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Kerr Interior Surfaces

A recently found interior for the Kerr metric is re-investigated by means of
geometrical methods. A surface with nonholonomicity is matched to the sur-
face of the exterior solution.

1. Introduction

In a former paper [1] we have proposed a solution for a Kerr interior based on
a differentially rotating fluid source. In the present paper we explain this so-
lution by geometrical means. In Sec. 2 we choose for the [r, ϑ]-slice of the
space-like part of the metric a surface of ellipsoidal shape embedded in a flat
space with an extra dimension. This surface matches the surface of the exterior
solution (ES), which have we investigated in an earlier paper [2]. The [r, ϕ]-
slice will not be discussed as it can be obtained in the same way as the [r, ϑ]-
slice by reducing the surface of an elliptical shape to that of a spherical one.
To include also the time surface five dimensions but six variables and more
algebra is needed. This is performed in Sec. 3.

2. The space-like geometry

In this Section we investigate the geometrical structure of the space-like part
of the Kerr interior. It is sufficient to consider the [r, ϑ]-slice as the [r, ϕ]-slice
has a similar, even simpler, structure. The [r, ϑ]-slice of the complete
Schwarzschild solution is made up of Flamm’s paraboloid (a fourth-order
surface) and of the cap of a sphere for the interior, covering the ‘hole’ of the
ES. As we have found for the [r, ϑ]-slice of the ES an elliptically squashed
surface [2] which reduces to Flamm’s paraboloid by setting the rotational pa-
rameter to zero, we expect that the interior surface should reduce to a cap of
a sphere for the Schwarzschild case. Since the parallels of the ES are ellipses,
we demand the parallels of the interior to be elliptical too. Thus, we try a cap
of an elliptically squashed surface for the [r, ϑ]-slice and a cap of a sphere for
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the [r, ϕ]-slice embedded in a flat space with the extra dimension x0'. We can
use the elliptic-hyperbolical Boyer-Lindquist co-ordinate system for both so-
lutions as well. The 3-surface is parametrized by

where R is a constant and the primed indices refer to a Cartesian co-ordinate
system in the flat embedding space and

The horizontals of the surface are confocal ellipses with the minor semi-axes
r and the major semi-axes A, where a is the common eccentricity of the ellip-
ses. (2.1) can be written as

The lower half of the resulting surface is shown in Fig. 1. 
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R has the meaning of the radius of a circle at the minor semi-axes of the ho-
rizontal ellipses. For the space-like part of the Kerr interior we will take a cap
of this surface and match it to the ES. Differentiating (2.1) we obtain for the
space-like line element of the surface

with

As

we obtain the radial part of the line element 

whereas aRdr is the line element of the BL hyperbolae defined by ϑ=const. in
the flat zero-plane . Defining the slope of the radial curves on the sur-
face as

we get

where the unprimed indices refer to the local reference system, dx1 being tan-
gent to the surface. Finally we get

Evidently, the metric (2.8) is not the metric we have proposed in our previous
paper and the metric does not match the ES. The cause is the following: trans-
porting the normal vector of this surface from the minor semi-axes of the el-
liptical horizontals around the - axis, this vector will cyclically move up
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and down because the slope of the surface depends on ϑ, as can be seen from
(2.7). From a new rigging vector we demand the off-axis angle to remain con-
stant on its way around. The hyperplanes normal to this vector are anholono-
mic and the world we are living in is the family of all these hyperplanes. From
(2.1) and (2.6) we get

and we define the non-integrable function

Suppressing the other dimensions, we have the flat radial line element in BL
co-ordinates   and obtain the anholonomic radial line element by

We remark that the holonomic radial line element and the anholonomic radial
line element have the same projections on the zero-plane. 

We select the lower part of the surface and we fix
its center by addition of a constant in a suitable way for a proper matching. If
this matching excludes the ergosphere we obtain a complete solution for a ro-
tating object avoiding all singularities except the singularity at the rim of a
disk in the equatorial plane for r = 0. The boundary value ηg is the aperture
angle of the cap and tan ηg the slope of the cap at the minor semi-axes of the
horizontals. Fig. 2 shows the matching region of the interior and exterior sur-
faces.

Now we adjust the sign of η, so that the orientation is cw. Then ηg coin-
cides with  εg, the angle of ascent of the exterior surface and the interior me-
tric matches the exterior one at the boundary surface. This has the advantage
that we do not need to correct the signs of the physical quantities. Thus we get
for the IS and ES with
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a negative value for the velocity vS of a freely falling observer (also free from
dragging effects) and a negative value for the attractive force of gravity.

