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ABSTRACT

We examine the accuracy of strong gravitational lensing determinations of the mass of
galaxy clusters by comparing the conventional approach with the numerical integration of the
fully relativistic null geodesic equations in the case of weak gravitational perturbations on
Robertson-Walker metrics. In particular, we study spherically-symmetric, three-dimensional sin-
gular isothermal sphere models and the three-dimensional matter distribution of Navarro et al.
(1997), which are both commonly used in gravitational lensing studies. In both cases we study
two different methods for mass-density truncation along the line of sight: hard truncation and
conventional (no truncation). We find that the relative error introduced in the total mass by the
thin lens approximation alone is less than 0.3% in the singular isothermal sphere model, and less
than 2% in the model of Navarro et al. (1997). The removal of hard truncation introduces an
additional error of the same order of magnitude in the best case, and up to an order of magni-
tude larger in the worst case studied. Our results ensure that the future generation of precision
cosmology experiments based on lensing studies will not require the removal of the thin-lens
assumption, but they may require a careful handling of truncation.

Subject headings: gravitational lensing — galaxies: clusters:

1. Introduction

In the current age of precision cosmology, the
fundamental parameters of the favored cosmolog-
ical model can be measured with high accuracy.
Strong and weak gravitational lensing studies are
particularly important in this endeavor as an in-
dependent and relatively assumption-free measure
of mass morphology in clusters of galaxies.

Conventional gravitational lensing studies con-
tinue to utilize the standard assumption of thin
lenses. This allows for the actual path of photons
from source to observer to be approximated by its
asymptotics, with a sharp bending at the plane
where the lens is located. There is, clearly, some
error involved in this approximation, but the size
of this error has not been rigorously examined, to
our knowledge.

A question that will be important as the ac-
curacy increases is at what point the error in
the conventional approach becomes comparable
to the uncertainty in the cosmological parame-
ters. At that point, accurate modeling of lens-
ing events will require a more accurate version
of the lens equation, or an efficient algorithm
to calculate the photon paths. In this respect,
seminal proposals that improve on the conven-
tional approach exist, dating from the 1990’s. In
the work of Pyne & Birkenshaw (1993), higher-
order lens equations in cosmological backgrounds
are developed. A different style of approxima-
tion which correctly utilizes the thin-lens paths as
the zeroth-order path is introduced in Kling et al
(2000, 2001).

The same motivation sparked some interest in
revisiting the foundations of gravitational lensing
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theory with the aim of developing the concept of
the lens equation without reference to a lens plane,
as in Ehlers et al (2001); Frittelli & Newman
(1999) and Perlick (2004). These works de-
velop a consistent theory of strong lensing en-
tirely on the basis of the null geodesics in an ar-
bitrary spacetime. Image distortion and weak
gravitational lensing were considered from this
perspective in Frittelli et al. (2001, 2002). An
application of this no-lens-plane approach in
(non-cosmological) spacetimes representing spher-
ically symmetric non-singular matter distributions
is presented in Kling & Newman (1998). The
case of Schwarzschild black holes is developed
in Frittelli et al. (2001) and the resulting lens-
ing predictions are compared to Virbhadra & Ellis
(1999), where a lens-plane approximation is ap-
plied to lightrays that undergo large bending.
Large bending angles by static and spinning black
holes are also treated with an approximation
scheme in Bozza et al (2006); Sereno & De Luca
(2006), with an application to Sag A∗.

The purpose of this paper is to test the accu-
racy of the conventional approach in determining
the total mass of clusters. For this purpose we
integrate the null geodesic equations in cosmo-
logical lensing spacetimes. We work with actual
or realistic strong-lensing scenarios in the stan-
dard cosmology, assuming matter distributions
of either a three-dimensional singular isothermal
sphere (SIS) model or the model of Navarro et al.
(1997) (NFW). Both these models are unrealistic
to the extent that the mass density does not fall
off fast enough to allow for a bounded mass in
all space. In principle, some way of truncating the
mass density is implicit in the model, although the
details of the truncation mechanism are not con-
sidered of fundamental relevance to the predicted
observables.

Often in the application of gravitational lensing
to astrophysical data, truncation is imposed only
in the directions transverse to the line of sight.
This practice is justified on the basis that the pro-
jected mass density required for the thin-lens ap-
proximation is actually well defined in the model,
as it involves only a one dimensional integration
of the mass density along the line of sight, and
therefore, truncation of the model along the line
of sight is not necessary. Naturally, this practice
introduces further error in addition to the error in-

volved in the use of the thin-lens assumption. The
accuracy of this conventional model (thin-lens plus
lack of truncation along the line of sight) is the is-
sue in our current study.

Our method consists of comparing the observ-
ables predicted by the conventional approach to
those predicted by the theory with no approxima-
tions. The theory is provided by the bending of
light in the presence of mass as described by gen-
eral relativity. The physical scenario common to
both problems is the mass-density model. This is
used differently in both approaches. In the con-
ventional approach, the mass density is only used
after integration along the line of sight, with no
truncation. In the relativistic approach, which
here we consider to be the exact treatment of the
problem, the mass density is used as a source of the
Newtonian potential that determines the compo-
nents of the metric whose null geodesics are sought
in exact form. The general relativistic (or exact)
approach does not make sense in the absence of
truncation along the line of sight. Therefore, our
study ends up comparing the results of a non-
truncated thin-lens model to a properly truncated
general-relativistic numerical integration, both of
which represent the same physical situation. For
a proper interpretation of our results, it is impor-
tant to emphasize that the non-truncated thin-lens
models are conventionally intended to represent,
with some accuracy, the physical situation of a
properly truncated mass density, and for this rea-
son the comparison is entirely justified.

Clearly, however, the comparison of the con-
ventional approach with the relativistic treatment
provides a measure of the total error incurred by
two separate mechanisms: the thin lens approxi-
mation, and the lack of proper truncation along
the line of sight. The error introduced by the
truncation mechanism, or the lack of it, into the
thin-lens scheme can be analyzed as an end in
itself. In this respect, progress has been made
recently in introducing better physical trunca-
tion schemes that improve over hard truncation,
including Baltz et al (2007) and Takada & Jain
(2003). Of importance, Baltz et al (2007) con-
siders differences between truncated and non-
truncated lensing observables, giving a measure
of the inaccuracy introduced by the truncation
mechanism into the thin-lens scheme. These stud-
ies take the properly truncated thin-lens scheme
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as the exact model of the physical situation, thus
they fail to properly account for the actual inaccu-
racy with respect to the general relativistic theory.
The size of the truncation error by itself within
the thin-lens scheme has little meaning if the ac-
tual error introduced by the thin-lens assumption
is not known.

