Forming an Early O-type Star Through Gas Accretion?

Luis A. Zapata¹, Aina Palau², Paul T. P. Ho^{3,4}, Peter Schilke¹, Robin T. Garrod¹, Luis F. Rodríguez⁵, and Karl Menten¹

¹ Max-Planck-Institut für Radioastronomie, Auf dem Hügel 69, 53121, Bonn, Germany

² Laboratorio de Astrofísica Espacial y Física Fundamental, Apartado 78 E-28691, Villanueva de la Cañada, Madrid, Spain.

³ Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138, USA

⁴ Academia Sinica Institute of Astronomy and Astrophysics, Taipei, Taiwan

⁵ CRyA, Universidad Nacional Autónoma de México, Apdo. Postal 3-72 (Xangari), 58089 Morelia, Michoacán, México

Received - / Accepted -

ABSTRACT

We present high angular resolution (~ 3") and sensitive 1.3 mm continuum, cyanogen (CN) and vinyl cyanide (C₂H₃CN) line observations made with the Submillimeter Array (SMA) toward one of most highly obscured objects of the W51 IRS2 region, W51 North. We find that the CN line exhibits a pronounced inverse P-Cygni profile indicating that the molecular gas is infalling inwards this object with a mass accretion rate between 4 and $7 \times 10^{-2} M_{\odot} \text{ yr}^{-1}$. The C₂H₃CN traces an east-west rotating molecular envelope that surrounds either a single obscured (proto)star with a kinematic mass of 40 M_☉ or a small central cluster of B-type stars and that is associated with a compact high velocity bipolar outflow traced by H₂O masers and SiO molecular emission. We thus confirm that the W51 North region is part of the growing list of young massive star forming regions that have been associated with infalling motions and with large mass accretion rates (~ $10^{-2} - 10^{-4}$), strengthening the evidence for massive stars forming with very high accretion rates sufficient to quench the formation of an UCHII region.

Key words. stars: pre-main sequence – ISM: jets and outflows – ISM: individual: (W51 IRS2, W51 North, G49.49-0.37) – ISM: Molecules, Radio Lines – ISM: Circumstellar Matter – ISM: Binary stars – ISM: Envelopes –

1. Introduction

One of the main questions related to star formation is whether massive stars (> 10 M_{\odot}) are formed through gas accretion via a circumstellar disk/torus or whether other mechanims play a role. It was believed that the powerful radiation fields and stellar winds produced at the very beginning of nuclear burning will increasingly inhibit farther accretion of material thereby limiting the maximum stellar mass to about 10 M_{\odot} (Kahn 1974; Larson & Starrfield 1971; Yorke & Kruegel 1977). Several theoretical models have since been proposed to solve this puzzle: the formation of massive stars through dense disks with jets/outflows (Nakano 1989; Jijina & Adams 1996), through merging of smaller stars (Bonnell et al. 1998), through turbulent accretion (McKee & Tan 2003), through competitive accretion (Bonnell et al. 2001), and through ionized accretion flows (Keto & Wood 2006). However, due to the lack of good observational guidance, these alternatives have remained controversial (Zinnecker & Yorke 2007).

With a total bolometric luminosity of about $3 \times 10^6 L_{\odot}$ the W51-IRS2 region is one of the most luminous massive star forming regions in our Galaxy, (Erickson & Tokunaga 1980). It is located 6–7 kpc away in the Sagittarius spiral arm (Genzel et al. 1981; Imai et al. 2002). We adopt here a distance to the W51 region of 7 kpc. The W51 IRS2 region comprises a complex group of highly obscured young objects (with not mid-infrared counterparts, see please Kraemer et al. (2001); Okamoto et al. (2001)) called "W51 North" and "W51d2", and a cluster of massive strong infrared ZAMS stars (Kraemer et al. 2001;

Okamoto et al. 2001; Lacy et al. 2007), which the most prominent member being the source "IRS2d" associated with an extended edge-brightened cometary HII region called "W51d" (Gaume et al. 1993; Lacy et al. 2007).

