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Abstra
t

We show that from the R
2
high order gravity theory it is possible to

produ
e, in the linearized appro
h, parti
les whi
h 
an be seen like massive

modes of gravitational waves (GWs). The presen
e of the mass generates

a longitudinal for
e in addition of the transverse one whi
h is proper of

the massless gravitational waves and the response an interferometer to the

e�e
t is 
omputed. This 
ould be, in prin
iple, important to dis
riminate

among the gravity theories. The presen
e of the mass 
ould also have

important appli
ations in 
osmology be
ause the fa
t that gravitational

waves 
an have mass 
ould give a 
ontribution to the dark matter of the

Universe.

PACS numbers: 04.80.Nn, 04.30.Nk, 04.50.+h

1 Introdu
tion

The data analysis of interferometri
 GWs dete
tors has re
ently started (for the


urrent status of GWs interferometers see [1, 2, 3, 4, 5, 6, 7, 8℄) and the s
ienti�



ommunity hopes in a �rst dire
t dete
tion of GWs in next years. The results of

these dete
tors will have a fundamental impa
t on astrophysi
s and gravitation

physi
s. There will be lots of experimental data to be analyzed, and theorists
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will be for
ed to intera
t with lots of experiments and data analysts to extra
t

the physi
s from the data stream.

Dete
tors for GWs will be important for a better knowledge of the Universe

and also to 
on�rm or ruling out the physi
al 
onsisten
y of General Relativity

or of any other theory of gravitation [9, 10, 11, 12, 13, 14℄. This is be
ause, in

the 
ontext of Extended Theories of Gravity, some di�eren
es between General

Relativity and the others theories 
an be pointed out starting by the linearized

theory of gravity [9, 10, 12, 14℄.

In this paper the produ
tion and the potential dete
tion with interferometers

of a hypoteti
al massive 
omponent of gravitational radiation whi
h arises from

the R2
theory of gravity, whi
h was the �rst and simplest high order gravity

theory proposed [15℄, is shown.

In the se
ond Se
tion of this paper it is shown that a massive mode of

gravitational radiation arises from the high order a
tion [15℄

S =

∫
d4x

√−g(R + αR2) + Lm. (1)

Equation (1) is a parti
ular 
hoi
e with respe
t the well known 
anoni
al

one of general relativity (the Einstein - Hilbert a
tion [16, 17℄) whi
h is

S =

∫
d4x

√−gR + Lm, (2)

where R is the Ri

i s
alar 
urvature. We empahsize that the presen
e of

the mass 
ould also have important appli
ations in 
osmology be
ause the fa
t

that gravitational waves 
an have mass 
ould give a 
ontribution to the dark

matter of the Universe. We also re
all that an alternative way to resolve the

dark matter and dark energy problems using high order gravity is shown in ref.

[18℄.

In Se
tion three it is shown that the massive 
omponent generates a longi-

tudinal for
e in addition of the transverse one whi
h is proper of the massless


ase.

After this, in Se
tion four, the potential interferometri
 dete
tion of this

longitudinal 
omponent is analyzed and the response of an interferometer is


omputed. This 
ould be, in prin
iple, important to dis
riminate among several

gravity theories whi
h are today 
onsidered.

2 The produ
tion of a massive mode of gravita-

tional radiation in the R
2
theory of gravity

If the gravitational Lagrangian is nonlinear in the 
urvature invariants the Ein-

stein �eld equations has an order higher than se
ond [9, 12, 13℄. For this reason

su
h theories are often 
alled higher-order gravitational theories. This is exa
tly

the 
ase of the a
tion (1).
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By varying this a
tion with respe
t to gµν (see refs. [12, 13℄ for a parallel


omputation) the �eld equations are obtained (note that in this paper we work

with G = 1, c = 1 and ~ = 1):

Gµν = −4πG̃
2αR+1{+T

(m)
µν − 1

2gµναR
2+

+2αR;µ;ν − 2αgµν�R}
(3)

with asso
ied a Klein - Gordon equation for the Ri

i 
urvature s
alar

�R = m2(R+ 8πG̃T ), (4)

where � is the d' Alembertian operator and the mass m has been introdu
ed

for dimensional motivations: m2 ≡ − 1
6α , thus α has to be negative [15℄.