In order to give an idea of the sizes of both er-
rors (thin-lens and lack of truncation) with respect
to the relativistic theory, we also compare our inte-
gration of the null geodesics with thin-lens models
truncated along the line of sight. In this case, the
inaccuracy of the model is entirely due to a single
assumption: that of thin lenses. Our mechanism
of truncation is as simple as possible: a hard cut
off of the mass density after an arbitrarily chosen
radius.

In Section 2, we outline the ways the Robertson-
Walker (RW) background geometry enters our
calculation, and in Section 3, we outline the equa-
tions of motion. The SIS and NFW gravitational
potentials and thin-lens models are developed in
section 4. Section 5 describes our experimental
set-up, numerical approach, and numerical accu-
racy. Our main results comparing the accuracy
of the thin-lens models are presented in section 7.
Section 8 presents the variation of thin-lens accu-
racy as a function of cosmology parameters for a
range of flat cosmologies. We discuss and explain
our results in section 9 before concluding with
some comments about our results and the their
implications for lensing studies in section 10.

2. Cosmological background

We take as the background a flat RW metric
with the current accepted values of the Hubble
constant H0 = 70 km/s/Mpc, the matter density
Ωm = 0.3 and the cosmological constant density
ΩΛ = 0.7 = 1− Ωm. The metric is

ds2 = c2dt2 − a2(t)
{

dr2 + r2(dθ2 + sin2 θdφ2)
}

,
(1)

with a scale factor a(t) for our cosmological model
as in Ryden (2003)

a(t) =

(

Ωm

ΩΛ

)1/3{

sinh

(

3H0

√
ΩΛt

2

)}2/3

. (2)

The Hubble parameter H ≡ ȧ/a is

H2 = H2
0

(

Ωm

a(t)3
+ (1− Ωm)

)

. (3)

We will be considering photons emitted by a
source at emission time te, and arriving at the ob-
server at the observation time to. For numerical
convenience, we fix the scale factor to the value 1
at the observation time, a(to) = 1, which yields
to = 4.248× 1017 s.

A natural way to give the relative locations be-
tween the lens, observer, and source is to place the
lens at the spatial origin, and to use the redshifts
to determine the positioning of the lens and ob-

server. Using the redshift relation, 1 + z̃ = a(to)
a(te)

,

and setting a(to) = 1, we can solve for the value
of te with Eq. 2.

To obtain the radial positions of the source and
observer, we orient our coordinates in such a way
that a light ray travels radially in the background
spacetime and assume that the observer, lens and
source are at least nearly co-linear. We can then
integrate radial null geodesics of the metric Eq. 1
to determine the radial positions of the source and
observer (by ignoring the perturbation introduced
by the lens).

3. Equations of motion

The lensing scenario is described in terms of the
following weakly perturbed RW metric

ds2 = (1 + 2ϕ)dt2 − a2(1− 2ϕ)

×{dr2 + r2(dθ2 + sin2 θdφ2)}, (4)

This metric is accurate to first order in ϕ, which is
a Newtonian potential determined by the proper
mass density of the lens ρp via

∇2
pϕ = 4πGρp, (5)

where the derivatives in the Laplacian operator
are taken with respect to the proper distance
rp = a(t)r. Commonly, the proper mass density is
taken as a function ρp(rp) which depends explic-
itly on the proper distance rp but not on the time
t.

Under conventional lensing conditions, a ligh-
tray spends a very small amount of time in the
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area of influence of the lens (where ϕ 6= 0). Dur-
ing such a small time the scale factor of the uni-
verse a(t) changes very little. It is typically as-
sumed that under such conditions, this scenario is
consistent with the Einstein equations for a lin-
earized perturbation off a FRW spacetime. The
consistency of a general cosmological lensing sce-
nario with the Einstein equations is studied in
Futamase & Sasaki (1989).

By Eq. 5, the potential ϕ is an explicit function
of the proper distance rp but not the time t. Nec-
essarily, thus, the potential is a function of both
the comoving distance r and the coordinate time
t via:

ϕ = ϕ(rp) = ϕ(a(t)r) = ϕ(t, r). (6)

Consequently, the metric, Eq. 4, is not strictly
static in the comoving coordinate system. This
issue is somewhat obscure in the standard refer-
ences, including the excellent books by Schneider et al.
(1992) and Petters et al. (2001), where the poten-
tial is said to be “time independent.” The time-
variation of the potential is small, however, in
the conditions of lensing, where the scale factor
changes very little during the passage of a ligh-
tray (one has dϕ/dt = (da/dt) × (r/a) × ∂ϕ/∂r).
So during the passage through the lens one may
approximate the scale factor by its value at some
time tl representative of the time at which the
lightray passes the lens. This would make the
metric around the lens approximately static for
the purposes of calculating, for instance, the time
delay due to the lens.

For our purposes the metric is needed for the
entire trajectory from the source to the lens, along
which one expects the scale factor to change per-
haps significantly. The metric is not, thus, inde-
pendent of time, but it is conformal to an ap-
proximately time-independent metric. Since the
null geodesics of conformally related spacetimes
are identical, we may choose to approximate the
scale factor with its value at the lens or not. Al-
though the approximation is very valuable for the
purpose of obtaining a closed form expression for
the lens equation in the conventional approach, it
brings no real advantage to the numerical integra-
tion of the null geodesics, so we prefer to maintain
the time dependence as prescribed by Poisson’s
equation. The equations of motion are more com-

plicated (in particular, they do not decouple) but
the added complications do not represent a real
obstacle.

Since the lens model Eq. 4 is spherically sym-
metric, the particle trajectories are planar, and
there is no loss of generality in choosing the plane
as θ = π/2. The geodesic equations can be found
explicitly as the Euler-Lagrange equations of the
Lagrangian

L = (1+2ϕ)ṫ2−a2(t)(1−2ϕ){ṙ2+r2φ̇2} = 0, (7)

to first order in ϕ. The Lagrangian is equal to zero
because the geodesics are null.