The W51 North object shows strong thermal dust emission at (sub)millimeter wavelengths, molecular emission from a large (~ 4×10^4 AU) *hot core* at an excitation temperature of 100-200 K (Zhang et al. 1998), and very faint centimeter free-free emission (Gaume et al. 1993; Zhang et al. 1998; Eisner et al. 2002), suggesting that it is forming an extremely young massive star. This object, in addition, contains a group of strong H₂O, OH and SiO masers that are located in the center of this molecular and dusty structure (called "The Dominant Center") (Schneps et al. 1981; Gaume & Mutel 1987; Hasegawa et al. 1986; Ukita et al. 1987; Morita et al. 1992). Observations of the proper motions of the H₂O masers (which traces shocks in dust-laden gas close to the exciting protostars, Elitzur 1992) revealed the presence of a compact (~ 7000 AU) northwest-southeast high velocity $(> 100 \text{ km s}^{-1})$ outflow (Schneps et al. 1981; Eisner et al. 2002; Imai et al. 2002). Moreover, high angular resolution observations showed that the SiO masers seem to be tracing the innermost parts of this powerful outflow (Eisner et al. 2002). Finally, this object has previously been identified with spectroscopic signatures of dynamical collapse using emission from HCO+ (Rudolph et al. 1990), and SO₂ (Sollins et al. 2004).

Here we present 1.3 mm continuum, cyanogen and vinyl cyanide line observations toward the W51 North region made with the SMA. We report the presence of molecular gas accretion onto a 40 M_{\odot} (proto)star or a small central cluster of B stars located in the center of W51 North region, and with an accretion rate between 4 and $7\times10^{-2}~M_{\odot}~yr^{-1}$.

Send offprint requests to: Luis Zapata, e-mail: lzapata@mpifr-bonn.mpg.de

Fig. 1. Integrated molecular emission of the lines CN N=2-1, J = 5/2 - 3/2, F = 5/2 - 3/2 and N=2-1, J = 5/2 - 3/2, F = 7/2 - 5/2 observed with the SMA is shown as a color image of the W51 IRS2 region. The contours are -14, -13, -12, -11, -10, -9, -8, -7, -6, -5, -4, 4, 5, 6, 7, 8, 10, 11, 12, 13, and 14 times 970 mJy beam⁻¹, the rms noise of the image. The integration is over a velocity range from 50 to 80 km s⁻¹. The synthesized beam is 3.4 " × 3.2" with a P.A. = -87°, and is shown in bottom left corner. The scale bar indicates the molecular line emission and absorption in Jy Beam⁻¹. The white diamonds indicate the positions of the infrared sources KJD3 and IRS2d (Kraemer et al. 2001; Okamoto et al. 2001; Lacy et al. 2007) and the radio source W51d2 (Gaume et al. 1993). The yellow line indicates the orientation of the SiO(5-4) high velocity bipolar molecular outflow centered on the water masers (Zapata et al. in prep.). The green circle indicates the position of the center of W51 North (Schneps et al. 1981).

2. Observations

The observations were made with the SMA¹ during 2005 August 20. The SMA was in its compact configuration, which includes 21 independent baselines ranging in projected length from 16 to 50 m. The phase reference center of the observations was R.A. = 19h23m43.80s, decl.= $14^{\circ}31'30.0''$ (J2000.0). The frequency was centered at 217.1049 GHz in the Lower Sideband (LSB), while the Upper Sideband (USB) was centered at 228.1049 GHz.

A close blend of the CN N=2-1, J = 5/2 - 3/2, F = 5/2 - 3/2 and N=2-1, J = 5/2 - 3/2, F = 7/2 - 5/2 lines were detected in the USB. Their frequencies are 226.874166 and 226.874745 GHz, respectively. Both lines have very similar intrinsic strengths and energies above the ground state. The LSR velocity scale in this paper is given with respect to the rest frequency of the former line. The velocity difference corresponding to the frequency difference is 0.77 km s⁻¹. When, in this paper, we refer to "the" CN line, we mean this blend. The C₂H₃CN $J_{K_a,K_c} = 23_{2,22} - 22_{2,21}$ line was detected in the LSB at a frequency of 217.497585 GHz.

The full bandwidth of the SMA digital correlator is 4 GHz (2 GHz in each side band). The correlator was configured with spectral windows ("chunks") of 104 MHz each, with 128 channels distributed over each spectral window, providing a resolution of 0.8125 MHz (1.1 km s^{-1}) per channel.