In the above equations T
(m)
µν is the ordinary stress-energy tensor of the matter

and G̃ is a dimensional, stri
tly positive, 
onstant [9, 12, 13℄. The Newton


onstant is repla
ed by the e�e
tive 
oupling

Geff = − 1

2(2αR+ 1)
, (5)

whi
h is di�erent from G. General relativity is obtained when α = 0.

To study gravitational waves the linearized theory in va
uum (T
(m)
µν = 0) has

to be analyzed, with a little perturbation of the ba
kground, whi
h is assumed

given by the Minkowskian ba
kground. In this 
ase the Ri

i s
alar is assumed

slowly varying near zero: R ≃ 0 + δR ≡ hR.
Putting

gµν = ηµν + hµν (6)

to �rst order in hµν , 
alling R̃µνρσ , R̃µν and R̃ the linearized quantity whi
h


orrespond to Rµνρσ , Rµν and R, the linearized �eld equations are obtained

[12, 13, 16, 17℄:

R̃µν − eR
2 ηµν = ∂µ∂νR̃ + ηµν�hR

�hR = m2hR.

(7)

R̃µνρσ and eqs. (7) are invariants for gauge transformations [12, 13℄

hµν → h′

µν = hµν − ∂(µǫν)

hR → h′

R = hR;
(8)

then

h̄µν ≡ hµν − h

2
ηµν + ηµνhR (9)


an be de�ned, and, 
onsidering the transform for the parameter ǫµ

3



�ǫν = ∂µh̄µν , (10)

a gauge parallel to the Lorenz one of ele
tromagneti
 waves 
an be 
hoosen:

∂µh̄µν = 0. (11)

In this way �eld equations read like

�h̄µν = 0 (12)

�hR = m2hR (13)

Solutions of eqs. (12) and (13) are plan waves:

h̄µν = Aµν(−→p ) exp(ipαxα) + c.c. (14)

hR = a(−→p ) exp(iqαxα) + c.c. (15)

where

kα ≡ (ω,−→p ) ω = p ≡ |−→p |

qα ≡ (ωm,−→p ) ωm =
√
m2 + p2.

(16)

In eqs. (12) and (14) the equation and the solution for the waves like in

standard general relativity [16, 17℄ have been obtained, but eqs. (13) and (15)

are respe
tively the equation and the solution for the massive mode (see also

[12, 13℄) arising from the Starobinsky's high order gravity theory.

The fa
t that the dispersion law for the modes of the massive �eld hR is not

linear has to be emphatized. The velo
ity of every tensorial mode h̄µν is the

light speed c, but the dispersion law (the se
ond of eq. (16)) for the modes of

hR is that of a massive �eld whi
h 
an be dis
ussed like a wave-pa
ket [12, 13℄.

Also, the group-velo
ity of a wave-pa
ket of hR 
entered in

−→p is

−→vG =
−→p
ω
, (17)

whi
h is exa
tly the velo
ity of a massive parti
le with mass m and momen-

tum

−→p .
From the se
ond of eqs. (16) and eq. (17) it is simple to obtain:

vG =

√
ω2 −m2

ω
. (18)

Then, wanting a 
onstant speed of our wave-pa
ket, it has to be [12, 13℄

m =
√
(1 − v2G)ω. (19)

The relation (19) is shown in �g. 1 for a value vG = 0.9.
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Figure 1: the mass-frequen
y relation for a massive graviiatonal wave arising

from the R2
high order gravity theory and propagating with a speed of 0.9c :

for the mass it is 1Hz = 10−15eV
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Now the analisys 
an remain in the Lorenz gauge with trasformations of the

type �ǫν = 0; this gauge gives a 
ondition of transversality for the tensorial

part of the �eld: kµAµν = 0, but does not give the transversality for the total

�eld hµν . From eq. (9) it is

hµν = h̄µν − h̄

2
ηµν + ηµνhR. (20)

At this point, if being in the massless 
ase [17℄, it 
ould been put

�ǫµ = 0

∂µǫ
µ = − h̄

2 + hR,

(21)

whi
h gives the total transversality of the �eld. But in the massive 
ase this

is impossible. In fa
t, applying the Dalembertian operator to the se
ond of eqs.