Since the coordinate φ is cyclic, the Euler-
Lagrange equations are equivalent to five first-
order ODEs, which we can write as

ṫ = vt

ṙ = vr

v̇t =

(

4ϕ
∂ϕ

∂t
− da

dt

1

a

)

v2t − 2(1− 2ϕ)
∂ϕ

∂r
vtvr

v̇r = −2vtvr

(

da
dt

a
− (1 + 2ϕ)

∂ϕ

∂t

)

+4
ϕ

a2
∂ϕ

∂r
v2t −

2b2

a4r2
∂ϕ

∂r
(1 + 6ϕ)

+
b2

a4r3
(1 + 4ϕ)

φ̇ = − b

a2r2
(1 + 2ϕ). (8)

These equations are obtained by working to first
order in ϕ and making use of L = 0 in the form

a2(ṙ2 + r2φ̇2) = (1 + 4ϕ)ṫ2. (9)

The parameter b arises from φ̈ = 0 and is re-
lated to the “observation angle” at the observer
or the angle between the lightray and the optical
(radial) axis connecting the observer to the lens.
The relationship is determined by taking the dot
product of the spatial part of the null vector at
the observer with a unit vector pointing towards
the origin. Using the spatial part of the metric,
Eq. 4, one obtains

sin θobs = θobs =
b

r0
(1 + 2ϕ0), (10)
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where the potential, ϕ0, is evaluated at the ob-
server position at t0.

We will be integrating past null geodesics from
the observer back to hypothetical sources. There-
fore, we need to specify five constants of integra-
tion:

t0, r0, φ0, vt0, vr0. (11)

This is in addition to the constant b which essen-
tially fixes the initial value of φ̇0. For the initial
position (t0, r0, φ0) we take t0 = 1 by setting the
unit scale to the age of the universe, φ0 = 0 by
arbitrary choice, and set r0 using the redshift of
the lens (which is placed at the origin), as was de-
scribed in section 2. The initial value of v̇t is set
to −1, and then by L = 0, we determine the initial
value of vr. Note that by choice of units, we have
a(t0) = 1. From Eq. 9 and 8, we have

vr0 = −
√

(1 + 4ϕ0)× (1− b2/r20), (12)

where ϕ0 = ϕ(t = 1, r = r0), and we take the
overall minus sign to make the rays approach the
lens.

4. SIS and NFW Models

The SIS and NFWmatter distributions are sim-
ple spherically-symmetric matter models in com-
mon use in lensing and other studies. An incon-
venience of both these models is that the total
mass is unbounded. In this section, we develop
the three-dimensional gravitational potentials for
these models assuming that the matter extends
to some proper radius rc with zero matter den-
sity for rp > rc. We also develop two-dimensional
(projected) thin-lens matter distributions for each
model with and without truncation for rp > rc.

4.1. SIS Newtonian potential

The singular isothermal sphere (SIS) model is
appealing because it predicts flat rotation curves.
In the SIS model the mass enclosed in a sphere of
proper radius rp is

M(rp) =
2σ2

vrp
G

, (13)

where the parameter σv is the velocity dispersion,
independent of the cluster redshift. For rp < rc
where rc is some truncation radius to be deter-
mined, the SIS proper mass density ρSIS

p is given
by

ρSIS
p =

σ2
v

2πGr2p
. (14)

We assume that the matter density of the per-
turbation vanishes for rp > rc. Notice that the
value of rc can be chosen independent of redshift,
because the SIS mass model contains no redshift
dependence. Thus for rp > rc the potential is that
of a point mass enclosing a mass M(rc).

The potential for rp < rc is the solution of Pois-
son’s equation that matches the point mass poten-
tial smoothly (continuously and with continuous
first radial derivative) at rc. We thus have:

ϕ(rp) =

{

2σ2
v lnx− 2σ2

v x < 1

− 2σ2

v

x x > 1
, (15)

where x = rp/rc is a natural dimensionless radial
parameter.

To have the potential in the comoving coor-
dinates, we make the substitution rp = a(t)r in
the potential, Eq. 15. Henceforward, x is to be

thought of as x = a(t)r
rc

. The three-dimensional
SIS model is thus a two-parameter model, depend-
ing on σv and rc.

4.2. SIS Thin lenses

In this subsection, we derive the projected mass
density and a thin lens equation for the SIS model
with a truncation radius, and show how the usual
presentation arises as a limiting case in which one
of the two parameters is lost.

The projected two-dimensional mass distribu-
tion is

ΣSIS
p =

∫ zc

−zc

ρSIS
p dzp, (16)

with ρSIS
p given by Eq. 14 and where zp is the

proper coordinate along the optical axis. The limit
of integration is zc =

√

r2c − s2, where s is the
proper distance to the optical axis. The integral
can be evaluated in closed form, yielding
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ΣSIS
p (s) =

σ2
v

π Gs
arctan

(
√

r2c
s2

− 1

)

. (17)

The mass interior to a proper radius s is

M(s) =
2σ2

vs

G
A(rc/s) (18)

with

A(rc/s) ≡ arctan

(
√

r2c
s2

− 1

)

+
rc
s

(

1−
√

1− s2

r2c

)

.

(19)

The bending angle as a function of s is
(Schneider et al. 1992)

α̂ =
4GM(s)

s
. (20)

For a source at position y from the optical axis, the
images will be seen on the same line at positions
x related to y by the lens equation which, with
Eq. 20, takes the form

y =
Ds

Dl
x− 8Dlsσ

2
v

x

|x| A(|x|/rc) (21)

for angular diameter distances to the source, lens,
and between the lens and source, Ds, Dl, and Dls,
respectively. The dependence on the truncation
radius rc appears in the factor A(|x|/rc). In typ-
ical lensing situations the impact parameter |x| is
much smaller than the truncation radius rc. The
Taylor expansion of A(|x|/rc) for small ratio |x|/rc
is

A(|x|/rc) =
π

2
− |x|

2rc
− |x|3

24r3c
+ . . . (22)

In practice, it is customary to neglect the depen-
dence on the truncation radius rc and substitute
the factor A(|x|/rc) by its limiting value π/2, lead-
ing to the standard SIS lens equation found for
instance in Schneider et al. (1992). The compari-
son with conventional results is easier to make by
introducing scaled quantities,

ȳ =
yDl

ξ0 Ds
& x̄ =

x

ξ0
,

with

ξ0 = 4π
(σv

c

)2 Dl Dls

Ds
. (23)

Using these scaled quantities, the lens equation
reads

ȳ = x̄− 2

π

x̄

|x̄|A(r̄c/|x̄|), (24)

which in the limit of large truncation radius re-
duces to the conventional form

ȳ = x̄− x̄

|x̄| . (25)

One sees that the thin-lens SIS model really
contains two parameters. Under the normal con-
ditions of gravitational lensing this is considered
as a one-parameter model, because an assumption
has been made on the relative sizes of rc and x.
In the comparisons that follow, we will be making
reference to both SIS lens equations: the conven-
tional one-parameter SIS model (Eq. 25), and the
two-parameter SIS model (Eq. 24).