The zenith opacity measured (τ_{230GHz}) with the NRAO tipping radiometer located at the Caltech Submillimeter Observatory (close to the SMA) varied during the night between 0.12 and 0.20, indicating good weather conditions during the observations. Phase and amplitude calibrators were the quasars 1749+096 and 1741–038, with measured flux densities and for-

mal fitting errors of 2.08 ± 0.05 and 1.81 ± 0.05 Jy, respectively. The uncertainty in the flux scale is estimated to be 15–20%, based on the SMA monitoring of quasars. Observations of Uranus provided the absolute scale for the flux density calibration. Further technical descriptions of the SMA and its calibration schemes are found in Ho et al. (2004).

The data were calibrated using the IDL superset MIR, originally developed for the Owens Valley Radio Observatory (Scoville et al. 1993) and adapted for the SMA.² The calibrated data were imaged and analyzed in the standard manner using the MIRIAD and AIPS packages. We used the ROBUST parameter of the INVERT task set to -2, which corresponds to uniform weighting to achieve the maximum angular resolution while sacrificing some sensitivity. The resulting image rms noise of line images was 30 mJy beam⁻¹ for each channel at an angular resolution of $3.4'' \times 3.2''$ with a P.A. = -87° . The data were selfcalibrated in phase and amplitude using as a model the continuum image. The final images were shifted ~ 1" in right ascension in order to be consistent with the positions of the molecular cores associated with the W51 North and W51d2 better determined with the Very Large Array observations of Ho et al. (1983); Zhang & Ho (1997). This discrepancy is mainly caused by the baseline error, the finite S/N, and the atmospheric fluctuations in our millimeter wave observations.

3. Results and Discussion

3.1. The Molecular and Millimeter Continuum Emission

In Figure 1, we present the integrated CN line emission image of the W51 IRS2 region, and the positions of the H_2O masers (Imai et al. 2002), the infrared sources W51 IRS2d

¹ The Submillimeter Array (SMA) is a joint project between the Smithsonian Astrophysical Observatory and the Academia Sinica Institute of Astronomy and Astrophysics, and is funded by the Smithsonian Institution and the Academia Sinica.

² The MIR-IDL cookbook by C. Qi can be found at http://cfa-www.harvard.edu/~cqi/mircook.html

Fig. 2. Spectrum of the CN N=2-1, J = 5/2 - 3/2, F = 5/2 - 3/2 and N=2-1, J = 5/2 - 3/2, F = 7/2 - 5/2 lines towards the center of the W51 North object. The spectral velocity resolution is 1.1 km s⁻¹. The dashed line indicates the systemic velocity (V_{LSR}=59 km s⁻¹).

and KJD3/OKYM1 (Kraemer et al. 2001; Okamoto et al. 2001; Lacy et al. 2007), and the radio source W51d2 (Gaume et al. 1993), all of them in the neighborhood of the W51 North object. Furthermore, we mark the position and orientation of the strong high velocity molecular bipolar outflow traced by the SiO v= 0; J = 5 - 4 line found by Zapata et al. (in prep.), which is centered on the cluster of masers. In this image we can see two components of the molecular line distribution, one in unresolved absorption toward the W51 North object and the other also quite compact, but resolved in emission surrounding this region. We interpret this appearance the signature of molecular absorption against the strong compact millimeter continuum source associated with W51 North and shown in Figure 3.

Figure 2 shows the spectrum of the CN line towards the center of the W51 North object. The line shows a pronounced inverse P Cygni profile. The emission feature appears at a V_{LSR} =55 km s⁻¹ and absorption at V_{LSR} =65 km s⁻¹, which is consistent with the HCO⁺ molecular observations of Rudolph et al. (1990). Given that the core's systemic velocity is 59 km s⁻¹ (Zhang et al. 1998), the location of the redshifted absorption projected against the bright continuum emission of the central highly obscured object implies inward motions away from the observer. The brightness temperature of the emission from the infalling material is lower than ~ 10 K, the brightness temperature of the continuum emission from the core. From Figure 6 of Rudolph et al. (1990) and Figure 2 shown here, we estimate that the velocity of infall (V_{infall}) is about 4 km s^{-1} . With this information and taking the values of the density $(\rho = 2 \times 10^6 \text{ cm}^{-3})$, linear radius (r=1.4 × 10⁴ AU) reported for the compact continuum source located in W51 North (Zhang & Ho 1997; Zhang et al. 1998) and a radius of the hot core of 2×10^4 AU, and following Beltran et al. (2006), we calculate that the mass infall rate ($\dot{M}=4\pi r^2 \rho V_{infall}$) is between 4 and 7 × 10⁻² M_{\odot} yr⁻¹. This value have large uncertainties, due to the uncertainty on the density and on the radius at which V_{infall} is measured.

