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Rainer Burghardt

A Kerr Interior

An exact solution of the Einstein field equations is proposed which represents
a differentially rotating fluid. As this solution matches the exterior Kerr solu-
tion and reduces to the Schwarzschild interior solution by setting the rotatio-
nal parameter to zero, it could serve as Kerr interior.

1. Introduction

In the last decades many searchers have dealt with the construction of a solu-
tion of the Einstein field equations for a rotating source that matches the Kerr
solution. Approximate solutions and trial solutions have been found [1-22].
We want to propose another solution by means of geometrical methods.

In Sec. 2 of this paper we present an interior for the Kerr metric based on
a differentially rotating fluid source. This exact solution of the Einstein field
equations matches the Kerr vacuum solution at a boundary surface of an el-
liptical shape. Setting the rotational parameter to zero it has as static limit the
Schwarzschild interior solution. In Sec. 3 we study a static seed metric for in-
vestigating the geometrical background of the model. We set up the field
equations and calculate the stress-energy tensor. In Sec. 4 we implement the
rotation by an intrinsic transformation operating on the 4-bein fields and we
calculate the rotational and centrifugal forces. We set up the field equations
for the rotating system and we calculate the stress-energy tensor of the rota-
ting masses.
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2. The rotating metric

Firstly, we write down the line element of the interior region and we define
all the quantities we will use throughout the paper. Using the elliptical Boyer-
Lindquist co-ordinates the line element reads as
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R and the rotational parameter a are constants. All quantities with the subs-
cript g are the constant values of the variables at the boundary surface
matching the exterior solution.

The linkage of the interior fields to the exterior fields is the junction con-
dition
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Inserting this relation into (2.1) and (2.2) we obtain
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which are the boundary values of the corresponding quantities of the exterior
Kerr metric described in [23-27]

ds? =dx"” +dx?’ +[aRdx3 +iachdx4]2 +ag [—iocRoJcrdx3 +(1Rdx4:|2 , dx' = agagdr ,(2.6)

(2.1) and (2.6) have the same structure. By setting the mass parameter M=0,
both metrics reduce to the same flat rotating metric, the rotation being imple-
mented by a Lorentz transformation. So we believe that our ansatz is the na-
tural continuation of the exterior solution into the interior region.
Furthermore, we will show that both line elements are based on a similar geo-
metrical structure.

3. The static metric
For a better understanding of the theory we start our investigations with a sim-
plified form of (2.1), the static seed metric'. From the static line element
2
ds* = alajdr® + A’d9° +6°de” +ardx’, dx* =idt (3.1
we read the 4-bein components and we calculate the connexion coefficients
in tetrad form and we split the latter in the following manner

Aml’lS = Bl'nl’lS + Nl'nl’lS + le’lS + E ) (3’2)
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1 A similar attempt for the exterior solution we have published in [26]
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where pg is the curvature vector of the BL-ellipses and py the curvature vec-
tor of their hyperbolic orthogonal trajectories

A A
Pg=—"H Py=—""7>HF -
A " a’ sin 9 cos 9
m,={1,0,0,0}, b,={0,1,0,0}, ¢,={0,0,1,0}, u,={0,0,0,1} are the orthogonal
unit vectors.E is the force of gravity. From the Ricci tensor
Rmn (A) =A ’ An\m - ArmSAsnr + AmnSAs (35)
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We use the graded derivatives introduced in [28, 29]
mmHn = mm\n = 0’ bmHn = bm\n = 0’ cmHn = cm\n - BnmSCs - Nnmscs =0
! : : N
um [[n = um [n - Bnmsus - Nnmsus - Cnmsus =0

4

They transform covariantly in the lower dimensional subspaces spanned by
the unit vectors and simplify the calculations considerably. Solving (3.6) by
inserting (3.3) we obtain



A Kerr Interior 55

1
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The new quantities
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we will identify in a subsequent paper with the generalized second fundamen-
tal forms of a surface endowed with nonholonomicity.
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can be explained as contributions of the evolutes of the BL-ellipses as men-
tioned in [23]. We will come across the quantity

2 2
E =a 0 co

S

G.11)

s

in the next Section. From (3.8) we calculate the components of the stress-en-
ergy tensor as

kT, =B,C, -B,E, -C.E,
KT, =EN,
.2
«T,, =M,C, -ME -CE —FE - N,C,sin" (312
KT, =M B, -ME, —C,E, +Q”Q, sin’n
«T,, =M B, +M,C, +BE, + f!“f)h sin’ n— N,C, sin’
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which are covariantly conserved.