We will be interested in the Einstein ring ra-
dius, which is given by the value of x satisfying
Eq. 21 with y = 0. For the conventional one-
parameter thin-lens SIS model, the Einstein ring
angle θtlE = x/Dl is given by

θtlE = 4π
σ2
v

c2
Dls

Ds
, (26)

Technically, this thin lens result assumes that the
truncation radius rc is large compared to the scale
radius ξ0 (Schneider et al. 1992).

In the two-parameter thin-lens SIS model
model, the Einstein ring angle is given by the
root of

θ − 8
Dls

Ds

σ2
v

c2
A = 0, (27)

where A, by Eq. 19, is

A = arctan

(
√

r2c
D2

l θ
2
− 1

)

+
rc
Dlθ

(

1−
√

1− D2
l θ

2

r2c

)

. (28)
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4.3. NFW Newtonian potential

The matter distribution of the NFW model
Navarro et al. (1997) is given by

ρp =
δcρcr

3
s

rp(rp + rs)2
, (29)

where ρc = 3H2(z)/(8πG) is the critical density
of the universe as a function of redshift. The two
parameters of the model are the scale radius, rs,
and δc. In the literature δc is often replaced by
the concentration parameter c defined by

δc =
200

3

c3

ln(1 + c)− c/(1 + c)
, (30)

and the scale radius rs is replaced by the virial
radius r200 = c rs, which is the radius inside which
the average mass density is 200ρc.

Like the SIS model, the total mass over all space
is undefined, so we must truncate the model at
some radius rc. However, because the NFW model
is indexed to ρc, the mass interior to a constant
proper radius varies with redshift.

We choose to hold the mass of the halo constant
and truncate the NFW profile at r200, so that the
constant total mass of the halo is

M200 =
800 π

3
ρcr

3
200. (31)

The truncation radius rc = r200 is then a known
function of redshift through ρc:

r200 =

(

3M200

800π ρc

)1/3

. (32)

In practice, we pick a value for r200 at the time the
lightray passes the lens and use Eq. 31 to compute
constant halo mass and Eq. 32 to determine the
truncation radius as a function of time. For x ≡
rp/r200 < 1, the enclosed mass is

M = M200

(

ln(1 + cx)− cx
(1+cx)

ln(1 + c)− c
(1+c)

)

, (33)

where c is the concentration parameter.

The NFW gravitational potential is obtained
by smoothly matching the spherically symmetric
gravitational potential for the mass density given

by Eq. 29 to a point mass potential at x = 1. The
result is

ϕ = −GM200

r200































1

x
ln(1 + cx)− c

1 + c

ln(1 + c)− c

1 + c

x < 1

1

x
x > 1

(34)

where for cosmological spacetimes, we take x =
a(t)r/r200, with r200 defined in Eq. 32 and con-
stant concentration parameter c.

4.4. NFW Thin lenses

We begin our discussion of NFW thin-lens mod-
els by determining the two-dimensional, projected
mass density used in gravitational lensing with an
arbitrary truncation radius rc. We initially scale
by rs so that r̃p = rp/rs and use cylindrical coor-
dinates where r̃p =

√
x̃2 + z̃2 where z̃ = z/rs runs

along the optical axis and x̃ = s/rs is the scaled
distance from the z axis. We define γ = rc/rs to
be an arbitrary scaled cutoff radius (we will later
set rc = r200).

The surface mass density is then given by

ΣNFW
p ≡ 2rs

∫

√
γ2−x̃2

0

ρdz̃

= 2δcρcrs

∫

√
γ2

−x̃2

0

dz̃√
x̃2 + z̃2(1 +

√
x̃2 + z̃2)2

,

(35)

and we make the change of variable z̃ = x̃ tanu.
Then the closed form expressions for the projected
mass density are for x̃ > 1,

ΣNFW
p = 2δcρcrs

1

x̃2 − 1

[

2x̃Y

(1 + x̃+ Y 2(x̃ − 1))

− 2√
x̃2 − 1

arctan

(

Y

√

x̃− 1

x̃+ 1

)]

,

(36)

and for x̃ < 1,
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ΣNFW
p = 2δcρcrs

1

x̃2 − 1

[

2x̃Y

(1 + x̃+ Y 2(x̃ − 1))

− 2√
1− x̃2

arctanh

(

Y

√

1− x̃

x̃+ 1

)]

,

(37)

and for x̃ = 1,

ΣNFW
p = 2δcρcrs

Y

2

(

1− Y 2

3

)

, (38)

where

Y ≡ tan

[

1

2
arctan

√

(γ/x̃)2 − 1

]

. (39)

As γ = rc/rs → ∞ we have Y → 1 and we recover
the conventional NFW projected matter density,
independent of the truncation radius, Eq (11) in
Wright & Brainerd (2000).

In the limit that γ = rc/rs → ∞, a closed form
expression for the mass interior to a radius ρ can
be found and is reported in Wright & Brainerd
(2000) and elsewhere. Written in terms of the con-
centration parameter c and the scaled projected
radius in the lens plane s̄ = s/r200, this closed
form expression for the mass is

M(s) =
100 r3200H

2

ln(1 + c)− c/(1 + c)
Q(s̄), (40)

where Q(s̄) is given by

Q(s̄) =











2√
1−(cs̄)2

arctanh
√

1−cs̄
1+cs̄ + ln cs̄

2 cs̄ < 1

2√
(cs̄)2−1

arctan
√

cs̄−1
cs̄+1 + ln cs̄

2 cs̄ > 1
.

(41)

There is no closed form expression that we are
aware of for the mass interior to a radius s in
the case of a truncated NFW model. We simply
find the mass by numerically integrating Eq. 37.
This numerical integration can be carried out us-
ing Gauss-Legendre quadratures, since the inte-
grand is regular, or by turning the integral equa-
tion into a differential equation and solving with a

numerical ODE solver with adaptive stepsize. In
either case, it is critical to sample well the region
near s = 0 because the integrand has derivatives
that are undefined there.

Given the mass within a radius |x|, the lens
equation

y =
Ds

Dl
x− 4GDlsM(|x|)

x
(42)

is the basis for conventional gravitational lensing
by NFW models, in the same way as for the SIS
model. The Einstein ring angles will be deter-
mined by the roots of Eq. 42 for y = 0.

5. Experimental testbed

We maintain the source, lens and observer on
the same axis, so that the observer will see Ein-
stein rings around the lens at an angle θobs in
Eq. 10. This observation angle will be considered
as a function of the lens model parameters and
the relative positioning of the lens, observer and
source.