Fig. 2

3. The time surface

In previous papers [3-6] we have shown that it is possible to embed the exte-
rior Schwarzschild solution and the Kerr solution in a five dimensional flat
space, if we use six variables without violating the theorems of Kasner and
Eisenhart. This has been established by using the theory of double surfaces
developed in these papers. With the help of this method we have explained
the geometrical background of the Schwarzschild interior solution and we
will proceed in the same way to investigate the Kerr interior metric. We start
with the static seed metric investigated in the previous paper. For the expla-
nation of the time-like part of the metric the curvature of the radial lines play
an important role: We move the radial curvature vector of the ES from infinity
towards the stellar object. While the tip of this vector moves on a radial inte-
gral line of the exterior surface the tail moves on the correlated evolute. As
soon as the tip has reached the boundary surface the tail is held on the evolute
and the tip is moved on the interior surface towards the axis of rotation. This
new vector we call X and ε its negative off-axis angle with respect to x0' . At
the boundary surface X coincides with the curvature vector ρg of the radial li-
nes of the ES. If we prolong ρg to x0’ the straight line through ρg cuts off a
distance 

The components of the vector X with respect to the Cartesian co-ordinate sy-
stem of the embedding space are

. (3.1)g= + ρR R
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We introduce an additional dimension with the co-ordinate axis x4’ and we
define the time as the rotation of the projection of the vector X onto the [x0',
x4']-plane through the imaginary angle iψ:

Since the value of the curvature vector of the exterior curve at the minor semi-
axis is known from previous investigations [5] as

we have at the boundary

and with (2.12)

Defining the co-ordinate time as  we obtain with (3.1) and (3.3) the
physical time in the local tetrad system

and the seed metric of the previous paper. The transformation to the rotating
metric is straight forward. For the Schwarzschild case we obtain Φg = 1 and

elucidating that the curvature vector of the Schwarzschild parabola at the
boundary is  and , which is a fundamental property
of the parabola. 
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4. More on the geometry

In the last section we have envisaged the vector X in the [xo', x1']-plane only.
Extended to more dimensions we can read from

that X satisfies the equation of a pseudo-hypersphere with radius X

embedded in a five-dimensional flat space with Cartesian co-ordinates
. The sphere (4.1) provides the basic framework for several

solutions of the Einstein field equations with spherical and also axial symme-
try. To specify such a model, the sphere has to be deformed to another more
complicated surface. This is easily done by projectors expanding the center of
the sphere to a curve, which is the locus of the centers of curvatures of another
curve. The latter is expanded from a great circle of the sphere. These two cor-
related curves (evolvente and evolute) are rotated through the above-mentio-
ned angles and constitute a double surface embedded in a five-dimensional
flat space [3-6]. By the introduction of a second surface into the theory we can
do with five dimensions only for the embedding space for vacuum solutions
without contradicting the theorem of Kasner and Eisenhart. The evolute pro-
vides a hidden variable and our theory is based on five dimensions but six va-
riables. A dimensional reduction cuts off all that we do not need for the four-
dimensional representation of the model.

From (4.1) we can easily derive the transformation matrix to pseudo-sphe-
rical co-ordinates  with the co-ordinate labels

. θ is the off-axis angle of the curvature vectors of the BL-el-
lipses and

With the help of (3.2) we get
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which is the ansatz for a double-surface theory.  The second column on the
right side gives raise to the line element 

which is the line element of a pseudo-sphere for 
We do not care for the question, if the extra dimension has a physical rea-

lity. We use the five-dimensional ansatz as a tool for finding or explaining
gravitational models. Our proposed Kerr interior results from those tech-
niques. From (4.3) we could derive the field equations of the seed metric but
we do not repeat all that we have already done to investigate the two Schwarz-
schild models and the Kerr exterior model.  The interested reader is referred
to papers [3-6]. We only give a short review how to gain the interior Kerr geo-
metry from the pseudo-spheres.  The projectors operate on the fundamental
quantities of the geometry:

where the are the connexion coefficients of the metric (4.4), the 
are the connexion coefficients of the Kerr interior surface, and

are the spherical co-ordinate differentials. The projected surface we call the
physical surface. The components of the projectors are
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From the Riemann tensor in the five-dimensional flat embedding space

we get by projection 

the Riemann of the physical surface. Shifting all components with 0-indices
to the right we obtain on the left the Riemann for the seed metric. Contracting
to the Ricci we can construct on the right side of the Einstein field equations
the stress-energy tensor, consisting mainly of the generalized second funda-
mental forms of the surface

At the end, we obtain the components of the covariantly conserved stress-en-
ergy tensor listed in the preceding paper. How to gain the field equations and
the stress-energy tensor for the rotating interior metric has been treated in this
paper in full length.
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5. Outlook

In the last Section we have briefly outlined the possibility to formulate the in-
terior Kerr model in terms of five-dimensional differential geometry. We ex-
pect the equations for the curvatures to decouple from the Einstein field
equations and the equations for the dynamical quantities to take a simpler
structure. We hope to publish this elsewhere.
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