(21) and using the �eld equations (12) and (13) it results

�ǫµ = m2hR, (22)

whi
h is in 
ontrast with the �rst of eqs. (21). In the same way it is possible

to show that it does not exist any linear relation between the �eld h̄µν and hR.

Thus a gauge in wi
h hµν is purely spatial 
annot be 
hosen (i.e. it 
annot be

put hµ0 = 0, see eq. (20)) . But the tra
eless 
ondition to the �eld h̄µν 
an be

put:

�ǫµ = 0

∂µǫ
µ = − h̄

2 .

(23)

These equations imply

∂µh̄µν = 0. (24)

To save the 
onditions ∂µh̄
µν

and h̄ = 0 transformations like

�ǫµ = 0

∂µǫ
µ = 0

(25)


an be used and, taking

−→p in the z dire
tion, a gauge in whi
h only A11,

A22, and A12 = A21 are di�erent to zero 
an be 
hosen. The 
ondition h̄ = 0
gives A11 = −A22. Now, putting these equations in eq. (20) it results

hµν(t, z) = A+(t− z)e(+)
µν +A×(t− z)e(×)

µν + hR(t− vGz)ηµν . (26)

The term A+(t−z)e
(+)
µν +A×(t−z)e

(×)
µν des
ribes the two standard polariza-

tions of gravitational waves whi
h arise from General Relativity, while the term

hR(t− vGz)ηµν is the massive polarization arising from the R2
theory.
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3 The presen
e of a longitudinal for
e

The analysis of the two standard polarization is well known in the literature

[16, 17℄. For a the pure polarization arising by the R2
theory eq. (26) 
an be

rewritten as

hµν(t− vGz) = hR(t− vGz)ηµν (27)

and the 
orrispondent line element is the 
onformally �at one

ds2 = [1 + hR(t− vGz)](−dt2 + dz2 + dx2 + dy2). (28)

But, in a laboratory environment on Earth, the 
oordinate system in whi
h

the spa
e-time is lo
ally �at is typi
ally used and the distan
e between any

two points is given simply by the di�eren
e in their 
oordinates in the sense of

Newtonian physi
s [12, 13, 16, 17℄. This frame is the proper referen
e frame of

a lo
al observer, lo
ated for example in the position of the beam splitter of an

interferometer. In this frame gravitational waves manifest themself by exerting

tidal for
es on the masses (the mirror and the beam-splitter in the 
ase of an

interferometer). A detailed analysis of the frame of the lo
al observer is given

in ref. [17℄, se
t. 13.6. Here only the more important features of this 
oordinate

system are re
alled:

the time 
oordinate x0 is the proper time of the observer O;

spatial axes are 
entered in O;

in the spe
ial 
ase of zero a

eleration and zero rotation the spatial 
oor-

dinates xj are the proper distan
es along the axes and the frame of the lo
al

observer redu
es to a lo
al Lorentz frame: in this 
ase the line element reads

[17℄

ds2 = −(dx0)2 + δijdx
idxj +O(|xj |2)dxαdxβ . (29)

The e�e
t of the gravitational wave on test masses is des
ribed by the equa-

tion

ẍi = −R̃i
0k0x

k, (30)

whi
h is the equation for geodesi
 deviation in this frame.

Thus, to study the e�e
t of the massive gravitational wave on test masses,

R̃i
0k0 has to be 
omputed in the proper referen
e frame of the lo
al observer.

But, be
ause the linearized Riemann tensor R̃µνρσ is invariant under gauge

transformations [12, 13, 17℄, it 
an be dire
tly 
omputed from eq. (27).

From [17℄ it is:

R̃µνρσ =
1

2
{∂µ∂βhαν + ∂ν∂αhµβ − ∂α∂βhµν − ∂µ∂νhαβ}, (31)

that, in the 
ase eq. (27), begins

R̃α
0γ0 =

1

2
{∂α∂0hRη0γ + ∂0∂γhRδ

α
0 − ∂α∂γhRη00 − ∂0∂0hRδ

α
γ }; (32)
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the di�erent elements are (only the non zero ones will be written):

∂α∂0hRη0γ =





∂2
t hR for α = γ = 0

−∂z∂thR for α = 3; γ = 0



 (33)