Since the SIS model is a one parameter model
(holding fixed the truncation radius rc), fixing the
Einstein ring angle results in a determined value of
σv. It is fairly common in strong lensing articles to
use a simple SIS model in this manner, even when
two symmetric arcs are found instead of a ring.
While it is known that this method leads to an
overestimate of the lens mass, this direct relation
between σv and the ring angle serves as a good
comparison for this paper.

There is a degeneracy in specifying the Ein-
stein ring angle as the only observable for NFW
models, since the NFW models contain two pa-
rameters. However, weak lensing studies based on
gravitational shearing of background images tend
to show that the virial radius r200 is often bet-
ter constrained than the concentration parameter
c. In addition, weak lensing studies tend to find
very little tangential shear, a direct measure of
the mass, at physical radii greater 3.5 Mpc. For
these reasons, in this paper we will generally spec-
ify that r200 = 3.5 Mpc when the light passes the
lens and think of the concentration parameter of
the NFW models as the dynamical variable tied to
observed Einstein rings. We find that the errors
in the thin-lens cited in this paper do not appre-
ciably vary when r200 is reset to new values within
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an expected r200 range.

We consider a number of galaxy clusters with
known redshifts as lens candidates. As a bench-
mark system, we consider RXJ1347-1145, a high
X-ray luminosity cluster at z = 0.45 that has
been widely studied in weak and strong lensing.
RXJ1347-1145 has a pair of arcs at redshift 0.8,
located at approximated 35 arc sec from the grav-
itational center of the cluster. We also consider
a cluster discovered by Wittman et al. (2003) at
z = 0.68 that appears to have a pair of arcs at 7
arc sec at an unconfirmed redshift. To consider a
range of lens redshifts, we also include Abel 1451
at z = 0.2, whose weak lensing signal is reported
in Cypriano et al. (2004) and RDCS1252.9-2927, a
high redshift cluster (z = 1.24) with a weak lens-
ing measurement from HST imaging reported in
Lombardi et al. (2005).

We note that the mass density inferred from the
weak lensing measurements of these clusters has
fallen to essentially zero at a projected radius in
the lens plane by approximately 3.5 Mpc. There-
fore, in our standard comparisons, we choose the
SIS truncation radii of 3.5 Mpc, the same as the
NFW cases, although in some comparisons we al-
low for a range of truncation radii. 3.5 Mpc is
generally a factor of 10 to 50 larger than the scale
radius, Eq. 23.

6. Numerical approach and accuracy

For the purposes of integrating the null geodesics,
we re-scale the time and radial coordinates:

t′ =
t

to
r′ =

r

cto
. (43)

In the t′ coordinate, the observer receives the light
rays t′ = 1, and the metric is rescaled by an overall
factor

ds2 = (cto)
2
(

dt′2 − a2(t′)

×{dr′2 + r′2(dθ2 + sin2 θdφ2)}
)

, (44)

which, of course, does not alter the null geodesics.

We use a ray shooting technique to determine
the observation angle for a given positioning and
set of lens model parameters. For example, if the
Einstein ring angle is fixed, increasing σv or c will

cause the true light ray to cross the optical axis
closer to the lens. This allows us to vary one model
parameter at a time for a given Einstein ring angle,
using Newton’s method to determine the parame-
ter value to a high accuracy, limited essentially by
the quality of the ODE integration scheme.

We integrate the null geodesic equations us-
ing an adaptive stepsize Runge-Kutta-Fehlberg
4-5 method based on the implementation in
Press et al. (1995). This allows us to monitor
the error in each step and maintain a known, and
small, accumulated error in the integration. We
purposefully slow the integration (over the affine
parameter) as we approach the source location,
where the adaptive stepsize algorithm would nat-
urally take large steps, in order to carefully stop
at the source position.

The principal source of error in our method is
in stopping at the source position. With the ob-
server at φ = 0 and source at φf , we integrate over
the affine parameter until φ = φf ± ǫφ and deter-
mine whether r = rl ± ǫr where rl is the known
lens position. Based on whether r is less than or
greater than rl, we accept or change initial values
at the observer. In practice, we find that the error
introduced by this stopping condition is orders of
magnitude greater than the error accumulated in
the ODE integration. In the materials below, the
error bars on the numerical integration are derived
from this known error source.

We consider results from the numerical integra-
tion of the null geodesic equations, Eq. 8, to be
the “correct” results from lensing which we com-
pare the thin-lens models to. As an estimate of
the error in our ODE integration, we first set the
Einstein ring angle to known value, θE , and solve
for the parameter value (either σv or c). We then
solve backwards for the Einstein ring angle our nu-
merical integration predicts given these parameter
values, and subtract from the original specified an-
gle.

The difference, which should be zero, is an
estimate of the error our methods allow. Fig-
ure 1 shows this error estimate for a SIS model
of RXJ1347-1145, a cluster at z = 0.45 with arcs
from a z = 0.8 source. The error values are all
small and show relatively little trend. Similar re-
sults are obtained in the NFW models.

By contrast, when one specifies the Einstein

9



ring angle, solves the geodesic equations to deter-
mine the model parameters, then asks for the value
of the ring angle predicted by the thin-lens model
for those parameters, one sees a significant differ-
ence from the original angle. Figure 2 shows the
error, ∆θE = θE − θtlE , in the Einstein ring angle
predicted by the thin-lens methods for a SIS model
to be much larger than the numerical scatter for
RXJ1347-1145.

Using the error introduced by the stopping con-
ditions to form error bars, we show the difference
between the predicted velocity dispersion for a
given angle in a SIS model in Fig. 3 for a RXJ1347-
1145 setup with rc = 3.5 Mpc. The error bars are
drawn 1000 times larger than the actual error.

These error estimates and plots with error bars
confirm that the differences measured between val-
ues predicted by the numerical integration of the
geodesic equations and the values predicted by the
various thin-lens models are not attributable to
truncation or roundoff error in the numerical code.

7. Thin-lens accuracy

Since we are primarily interested in the error
introduced in the thin-lens approximation in pre-
dicting the mass of the cluster, we cite the relative
error in the square of the velocity dispersion,

∆σ2
v

σ2
v

=
σ2
v − σtl

v
2

σ2
v

, (45)

for SIS models, and the relative error in c,

∆c

c
=

c− ctl

c
, (46)

for NFW models. The SIS error is equal to the
fractional error in the predicted mass. However,
due to the differences in the NFW 3-d enclosed
mass and conventional enclosed masses, it is more
difficult to think of errors in c translated to errors
in mass for NFW models.