4. The Kerr interior

In the last Section we have investigated with the help of a seed metric the pro-
perties of the geometrical quantities we need to understand the proposed Kerr
interior. An anholonomic intrinsic transformation

A?zocR, Ai: o0, A;V:—iocR(ncsz, AjzaR
4.1

A;,ZOLR, Ai.:—iocR(o, A§,= iOLR(DGZ, Ai,:ocR

with
k 4 i k

A =3, (42)
transforms the 4-bein fields and the metric as

m it m i i ik

e=Ae, e=Ae, guEA g (4.3)

where the primed indices denote the BL-co-ordinates of the seed metric. Ap-
plying this transformation to the tetrad connexion we obtain

AL ="AL+G] (4.4)
where the *A are the connexion coefficients of the seed metric and

k' 1

Gmns:[gsrgk'%lej'-}_gnre e'éj'_’_gmre n :|AJA[lk] (45)

is the dynamical part of the Kerr interior connexion. Calculating G with the
help of (4.1) we obtain

H =-0'u+Q u +Q"u +0,D u

mns nm s sm n sn m ns  m

wherein the new quantities are defined by

Q, =-[H,+D. |, Hl =a[H_+D, ] D (4.7)

(nm)
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and where

H, =2ia 00, (4.8)

[[n™ m]

is the relativistic generalization of the Coriolis force and

D, =ia;0 oc, (4.9)

is the contribution from the differential rotation of the source. Shears Dzm
arise as neighboring layers of the fluid have different orbital velocities. T'he
Ricci tensor has the same structure as the Ricci of the exterior solution
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The covariantly conserved components of the stress-energy tensor are
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In addition to the above field equations the Maxwell-like equations

Fonin — 2% =0, E

[m|n] n]i

T T T
[m]n] 0 Q[mn IIs] +Q[mn E = O (414)

are satisfied. On the boundary surface the hydrostatic pressure T;; vanishes
and the matter current reduces to «T,, = Q;,M, + Q,E, where My and E are
the curvatures of the embedded interlor and exterlor surfaces respectively as
we will show in the subsequent paper. All the above defined field strengths
coincide with the analogous field strengths of the exterior solution for r=r, .
Thus both the metric and the first derivatives of the metric match at the
boundary surface.

The field strengths are well-behaved except at r =0, A = a, where the BL-
ellipses degenerate to a line segment fixed by the foci of the confocal BL-el-
lipses. On that line segment the ellipsis curvature vector pg is infinitely large
and the corresponding field strengths are zero. Only for § = 1t/ 2, at the ‘ver-
tices’ of the ellipsis, pg vanishes and the corresponding field strengths get in-
finitely large. Rotating this line segment through ¢, one gets a disk with a
singular rim, the well-known Kerr singularity. Setting the rotational parame-
ter a to zero the Kerr singularity reduces to the Schwarzschild singularity at
r =0. The appearance of singularities of this kind is a general feature of field
theories where the field strengths are of structure 1/r ™.
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5. Outlook

In the present paper we presented an exact solution of the Einstein field equa-
tions which could serve as Kerr interior as it matches the Kerr exterior at the
boundary surface. Moreover, both solutions are on the same geometric foo-
ting. In an earlier paper we have shown that the Kerr metric is the metric of a
surface embedded in a higher dimensional flat space. In a further paper we
will show that the interior solution proposed in this paper can be represented
by a surface, too, which matches the surface of the exterior solution.
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