∂0∂γhRδ
α
0 =





∂2
t hR for α = γ = 0

∂t∂zhR for α = 0; γ = 3



 (34)

− ∂α∂γhRη00 = ∂α∂γhR =





−∂2
t hR for α = γ = 0

∂2
zhR for α = γ = 3

−∂t∂zhR for α = 0; γ = 3

∂z∂thR for α = 3; γ = 0





(35)

− ∂0∂0hRδ
α
γ = −∂2

zhR for α = γ . (36)

Now, putting these results in eq. (32) it results:

R̃1
010 = − 1

2 ḧR

R̃2
010 = − 1

2 ḧR

R̃3
030 = 1

2�hR.

(37)

But, putting the �eld equation (13) in the third of eqs. (37) it is

R̃3
030 =

1

2
m2hR, (38)

whi
h shows that the �eld is not transversal.

Infa
t, using eq. (30) it results

ẍ =
1

2
ḧRx, (39)

ÿ =
1

2
ḧRy (40)

and

z̈ = −1

2
m2hR(t− vGz)z. (41)

Then the e�e
t of the mass is the generation of a longitudinal for
e (in

addition to the transverse one). Note that in the limit m → 0 the longitudinal

for
e vanishes.
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4 The interferometer's response to the longitudi-

nal 
omponent

Before starting the analysis it has to be dis
ussed if there are fenomenogi
al

limitations to the mass of the wave [12, 13℄. Treating hR like a 
lassi
al wave,

that a
ts 
oherently with the interferometer, it has to be m ≪ 1/L , where

L = 3 kilometers in the 
ase of Virgo and L = 4 kilometers in the 
ase of LIGO.

Thus it has to be approximately m < 10−9eV . However there is a stronger

limitation 
oming from the fa
t that the massive wave needs a frequen
y whi
h

falls in the frequen
y-range for earth based gravitational antennas that is the

interval 10Hz ≤ f ≤ 10KHz [1, 2, 3, 4, 5, 6, 7, 8℄. For a massive gravitational

wave, from the se
ond of eqs. (16) it is:

2πf = ω =
√
m2 + p2, (42)

were p is the momentum [13℄. Thus it needs

0eV ≤ m ≤ 10−11eV. (43)

For these light parti
les their e�e
t 
an be still dis
ussed as a 
oherent grav-

itational wave. For the dis
ussion of this longitudinal e�e
t we start dire
tly

from the gauge (28).

Eq. (28) 
an be rewritten as

(
dt

dτ
)2 − (

dx

dτ
)2 − (

dy

dτ
)2 − (

dz

dτ
)2 =

1

(1 + hR)
, (44)

where τ is the proper time of the test masses.

From eqs. (28) and (44) the geodesi
 equations of motion for test masses

(i.e. the beam-splitter and the mirrors of the interferometer), 
an be obtained

d2x
dτ2 = 0

d2y
dτ2 = 0

d2t
dτ2 = 1

2
∂t(1+hR)
(1+hR)2

d2z
dτ2 = − 1

2
∂z(1+hR)
(1+hR)2 .

(45)

The �rst and the se
ond of eqs. (45) 
an be immediately integrated obtaining

dx

dτ
= C1 = const. (46)

dy

dτ
= C2 = const. (47)
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In this way eq. (44) be
omes

(
dt

dτ
)2 − (

dz

dτ
)2 =

1

(1 + hR)
. (48)

If we assume that test masses are at rest initially we get C1 = C2 = 0. Thus
we see that, even if the GW arrives at test masses, we do not have motion of

test masses within the x − y plane in this gauge. We 
ould understand this

dire
tly from eq. (28) be
ause the absen
e of the x and of the y dependen
es in

the metri
 implies that test masses momentum in these dire
tions (i.e. C1 and

C2 respe
tively) is 
onserved. This results, for example, from the fa
t that in

this 
ase the x and y 
oordinates do not espli
itly enter in the Hamilton-Ja
obi

equation for a test mass in a gravitational �eld [16℄.