As a first comparison, we consider a lens and
source for RXJ1347-1145 (source at z = 0.8) and
RDCS1252.9-2927, where we assume a source is
located at z = 1.5 on the optical axis, and com-
pute the velocity dispersion for a given observed
Einstein ring angle using the non-perturbative
method and the two thin lens methods. Figure

4 shows the relative error in the square of the ve-
locity dispersion as a function of the observed Ein-
stein ring angle for a cutoff radius of 3.5 Mpc. We
see that the errors tend to approach 1% for physi-
cal values for the conventional one-parameter SIS
thin-lens. The truncated SIS thin lens models tend
to perform better, with approximately one fourth
the fractional error in the total cluster mass.

For the same lens and source combinations,
Fig. 5 shows the relative error in c for an NFW
model given the Einstein ring angle. Here we
assume that r200 = 3.5 Mpc when the light ray
passes the lens, which is the best fit scale radius
for RXJ1347-1145 for weak lensing analysis from
Kling et al (2005). We see that the error is on
the same order of magnitude as the error in the
SIS mass prediction for arcs at large observation
angles. For small observation angles, there is a
significant difference between the values for c pre-
dicted by the non-perturbative and thin lens mod-
els, but these observation angles are unlikely, be-
cause they involve low concentration parameters
(c < 1.0). The truncated thin-lens NFW mod-
els again perform better for physical systems than
the conventional thin-lens models, but the error
remains on the same order of magnitude.

In Fig. 6, we show how the relative error in the
square of the velocity dispersion depends on the
cutoff radius for conventional and truncated SIS
models, respectively. Here, we consider RXJ1347-
1145, and the three curves represent Einstein rings
observed at 5, 15, and 35 arc sec. We see that
the relative error introduced by using a thin-lens
model does depend on the choice of truncation ra-
dius and does not go to zero with larger radius.

For NFW models, variation in r200 at the
time the light ray passes the lens leads to mi-
nor changes in the value of c, but not significant
changes in the error estimates. For example, weak
lensing measurements found the best fit parame-
ters for RXJ1347-1145 to be r200 = 3.5+0.8

−0.2 Mpc
(Kling et al 2005). For the physical arcs in this
system at 35 arc sec, Table 1 indicates that the
fractional errors maintain the same order of mag-
nitude as r200 is varied.

Table 2 gives the relative error in mass (or
square velocity dispersion) for thin-lens SIS mod-
els for four possible scenarios at increasing lens
redshift, all with truncation radii of 3.5 Mpc. In
all four cases the lens and the source are at fixed
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resfhit, and the Einstein ring angle is varied. A
number of observations can be made. First, the
error in the prediction of the mass incurred by
the use of the thin lens approximation alone varies
between 0.03% for small rings and 0.3% for large
rings. Secondly, the error in the mass incurred
by the combination of the thin lens approximation
and the removal of truncation varies between 0.1%
for small rings and 2% for large rings. Subtracting
both errors yields an estimate of the error intro-
duced by the removal of truncation in the thin lens
model. One can see that the removal of truncation
along the line of sight introduces an error between
5 and 12 times as large as the thin lens assumption
does, for small and large rings respectively.

Similarly, Table 3 gives the relative error in c
for NFW models where the truncation radius is
set to r200 = 3.5 Mpc when the light ray passes
the lens. The scenarios are the same as for Table
2. One can see that the thin lens approximation
alone introduces and error in c between 0.3% and
2% in cases of lens redshift less than 1. Perhaps
unexpectedly, the conventional approach shows a
relative error around 1% to 2% due to the com-
bination of the thin lens assumption and removal
of truncation. The truncation alone introduces an
error between between 1 and 5 times that incurred
by the thin lens assumption.

8. Cosmology Dependence

For a given lens and source distance, and a spec-
ified observation angle, the values of parameters
in a matter distribution model will depend on the
assumed cosmological parameters. In this section,
we briefly show that while the values of the pa-
rameters vary with choice of cosmology, the over-
all fractional uncertainty in those parameters does
not show significant variation.

In particular, because the NFW model is in-
dexed to the critical density as a function of red-
shift, one might worry that variation in cosmology
will have a strong effect on the accuracy of NFW
model parameters.

As a simple test case, we present two tables
that show the relative errors associated with SIS
and NFW model parameters for the physical arcs
appearing at 35 arc sec in RXJ1347-1145 as a func-
tion of cosmology. While we only consider flat cos-
mological models, we do consider a wide range in

the matter density Ωm.

Tables 4 and 5 present the relative errors in σ2
v

and c respectively for a cutoff radius of 3.5 Mpc.
For the NFW model, r200 is set to the cutoff radius
as before. Both tables show that the accuracy of
thin lens models changes only by a factor of 3 or
so over a very wide range in flat cosmologies.

9. Discussion

Figure 2 shows comparisons of predicted Ein-
stein ring angles by conventional approaches and
by properly truncated thin-lenses, compared to
the relativistic prediction by numerical integra-
tion. One can see that given a fixed lens mass
and distances to the lens and source, just the use
of a thin-lens approximation results in a smaller
Einstein ring angle for the same truncated mass
model. From this, as well as from Tables 2 and 3,
we conclude that the use of the thin-lens assump-
tion alone leads to an overestimate of the mass, at
least in the case of the two spherically symmetric
models that we use.

In calculating the total bending angle accumu-
lated along a photon path, the thin-lens assump-
tion leads directly to the substitution of an unde-
flected path for the actual photon path, which, be-
ing curved, is normally longer than the undeflected
path. In all models where the bending increases
monotonically along the path, this procedure nat-
urally leads to an underestimate of the total bend-
ing, as the integration takes place over a shorter
interval. To compensate for the underestimate of
bending, the thin-lens assumption overestimates
the mass.

In the conventional SIS model, setting the value
of σv the same as the value in the truncated mod-
els essentially means that the conventional model
contains more mass: see Eq. 18. With more mass,
the Einstein ring angle grows, so the conventional
Einstein ring angles in Fig. 2 are larger than the
correct angles.

Figures 3 and 4 indicate that for the same ob-
servation angles and source and lens positions, the
inferred velocity dispersion for a truncated thin-
lens model overestimates the true velocity disper-
sion. Since at the same mass, the truncated thin-
lens predicts a smaller angle, increasing the angle
to align with the true observation angle increases
the mass of the lens, and hence the velocity dis-
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persion.