The first moment map of the C₂H₃CN $J_{K_a,K_c} = 23_{2,22} - 22_{2,21}$ line is shown in Figure 3. The emission is tracing an unresolved east-west rotating molecular "envelope" or "core" with a total velocity shift of 1.5 km s⁻¹ and a size of 4 × 10⁴ AU. Moreover, the integrated emission from this molecule is well centered on the millimeter continuum source, suggesting that this species is tracing high density gas close to the (proto)star (see Figure 3). Finally, our bandpasses contained lines from other molecules (e.g. HCOOCH₃ and CH₃OH) associated with W51 North. However, they were very much contaminated by the emission from the hot molecular core associated with W51d2, not allowing us to search for similar east-west velocity gradients associated with these line molecular tracers. The W51 North source is associated with the extended hot core found by Ho et al. (1983) and Zhang et al. (1998), and it is centered on the cluster of masers as reported in other observations e.g. NH₃; Ho et al. (1983); Eisner et al. (2002), CH₃CN; Zhang et al. (1998), SO₂; Sollins et al. (2004). If we assume that the molecular gas is rotating as a rigid body (i.e. the dynamical mass is $M_{dyn} = v^2 r sin^2(i)/G$, where v is the rotation velocity, r is the radius of the envelope, *i* is the inclination angle of the envelope assumed to be 90° and G is the gravitational constant), we estimate a mass for the central object(s) of 40 M_o. This central object might be associated with a single central O-type (proto)star or with a small group of B-type (proto)stars. However, as there is a strong and compact bipolar outflow in the center of the core (see Figure 3), it seems to be dominated by one central massive star.

From Figure 3 and assuming that at a wavelength of 1.3 mm we are observing isothermal optically thin dust emission with a dust mass opacity coefficient that varies with frequency as $\kappa \propto v^{\beta}$, with $\beta = 1$, (the size of the source suggest that we are observing emission from the envelope; hence, we adopt β =1, however, this value is uncertain, see Beckwith et al. (1990) that observe how this value varies in pre-main-sequence stars), a gas-to-dust ratio of 100 (which may not be the most adequate to use for protostellar sources since erosion of the circumstellar envelope by photoevaporation from near OB stars may decrease the gas-to-dust ratio, see Williams et al. (2005); Throop & Bally (2005)), an adopted value of $\kappa_{1.3mm} = 1.5 \text{ cm}^2 \text{ g}^{-1}$ and a dust temperature value of about 100 K (with uncertainties of a factor of about 1.5, Zhang et al. (1998)), we estimate an enclosed mass of the molecular core W51 North of 90 M_{\odot} , very close to the 100 M_{\odot} estimated by Zhang & Ho (1997). Due to the uncertainties referred to above, the values of the derived masses are good within a factor of 2.

3.2. Forming an Early O-type star in W51 North?

The combined 1.3 mm continuum, C₂H₃CN and CN data from W51 North suggest that this object is forming a massive O5-type (proto)star in its center through molecular gas accretion and with a very large accretion rate between 4 and $7 \times 10^{-2} M_{\odot} \text{ yr}^{-1}$. Moreover, the powerful compact bipolar high velocity (> 100 km s⁻¹) outflow traced by the H₂O masers pinpoints the position of this putative central massive object.