Now we will see that, in presen
e of the GW, we have motion of test masses

in the z dire
tion whi
h is the dire
tion of the propagating wave. An analysis

of eqs. (45) shows that, to simplify equations, we 
an introdu
e the retarded

and advan
ed time 
oordinates (u, v):

u = t− vGz

v = t+ vGz.
(49)

From the third and the fourth of eqs. (45) we have

d

dτ

du

dτ
=

∂v[1 + hR(u)]

(1 + hR(u))2
= 0. (50)

This equation 
an be integrated obtaining

du

dτ
= α, (51)

where α is an integration 
onstant. From eqs. (48) and (51), we also get

dv

dτ
=

β

1 + hR

(52)

where β ≡ 1
α
, and

τ = βu+ γ, (53)

where the integration 
onstant γ 
orrespondes simply to the retarded time


oordinate translation u. Thus, without loss of generality, we 
an put it equal

to zero. Now let us see what is the meaning of the other integration 
onstant

β. We 
an write the equation for z from eqs. (51) and (52):

dz

dτ
=

1

2β
(

β2

1 + hR

− 1). (54)
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When it is hR = 0 (i.e. before the GW arrives at the test masses) eq. (54)

be
omes

dz

dτ
=

1

2β
(β2 − 1). (55)

But this is exa
tly the initial velo
ity of the test mass, so we have to 
hoose

β = 1 be
ause we suppose that test masses are at rest initially. This also imply

α = 1.
To �nd the motion of a test mass in the z dire
tion we see that from eq.

(53) we have dτ = du, while from eq. (52) we have dv = dτ
1+hR

. Be
ause it is

vGz = v−u
2 we obtain

dz =
1

2vG
(

dτ

1 + hR

− du), (56)

whi
h 
an be integrated as

z = z0 +
1

2vG

∫
( du
1+hR

− du) =

= z0 − 1
2vG

∫ t−vGz

−∞

hR(u)
1+hR(u)du,

(57)

where z0 is the initial position of the test mass. Now the displa
ement of

the test mass in the z dire
tion 
an be written as

∆z = z − z0 = − 1
2vG

∫ t−vGz0−vG∆z

−∞

hR(u)
1+hR(u)du

≃ − 1
2vG

∫ t−vGz0

−∞

hR(u)
1+hR(u)du.

(58)

We 
an also rewrite our results in fun
tion of the time 
oordinate t:

x(t) = x0

y(t) = y0

z(t) = z0 − 1
2vG

∫ t−vGz0
−∞

hR(u)
1+hR(u)d(u)

τ(t) = t− vGz(t),

(59)

Calling l and L+ l the unperturbed positions of the beam-splitter and of the

mirror and using the third of eqs. (59) the varying position of the beam-splitter

and of the mirror are given by

zBS(t) = l − 1
2vG

∫ t−vGl

−∞

hR(u)
1+hR(u)d(u)

zM (t) = L+ l− 1
2vG

∫ t−vG(L+l)

−∞

hR(u)
1+hR(u)d(u)

(60)

But we are interested in variations in the proper distan
e (time) of test

masses, thus, in 
orresponden
e of eqs. (60), using the fourth of eqs. (59) we

11



get

τBS(t) = t− vGl − 1
2

∫ t−vGl

−∞

hR(u)
1+hR(u)d(u)

τM (t) = t− vGL− vGl − 1
2

∫ t−vG(L+l)

−∞

hR(u)
1+hR(u)d(u).

(61)

Then the total variation of the proper time is given by

△ τ(t) = τM (t)− τBS(t) = vGL− 1

2

∫ t−vG(L+l)

t−vGl

hR(u)

1 + hR(u)
d(u). (62)

In this way, re
alling that in the used units the unperturbed proper distan
e

(time)is T = L, the di�eren
e between the total variation of the proper time in

presen
e and the total variation of the proper time in absen
e of the GW is

δτ(t) ≡ △τ(t) − L = −L(vG + 1)− 1

2

∫ t−vG(L+l)

t−vGl

hR(u)

1 + hR(u)
d(u). (63)

This quantity 
an be 
omputed in the frequen
y domain, de�ning the Fourier

transform of hR as

h̃R(ω) =

∫
∞

−∞

dt hR(t) exp(iωt). (64)

and using the translation and derivation Fourier theorems, obtaining

δτ̃(ω) = L(1− v2G) exp[iωL(1 + vG)] +
L

2ωL(v2

G
−1)2

[exp[2iωL](vG + 1)3(−2i+ ωL(vG − 1) + 2L exp[iωL(1 + vG)]

(6ivG + 2iv3G − ωL+ ωLv4G) + L(vG + 1)3(−2i+ ωL(vG + 1))]h̃R.