The conventional SIS can achieve this extra
mass either by increasing the velocity dispersion
or by adding mass along the line of sight past
the truncation radius. This second method can,
in fact, drive down the velocity dispersion. In
Fig. 4, we see a lower velocity dispersion for the
conventional model because the extra mass has
been stored along the line of sight. For other lens-
source-ring angle configurations, plots similar to
Fig. 4 show negative dips in the non-truncated
square velocity dispersion error at small observa-
tion angles, which implies that the conventional
SIS model has a higher than correct velocity dis-
persion.

The relative error in the concentration parame-
ter of NFW models, Fig. 5, shows a similar effect.
Increasing the concentration parameter makes the
core of the NFW profile steeper, placing more
mass towards the center of the distribution. For
the truncated NFW thin lens, increasing the con-
centration parameter increases the central mass to
compensate for a required increased bending an-
gle in the same way it did in the SIS case. For the
conventional NFW model, the trade-off between
extra stored mass along the line of sight and in-
creasing the steepness of the profile results in a
shift in the sign of the relative error in c.

10. Conclusion

The principal finding of this paper is that, in
the context of the current generation of precision
cosmology experiments, the use of the conven-
tional approach in strong gravitational lensing is
justified. Our figures and tables demonstrate that
in a wide variety of strong lensing scenarios, and
for two widely used mass models, the conventional
approach works well in predicting cluster masses.
Except in cases where the truncation radius is on
the order of 1 to 2 Mpc, the errors in the SIS pre-
dicted mass are generally less than 2%. The error
in concentration parameter for the NFW model is
also small except for very high redshift clusters.
This shows that concerns over the possibility of
artificially high estimates of dark matter content
in clusters as a result of the use of the thin-lens
approximation are generally unfounded.

For the first time, to our knowlegde, we have
been able to show that the thin lens assumption

and the removal of the truncation radius along the
line of sight contribute to the error in very different
measures. Interestingly, the two approximations
introduce errors in opposite directions: the thin-
lens assumption underestimates the mass, whereas
the removal of the truncation radius overestimates
it. The error introduced by removing the trunca-
tion along the line of sight is of the same order
of magnitude as that of the thin-lens assumption
in the best case, and up to an order of magnitude
larger in the worst case within our study. The
truncation error is thus the dominant source of er-
ror in the conventional approach. This is a strong
indication that, as precision increases in strong
lensing observations, in order to gain a significant
increase in accuracy it will be necessary, and per-
haps even sufficient at first, simply to recover the
truncation radius as an additional parameter in
thin-lens models.

Truncation issues aside, we find that the error
introduced by the thin lens assumpion alone for a
given truncation method (in our case, hard trun-
cation) varies between 0.03% and 0.3% in the SIS
case, and between 0.3% and 2% in the NFW case
for lenses at redshift less than 1. Knowledge of
the size of this error should be taken into account
when considering additional approximations such
as proper truncation methods. Errors of this size
may become significant in the next 20 years as the
observational precision increases.

Perhaps more important than the specific
strong lensing finding in this paper is the pos-
sible implication of this finding for weak lensing
surveys of galaxy clusters. Strong lensing depends
of the first derivative of the gravitational potential
(the Christoffel symbols of the underlying metric),
but weak lensing depends on the second derivative
(the curvature). One may advance the conjecture
that the higher order (derivative) measurements
of weak lensing might be less sensitive to the thin-
lens approximation, and therefore more accurate
in the determination of the cluster mass.

At the time at which the fundamental param-
eters are known to 1% or better, this paper de-
velops the appropriate steps for pursuing strong
gravitational lensing without lens planes. In par-
ticular, we have demonstrated gravitational lens-
ing by weak gravitational potentials in the appro-
priate cosmological backgrounds by numerical in-
tegration of the null geodesic equations of general
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relativity to be a feasible task.

A long-standing argument for the use of the
thin-lens approximation and against integrating
the null geodesic equations has always been the
high computational cost of numerical integration
compared with the low cost of the (essentially al-
gebraic) thin-lens approach. Ten years ago this
was essentially true. However, the current speed
and memory capacity of even small workstations
removes this argument against using the gen-
eral relativistic equations instead of the thin-lens
method or other higher order approximations such
as those proposed by Pyne & Birkenshaw (1993)
or Kling et al (2000).
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r200 (Mpc) c δ

3.3 4.9 -0.003
3.5 4.3 -0.004
4.3 2.8 -0.006

Table 1: Relative error in c in NFW thin-lens mod-
els with a truncation radius for three different val-
ues of r200 as the light ray passes the lens for the
35 arc sec arcs of.
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System θE σv δ1 δ2 δ3 δ3/|δ2|

5 495.5 0.0012 -0.00028 0.0015 5
10 701.1 0.0026 -0.00045 0.0031 7

Abel 1451 15 859.3 0.0039 -0.00059 0.0044 8
zl = 0.2 25 1111 0.0067 -0.00083 0.0075 9
zs = 0.8 35 1316 0.0095 -0.001 0.012 11

5 674.3 0.0022 -0.00043 0.0026 6
10 954.7 0.0045 -0.00069 0.0052 8

RXJ1347-1145 15 1171 0.007 -0.0009 0.0079 9
zl = 0.45 25 1515 0.012 -0.0012 0.0013 11
zs = 0.8 35 1797 0.017 -0.0015 0.019 12

5 818.7 0.0026 -0.0006 0.0032 5
10 1160 0.0055 -0.00095 0.0064 7

(Wittman) 15 1422 0.0084 -0.0012 0.0096 8
zl = 0.68 25 1842 0.014 -0.0017 0.016 9
zs = 1 35 2186 0.02 -0.0021 0.022 11

2 767.1 0.00086 -0.00066 0.0015 2
4 1086 0.002 -0.0011 0.0031 3

RDCS 1252.9-292 7 1437 0.0037 -0.0016 0.0053 3
zl = 1.24 10 1719 0.0056 -0.002 0.0076 4
zs = 1.5 15 2109 0.0088 -0.0026 0.011 4

Table 2: Relative error in the predicted square ve-
locity dispersion for an SIS model with hard trun-
cation at 3.5 Mpc. The hypothetical Einstein ring
angles are given in arc sec, and the velocity dis-
persions are given in km s−1. RXJ1347-1145 has
arcs at approximately 35 arc sec, while Wittman
has arcs at 7 arc sec. The column headed by δ1
shows the error in the prediction of c by the model
with no truncation radius along the line of sight.
Column δ2 is the error by the model with hard
truncation, and represents the error intruced by
the thin-lens approximation alone. The difference
δ3 ≡ δ1−δ2 represents the error introduced by the
removal of the truncation radius. The last column
to the right indicates the size of the truncation
error compared to the size of the thin-lens error.
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System θE c δ1 δ2 δ3 δ3/|δ2|

