 =

1

2
{∂α∂0hRη0γ + ∂0∂γhRδ

α
0 − ∂α∂γhRη00 − ∂0∂0hRδ

α
γ }; (32)
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the di�erent elements are (only the non zero ones will be written):

∂α∂0hRη0γ =





∂2
t hR for α = γ = 0

−∂z∂thR for α = 3; γ = 0



 (33)

∂0∂γhRδ
α
0 =





∂2
t hR for α = γ = 0

∂t∂zhR for α = 0; γ = 3



 (34)

− ∂α∂γhRη00 = ∂α∂γhR =





−∂2
t hR for α = γ = 0

∂2
zhR for α = γ = 3

−∂t∂zhR for α = 0; γ = 3

∂z∂thR for α = 3; γ = 0





(35)

− ∂0∂0hRδ
α
γ = −∂2

zhR for α = γ . (36)

Now, putting these results in eq. (32) it results:

R̃1
010 = − 1

2 ḧR

R̃2
010 = − 1

2 ḧR

R̃3
030 = 1

2�hR.

(37)

But, putting the �eld equation (13) in the third of eqs. (37) it is

R̃3
030 =

1

2
m2hR, (38)

whih shows that the �eld is not transversal.

Infat, using eq. (30) it results

ẍ =
1

2
ḧRx, (39)

ÿ =
1

2
ḧRy (40)

and

z̈ = −1

2
m2hR(t− vGz)z. (41)

Then the e�et of the mass is the generation of a longitudinal fore (in

addition to the transverse one). Note that in the limit m → 0 the longitudinal

fore vanishes.
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4 The interferometer's response to the longitudi-

nal omponent

Before starting the analysis it has to be disussed if there are fenomenogial

limitations to the mass of the wave [12, 13℄. Treating hR like a lassial wave,

that ats oherently with the interferometer, it has to be m ≪ 1/L , where

L = 3 kilometers in the ase of Virgo and L = 4 kilometers in the ase of LIGO.

Thus it has to be approximately m < 10−9eV . However there is a stronger

limitation oming from the fat that the massive wave needs a frequeny whih

falls in the frequeny-range for earth based gravitational antennas that is the

interval 10Hz ≤ f ≤ 10KHz [1, 2, 3, 4, 5, 6, 7, 8℄. For a massive gravitational

wave, from the seond of eqs. (16) it is:

2πf = ω =
√
m2 + p2, (42)

were p is the momentum [13℄. Thus it needs

0eV ≤ m ≤ 10−11eV. (43)

For these light partiles their e�et an be still disussed as a oherent grav-

itational wave. For the disussion of this longitudinal e�et we start diretly

from the gauge (28).

Eq. (28) an be rewritten as

(
dt

dτ
)2 − (

dx

dτ
)2 − (

dy

dτ
)2 − (

dz

dτ
)2 =

1

(1 + hR)
, (44)

where τ is the proper time of the test masses.

From eqs. (28) and (44) the geodesi equations of motion for test masses

(i.e. the beam-splitter and the mirrors of the interferometer), an be obtained

d2x
dτ2 = 0

d2y
dτ2 = 0

d2t
dτ2 = 1

2
∂t(1+hR)
(1+hR)2

d2z
dτ2 = − 1

2
∂z(1+hR)
(1+hR)2 .

(45)

The �rst and the seond of eqs. (45) an be immediately integrated obtaining

dx

dτ
= C1 = const. (46)

dy

dτ
= C2 = const. (47)
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In this way eq. (44) beomes

(
dt

dτ
)2 − (

dz

dτ
)2 =

1

(1 + hR)
. (48)

If we assume that test masses are at rest initially we get C1 = C2 = 0. Thus
we see that, even if the GW arrives at test masses, we do not have motion of

test masses within the x − y plane in this gauge. We ould understand this

diretly from eq. (28) beause the absene of the x and of the y dependenes in

the metri implies that test masses momentum in these diretions (i.e. C1 and

C2 respetively) is onserved. This results, for example, from the fat that in

this ase the x and y oordinates do not espliitly enter in the Hamilton-Jaobi

equation for a test mass in a gravitational �eld [16℄.