(65)

A �signal� 
an be also de�ned:

S̃(ω) ≡ δeτ(ω)
L

= (1− v2G) exp[iωL(1 + vG)] +
1

2ωL(v2

G
−1)2

[exp[2iωL](vG + 1)3(−2i+ ωL(vG − 1) + 2 exp[iωL(1 + vG)]

(6ivG + 2iv3G − ωL+ ωLv4G) + (vG + 1)3(−2i+ ωL(vG + 1))]h̃R.

(66)

Then the fun
tion

Υl(ω) ≡ (1− v2G) exp[iωL(1 + vG)] +
1

2ωL(v2

G
−1)2

[exp[2iωL](vG + 1)3(−2i+ ωL(vG − 1) + 2 exp[iωL(1 + vG)]

(6ivG + 2iv3G − ωL+ ωLv4G) + (vG + 1)3(−2i+ ωL(vG + 1))],

(67)
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Figure 2: the absolute value of the longitudinal response fun
tion (65) of the

Virgo interferometer (L = 3Km) to a GW arising from the R2
high order gravity

theory and propagating with a speed of 0.1c (non relativisti
 
ase).

is the response fun
tion of an arm of our interferometer lo
ated in the z-axis,
due to the longitudinal 
omponent of the massive gravitational wave arising from

the R2
high order gravity theory and propagating in the same dire
tion of the

axis.

For vG → 1 it is Υl(ω) → 0.
In �gures 2, 3 and 4 are shown the response fun
tions (67) for an arm of the

Virgo interferometer (L = 3Km) for vG = 0.1 (non-relativisti
 
ase), vG = 0.9
(relativisti
 
ase) and vG = 0.999 (ultra-relativisti
 
ase). We see that in the

non-relativisti
 
ase the signal is stronger as it 
ould be expe
ted (for m → 0
we expe
tΥl(ω) → 0). In �gures 5, 6, and 7 the same response fun
tions are

shown for the Ligo interferometer (L = 4Km).

5 Con
lusions

We have shown that from the R2
high order gravity theory it is possible to pro-

du
e, in the linearized appro
h, parti
les whi
h 
an be seen like massive modes

of gravitational waves. The presen
e of the mass generates a longitudinal for
e

in addition of the transverse one whi
h is proper of the massless gravitational

13
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Figure 3: the absolute value of the longitudinal response fun
tion (65) of the

Virgo interferometer (L = 3Km) to a GW arising from the R2
high order gravity

theory and propagating with a speed of 0.9 (relativisti
 
ase).
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Figure 4: the absolute value of the longitudinal response fun
tion (65) of the

Virgo interferometer (L = 3Km) to a GW arising from the R2
high order gravity

theory and propagating with a speed of 0.999 (ultra relativisti
 
ase).
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Figure 5: the absolute value of the longitudinal response fun
tion (65) of the

LIGO interferometer (L = 4Km) to a GW arising from the R2
high order

gravity theory and propagating with a speed of 0.1c (non relativisti
 
ase).
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Figure 6: the absolute value of the longitudinal response fun
tion (65) of the

LIGO interferometer (L = 4Km) to a GW arising from the R2
high order

gravity theory and propagating with a speed of 0.9c (relativisti
 
ase).
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Figure 7: the absolute value of the longitudinal response fun
tion (65) of the

LIGO interferometer (L = 4Km) to a GW arising from the R2
high order

gravity theory and propagating with a speed of 0.999c (ultra relativisti
 
ase).
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waves and the response an interferometer to the e�e
t has been 
omputed. The

presen
e of the mass 
ould also have important appli
ations in 
osmology be-


ause the fa
t that gravitational waves 
an have mass 
ould give a 
ontribution

to the dark matter of the Universe. As a �nal remark, we re
all that the po-

tential dete
tion of a longitudinal 
omponent of GWs 
ould be, in prin
iple,

an useful tool to dis
riminate among several gravity theories whi
h are today


onsidered.
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