Zapata et al. (in prep.) in addition found a compact high velocity SiO bipolar outflow with both unresolved-lobes spatially separating for less than one arcsecond and forming a P. A. of $150^{\circ} \pm 30^{\circ}$. This is centered at the position of the compact H₂O outflow which has a P.A. of 110-145° (Schneps et al. 1981; Imai et al. 2002; Eisner et al. 2002). We propose that these two outflows might be manifestations of a single powerful outflow. The masers appear to be tracing the innermost regions of it (as observed in other outflows, e.g. IRAS 20126+4104, Moscadelli et al. 2000), while the SiO is tracing the more extended shocked molecular gas. From this point of view, the southeastern cluster of H₂O masers (see Figure 3) maybe tracing another older ejected bow-shock. However, higher angular resolution SiO molecular observations are neccesary to confirm this picture. It is interesting to note that the P.A. of the velocity gradient across the C₂H₃CN envelope (~ 90°) is not exactly perpendicular to the orientation of the molecular outflow (P.A. ~ 140°), as might be expected. This may indicate that outflow could be precessing due the presence of binary system or

Fig. 3. Upper: SMA 1.3 mm continuum emission color image overlayed with the moment zero distribution of the C2H3CN line (pink contours) of the W51 North region. The integration is over a velocity range of 55 to 65 km s⁻¹. The synthesized beam with a FWHM 3.4 $\times 3.2''$ and a P.A. of -87° is shown in the bottom left corner. The contours are -4, 4, 8, 12, 16, 20, 24, 30, 40, 50, 60, 80, 90, 100, 120, 150, 170 and 200 times 40 mJy beam⁻¹ km s⁻¹, the rms noise of the image. The scale bar indicates the continuum peak flux density in Jy beam⁻¹. Lower: First moment color image of the C₂H₃CN emission toward the W51 North region. The integration is over a velocity range of 55 to 65 km s⁻¹. The scale bar indicates the velocity shift in km s⁻¹. The white diamonds indicate the positions of the infrared sources KJD3 and IRS2d (Kraemer et al. 2001; Okamoto et al. 2001; Lacy et al. 2007) and the radio source W51d2 (Gaume et al. 1993). The blue and red crosses indicate the position of the blue- and red-shifted strong H₂0 masers spots, respectively, reported by Imai et al. (2002). Note that the central cluster of masers is tracing a high velocity outflow with a northwest-southeast orientation (Imai et al. 2002; Eisner et al. 2002). The vellow line indicates the orientation of the SiO(5-4) high velocity bipolar outflow centered on the water masers (Zapata et al. in prep.). The black circle indicates the position of the center of W51 North (Schneps et al. 1981).

that the C_2H_3CN emission is contaminated by the outflow. This physical phenomenon of precessing outflows has been reported in other outflows: IRAS 20126+4104 (Shepherd et al. 2000), L1157 (Bachiller et al. 2001), and NGC7538IRS1 (Kraus et al. 2006).

At present, there is a list of early massive (proto)stars that have been associated with possible infalling motions and with large mass accretion rates, e.g. W51e2: a gas mass of 200 M_{\odot} and an accretion rate of $10^{-3} M_{\odot} \text{ yr}^{-1}$ (Zhang & Ho 1997; Ho & Young 1996); NGC7538-IRS9: a gas mass of 100-300 M_{\odot} and an accretion rate of $10^{-3} M_{\odot} \text{ yr}^{-1}$ (Sandell et al. 2005); G24.78+0.08: a (proto)stellar mass of ~ 20 M_{\odot} and an accretion rate between 10^{-2} to $10^{-4} M_{\odot} \text{ yr}^{-1}$ (Beltrán et al. 2006); IRAS 16547-4247: associated with an O-type (proto)star and an accretion rate of about $10^{-2} M_{\odot} \text{ yr}^{-1}$ (Garay et al. 2007) and W51 North, a (proto)stellar mass of ~ 40 M_{\odot} and an accretion rate between $4.7 \times 10^{-2} M_{\odot} \text{ yr}^{-1}$ (these results). This suggests that the very massive stars (O-type) might form starting with very high accretion rates, sufficient to quench the formation of an UCHII region. We note that this hypothesis has already been proposed by recent numerical simulations (Banerjee & Pudritz 2007).

We thank the anonymous referee for many valuable suggestions. R.G. is grateful to the *Alexander von Humboldt Foundation* for a Humboldt Research Fellowship.