Now we will see that, in presene of the GW, we have motion of test masses

in the z diretion whih is the diretion of the propagating wave. An analysis

of eqs. (45) shows that, to simplify equations, we an introdue the retarded

and advaned time oordinates (u, v):

u = t− vGz

v = t+ vGz.
(49)

From the third and the fourth of eqs. (45) we have

d

dτ

du

dτ
=

∂v[1 + hR(u)]

(1 + hR(u))2
= 0. (50)

This equation an be integrated obtaining

du

dτ
= α, (51)

where α is an integration onstant. From eqs. (48) and (51), we also get

dv

dτ
=

β

1 + hR

(52)

where β ≡ 1
α
, and

τ = βu+ γ, (53)

where the integration onstant γ orrespondes simply to the retarded time

oordinate translation u. Thus, without loss of generality, we an put it equal

to zero. Now let us see what is the meaning of the other integration onstant

β. We an write the equation for z from eqs. (51) and (52):

dz

dτ
=

1

2β
(

β2

1 + hR

− 1). (54)
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When it is hR = 0 (i.e. before the GW arrives at the test masses) eq. (54)

beomes

dz

dτ
=

1

2β
(β2 − 1). (55)

But this is exatly the initial veloity of the test mass, so we have to hoose

β = 1 beause we suppose that test masses are at rest initially. This also imply

α = 1.
To �nd the motion of a test mass in the z diretion we see that from eq.

(53) we have dτ = du, while from eq. (52) we have dv = dτ
1+hR

. Beause it is

vGz = v−u
2 we obtain

dz =
1

2vG
(

dτ

1 + hR

− du), (56)

whih an be integrated as

z = z0 +
1

2vG

∫
( du
1+hR

− du) =

= z0 − 1
2vG

∫ t−vGz

−∞

hR(u)
1+hR(u)du,

(57)

where z0 is the initial position of the test mass. Now the displaement of

the test mass in the z diretion an be written as

∆z = z − z0 = − 1
2vG

∫ t−vGz0−vG∆z

−∞

hR(u)
1+hR(u)du

≃ − 1
2vG

∫ t−vGz0

−∞

hR(u)
1+hR(u)du.

(58)

We an also rewrite our results in funtion of the time oordinate t:

x(t) = x0

y(t) = y0

z(t) = z0 − 1
2vG

∫ t−vGz0
−∞

hR(u)
1+hR(u)d(u)

τ(t) = t− vGz(t),

(59)

Calling l and L+ l the unperturbed positions of the beam-splitter and of the

mirror and using the third of eqs. (59) the varying position of the beam-splitter

and of the mirror are given by

zBS(t) = l − 1
2vG

∫ t−vGl

−∞

hR(u)
1+hR(u)d(u)

zM (t) = L+ l− 1
2vG

∫ t−vG(L+l)

−∞

hR(u)
1+hR(u)d(u)

(60)

But we are interested in variations in the proper distane (time) of test

masses, thus, in orrespondene of eqs. (60), using the fourth of eqs. (59) we

11



get

τBS(t) = t− vGl − 1
2

∫ t−vGl

−∞

hR(u)
1+hR(u)d(u)

τM (t) = t− vGL− vGl − 1
2

∫ t−vG(L+l)

−∞

hR(u)
1+hR(u)d(u).

(61)

Then the total variation of the proper time is given by

△ τ(t) = τM (t)− τBS(t) = vGL− 1

2

∫ t−vG(L+l)

t−vGl

hR(u)

1 + hR(u)
d(u). (62)

In this way, realling that in the used units the unperturbed proper distane

(time)is T = L, the di�erene between the total variation of the proper time in

presene and the total variation of the proper time in absene of the GW is

δτ(t) ≡ △τ(t) − L = −L(vG + 1)− 1

2

∫ t−vG(L+l)

t−vGl

hR(u)

1 + hR(u)
d(u). (63)

This quantity an be omputed in the frequeny domain, de�ning the Fourier

transform of hR as

h̃R(ω) =

∫
∞

−∞

dt hR(t) exp(iωt). (64)

and using the translation and derivation Fourier theorems, obtaining

δτ̃(ω) = L(1− v2G) exp[iωL(1 + vG)] +
L

2ωL(v2

G
−1)2

[exp[2iωL](vG + 1)3(−2i+ ωL(vG − 1) + 2L exp[iωL(1 + vG)]

(6ivG + 2iv3G − ωL+ ωLv4G) + L(vG + 1)3(−2i+ ωL(vG + 1))]h̃R.