5 1.992 0.0043 -0.019 0.023 1
10 2.447 0.0084 -0.0096 0.018 2

Abel 1451 20 3.136 0.0095 -0.0052 0.015 3
zl = 0.2 30 3.759 0.0096 -0.0038 0.013 4
zs = 0.8 40 4.392 0.0094 -0.0032 0.013 4

5 1.744 0.014 -0.017 0.032 2
10 2.234 0.016 -0.0088 0.025 3

RXJ1347-1145 20 3.048 0.015 -0.005 0.02 4
zl = 0.45 30 3.879 0.014 -0.0038 0.018 5
zs = 0.8 40 4.843 0.014 -0.0033 0.017 5

5 1.64 0.017 -0.019 0.036 2
10 2.145 0.018 -0.01 0.028 3

(Wittman) 20 3.018 0.017 -0.0058 0.023 4
zl = 0.68 30 3.964 0.016 -0.0046 0.021 4
zs = 1 40 5.138 0.015 -0.0042 0.019 5

2 1.175 -0.022 -0.078 0.056 1
4 1.515 0.002 -0.039 0.041 1

RDCS 1252.9-292 7 1.883 0.0099 -0.023 0.033 1
zl = 1.24 10 2.198 0.012 -0.01 0.029 2
zs = 1.5 15 2.691 0.013 -0.012 0.025 2

Table 3: Relative error in the concentration pa-
rameter, c, for an NFW model. The truncation ra-
dius is set to the co-moving physical distance value
of r200 = 3.5 Mpc at the lens crossing time and
then varies to maintain a constant mass. The hy-
pothetical Einstein ring angles are given in arc sec.
RXJ1347-1145 has arcs at approximately 35 arc
sec, while Wittman has arcs at 7 arc sec. The
column headed by δ1 shows the error in the pre-
diction of c by the model with no truncation radius
along the line of sight. Column δ2 is the error by
the model with hard truncation, and represents
the error intruced by the thin-lens approximation
alone. The difference δ3 ≡ δ1 − δ2 represents the
error introduced by the removal of the truncation
radius. The last column to the right indicates the
size of the truncation error compared to the size
of the thin-lens error.
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Ωm ΩΛ σv (km s−1) δ1 δ2

0.05 0.95 1708 0.019 -0.0013
0.15 0.85 1750 0.018 -0.0014
0.30 0.70 1797 0.017 -0.0015
0.45 0.55 1833 0.016 -0.0016
0.60 0.40 1862 0.015 -0.0017
0.95 0.05 1913 0.014 -0.0018

Table 4: Relative error in the SIS predicted mass
or σ2

v , for a SIS model thin lens without (δ1) and
with (δ2) a cutoff radius of 3.5 Mpc for the physical
arcs of RXJ1347-1145 (at 35 arc sec) for various
flat cosmologies.
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Ωm ΩΛ c δ1 δ2

0.05 0.95 6.11 0.01 -0.0023
0.15 0.85 5.25 0.012 -0.0028
0.3 0.7 4.34 0.014 -0.0035
0.45 0.55 3.7 0.017 -0.0044
0.6 0.4 3.22 0.02 -0.0053
0.95 0.05 2.46 0.027 -0.0079

Table 5: Relative error in the NFW predicted con-
centration parameter, for an NFW model thin
lens without (δ1) and with (δ2) a cutoff radius
for various flat cosmologies. The cutoff radius
is set to the co-moving physical distance value of
r200 = 3.5 Mpc at the lens crossing time and then
varies to maintain a constant mass.
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Fig. 1.— A plot estimating the numerical error
introduced by integrating the null geodesics and
using ray shooting to determine the velocity dis-
persion (SIS model) or Einstein ring angle. We
assume a three-dimensional SIS lens with matter
extending to a co-moving radius of 3.5 Mpc lying
at z = 0.45 and a source at z = 0.8. The Ein-
stein ring angle is set, then the velocity dispersion
is determined. From this velocity dispersion, we
recalculate the Einstein ring angle and subtract
from the original angle. These differences are all
close to zero and show no trend.

Fig. 2.— A plot showing the numerical scatter
of Fig. 1 (crosses) and differences between actual
and thin-lens predicted Einstein ring angles for SIS
models with (boxes) and without (triangles) a cut-
off radius for a lens and source at z = 0.45 and 0.8
respectively. A cutoff radius of 3.5 Mpc is used.
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Fig. 3.— A plot of the error in the velocity dis-
persion introduced by two thin-lens models for
arcs of a three-dimensional SIS whose matter ex-
tends to a co-moving radius of 3.5 Mpc. The error
bars here are drawn 1000 times larger than the
actual error bars and reflects an overestimate of
the accumulated error in the numerical integra-
tion. The triangles correspond to the usual thin-
lens SIS model, and the crosses correspond to a
thin-lens SIS model that accounts for the finite
radius.

Fig. 4.— A plot of the relative error in the square
of the velocity dispersion for an SIS model as a
function of the observed Einstein ring angle. The
triangles and squares correspond to lens / source
redshifts of (0.45, 0.8) and (1.24, 1.5) respectively.
The open symbols are the relative error in the SIS
model with a cutoff radius, and the closed symbols
show the error with no cutoff radius. The cutoff
radius used is 3.5 Mpc. The Mpc scale corresponds
to the projected Einstein ring radius for a lens at
0.45; the projected radius for a lens at 1.24 would
be larger.
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Fig. 5.— A plot of the relative error in c for an
NFW model as a function of the observed Einstein
ring angle. The triangles and squares correspond
to lens / source redshifts of (0.45, 0.8) and (1.24,
1.5) respectively. The open symbols are the rela-
tive error in the NFW model with a cutoff radius,
and the closed symbols show the error with no
cutoff radius. The cutoff radius used is set to the
virial radius (r200) as 3.5 Mpc at the lens cross-
ing time and then varies to maintain a constant
halo mass. The Mpc scale corresponds to the pro-
jected Einstein ring radius for a lens at 0.45; the
projected radius for a lens at 1.24 would be larger.

Fig. 6.— A plot of the relative error in the square
of the velocity dispersion for thin lens, SIS with
a cutoff radius as a function of the cutoff radius.
The three curves correspond to errors if the Ein-
stein ring angle is 5 (triangles), 15 (squares) or 35
(circles) arc sec. Here we are considering lensing
by RXJ1347-1145, which does have arcs at 35 arc
sec.
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