References

- Bachiller, R., Pérez Gutiérrez, M., Kumar, M. S. N., & Tafalla, M. 2001, A&A, 372, 899
- Banerjee, R. & Pudritz, R. E. 2007, ApJ, 660, 479
- Beckwith, S. V. W., Sargent, A. I., Chini, R. S., & Guesten, R. 1990, AJ, 99, 924
- Beltrán, M. T., Cesaroni, R., Codella, C., et al. 2006, Nature, 443, 427
- Bonnell, I. A., Bate, M. R., Clarke, C. J., & Pringle, J. E. 2001, MNRAS, 323, 785
- Bonnell, I. A., Bate, M. R., & Zinnecker, H. 1998, MNRAS, 298, 93
- Eisner, J. A., Greenhill, L. J., Herrnstein, J. R., Moran, J. M., & Menten, K. M. 2002, ApJ, 569, 334
- Erickson, E. F. & Tokunaga, A. T. 1980, ApJ, 238, 596
- Garay, G., Mardones, D., Bronfman, L., et al. 2007, A&A, 463, 217
- Gaume, R. A., Johnston, K. J., & Wilson, T. L. 1993, ApJ, 417, 645
- Gaume, R. A. & Mutel, R. L. 1987, ApJS, 65, 193
- Genzel, R., Downes, D., Schneps, M. H., et al. 1981, ApJ, 247, 1039
- Hasegawa, T., Morita, K., Okumura, S., et al. 1986, in Masers, Molecules, and Mass Outflows in Star Formation Regions, 275–+
- Ho, P. T. P., Das, A., & Genzel, R. 1983, ApJ, 266, 596
- Ho, P. T. P., Moran, J. M., & Lo, K. Y. 2004, ApJ, 616, L1
- Ho, P. T. P. & Young, L. M. 1996, ApJ, 472, 742
- Imai, H., Watanabe, T., Omodaka, T., et al. 2002, PASJ, 54, 741
- Jijina, J. & Adams, F. C. 1996, ApJ, 462, 874
- Kahn, F. D. 1974, A&A, 37, 149
- Keto, E. & Wood, K. 2006, ApJ, 637, 850
- Kraemer, K. E., Jackson, J. M., Deutsch, L. K., et al. 2001, ApJ, 561, 282
- Kraus, S., Balega, Y., Elitzur, M., et al. 2006, A&A, 455, 521
- Lacy, J. H., Jaffe, D. T., Zhu, Q., et al. 2007, ApJ, 658, L45
- Larson, R. B. & Starrfield, S. 1971, A&A, 13, 190
- McKee, C. F. & Tan, J. C. 2003, ApJ, 585, 850
- Morita, K.-I., Hasegawa, T., Ukita, N., Okumura, S. K., & Ishiguro, M. 1992, PASJ, 44, 373
- Nakano, T. 1989, ApJ, 345, 464
- Okamoto, Y. K., Kataza, H., Yamashita, T., Miyata, T., & Onaka, T. 2001, ApJ, 553, 254
- Rudolph, A., Welch, W. J., Palmer, P., & Dubrulle, B. 1990, ApJ, 363, 528
- Sandell, G., Goss, W. M., & Wright, M. 2005, ApJ, 621, 839
- Schneps, M. H., Moran, J. M., Genzel, R., et al. 1981, ApJ, 249, 124
- Scoville, N. Z., Carlstrom, J. E., Chandler, C. J., et al. 1993, PASP, 105, 1482
- Seovine, N. Z., Canstoni, J. L., Chandich, C. J., et al. 1995, 1451, 105, Shepherd, D. S., Yu, K. C., Bally, J., & Testi, L. 2000, ApJ, 535, 833
- Shepheru, D. S., Tu, K. C., Dany, J., & Tesu, E. 2000, ApJ, 555, 8.
- Sollins, P. K., Zhang, Q., & Ho, P. T. P. 2004, ApJ, 606, 943
- Throop, H. B. & Bally, J. 2005, ApJ, 623, L149
- Ukita, N., Hasegawa, T., Kaifu, N., et al. 1987, in IAU Symposium, Vol. 115, Star Forming Regions, ed. M. Peimbert & J. Jugaku, 178-+
- Williams, J. P., Andrews, S. M., & Wilner, D. J. 2005, ApJ, 634, 495
- Yorke, H. W. & Kruegel, E. 1977, A&A, 54, 183
- Zhang, Q. & Ho, P. T. P. 1997, ApJ, 488, 241
- Zhang, Q., Ho, P. T. P., & Ohashi, N. 1998, ApJ, 494, 636
- Zinnecker, H. & Yorke, H. W. 2007, ArXiv e-prints, 707