(65)

A �signal� an be also de�ned:

S̃(ω) ≡ δeτ(ω)
L

= (1− v2G) exp[iωL(1 + vG)] +
1

2ωL(v2

G
−1)2

[exp[2iωL](vG + 1)3(−2i+ ωL(vG − 1) + 2 exp[iωL(1 + vG)]

(6ivG + 2iv3G − ωL+ ωLv4G) + (vG + 1)3(−2i+ ωL(vG + 1))]h̃R.

(66)

Then the funtion

Υl(ω) ≡ (1− v2G) exp[iωL(1 + vG)] +
1

2ωL(v2

G
−1)2

[exp[2iωL](vG + 1)3(−2i+ ωL(vG − 1) + 2 exp[iωL(1 + vG)]

(6ivG + 2iv3G − ωL+ ωLv4G) + (vG + 1)3(−2i+ ωL(vG + 1))],

(67)
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Figure 2: the absolute value of the longitudinal response funtion (65) of the

Virgo interferometer (L = 3Km) to a GW arising from the R2
high order gravity

theory and propagating with a speed of 0.1c (non relativisti ase).

is the response funtion of an arm of our interferometer loated in the z-axis,
due to the longitudinal omponent of the massive gravitational wave arising from

the R2
high order gravity theory and propagating in the same diretion of the

axis.

For vG → 1 it is Υl(ω) → 0.
In �gures 2, 3 and 4 are shown the response funtions (67) for an arm of the

Virgo interferometer (L = 3Km) for vG = 0.1 (non-relativisti ase), vG = 0.9
(relativisti ase) and vG = 0.999 (ultra-relativisti ase). We see that in the

non-relativisti ase the signal is stronger as it ould be expeted (for m → 0
we expetΥl(ω) → 0). In �gures 5, 6, and 7 the same response funtions are

shown for the Ligo interferometer (L = 4Km).

5 Conlusions

We have shown that from the R2
high order gravity theory it is possible to pro-

due, in the linearized approh, partiles whih an be seen like massive modes

of gravitational waves. The presene of the mass generates a longitudinal fore

in addition of the transverse one whih is proper of the massless gravitational
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Figure 3: the absolute value of the longitudinal response funtion (65) of the

Virgo interferometer (L = 3Km) to a GW arising from the R2
high order gravity

theory and propagating with a speed of 0.9 (relativisti ase).
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Figure 4: the absolute value of the longitudinal response funtion (65) of the

Virgo interferometer (L = 3Km) to a GW arising from the R2
high order gravity

theory and propagating with a speed of 0.999 (ultra relativisti ase).
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Figure 5: the absolute value of the longitudinal response funtion (65) of the

LIGO interferometer (L = 4Km) to a GW arising from the R2
high order

gravity theory and propagating with a speed of 0.1c (non relativisti ase).
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Figure 6: the absolute value of the longitudinal response funtion (65) of the

LIGO interferometer (L = 4Km) to a GW arising from the R2
high order

gravity theory and propagating with a speed of 0.9c (relativisti ase).
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Figure 7: the absolute value of the longitudinal response funtion (65) of the

LIGO interferometer (L = 4Km) to a GW arising from the R2
high order

gravity theory and propagating with a speed of 0.999c (ultra relativisti ase).
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waves and the response an interferometer to the e�et has been omputed. The

presene of the mass ould also have important appliations in osmology be-

ause the fat that gravitational waves an have mass ould give a ontribution

to the dark matter of the Universe. As a �nal remark, we reall that the po-

tential detetion of a longitudinal omponent of GWs ould be, in priniple,

an useful tool to disriminate among several gravity theories whih are today

onsidered.
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