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Black hole formation may occur if the spectrum of the curvature perturbation ζ increases strongly
as the scale decreases. As no such increase is observed on cosmological scales, black hole formation
requires strongly positive running n′ of the spectral index n, though the running might only kick
in below the ‘cosmological scales’ probed by the CMB anisotropy and galaxy surveys. A concrete
and well–motivated way of producing this running is through the running mass model of slow roll
inflation. We obtain a new observational bound n′ < 0.026 on the running provided by this model,
improving an earlier result by a factor two. We also discuss black hole production in more general
scenarios. We show that the usual conditions ǫ ≪ 1 and |η| ≪ 1 are enough to derive the spectrum
Pζ(k), the introduction of higher order parameters ξ2 etc. being optional.

PACS numbers: 26.35.+c, 98.80.Cq, 98.80.Ft CERN-PH-TH/2007-242

I. INTRODUCTION

The primordial curvature perturbation ζ is only of or-
der 10−4 on cosmological scales, but it might be of order
1 on smaller scales. Primordial black holes will then form
as those scales enter the horizon, with possibly observ-
able consequences. The purpose of this paper is to see
to what extent the value of order 1 is reasonable, taking
into account observational constraints and current think-
ing about the origin of ζ.

In Section II we see what is required for black hole
formation, in terms of the spectral index n(ln k) ≡
d lnPζ/d ln k, which specifies the scale-dependence of the
spectrum of ζ. Averaged over the whole range of scales
we need strongly increasing n corresponding to running
n′ ∼ 10−2. Up to this point we assumed nothing about
the origin of ζ. In Section III we introduce the assump-
tion that it originates from the inflaton perturbation dur-
ing slow-roll inflation (the standard paradigm). Within
this paradigm, the only extant model giving the required
running n′ is the running mass model, which typically
makes n′ roughly constant hence requiring n′ ∼ 10−2 on
cosmological scales.

In Section IV we ask whether such a large value of
the running is still permitted by current data, thereby
updating an earlier work. We find that it is.

The question then arises, whether black hole formation
can still be achieved if n′ is negligible on cosmological
scales, as might be required by future data. In Sections
V to VIII we show that black hole formation can indeed
be achieved within the standard paradigm. Along the
way, we are led to consider the standard paradigm in
more detail than before.

In Section IX we depart from the standard paradigm,
by allowing a curvaton-type mechanism to contribute to
the curvature perturbation. We show that black hole
formation can occur if there is a switch from the standard
paradigm to a curvaton-type paradigm as we go up in
scale, or vice-versa. We conclude in Section X.

II. FORMING BLACK HOLES

A. Viable black hole formation

The curvature perturbation ζ is time-independent dur-
ing any era when there is a unique relation P (ρ) between
pressure and energy density [1]. From the success of
the BBN calculation, we know that such is the case to
high accuracy a few Hubble times before cosmological
scales start to come inside the horizon. On cosmological
scales, the spectrum Pζ(k) is then observed to be about
(5× 10−5)2 [2].#1

When smaller scales start to come inside the hori-
zon Pζ(k) could be bigger. To discuss that case, recall
that the typical value of ζ(x) in the observable Universe

[3], smoothed on the scale k−1, is of order Pζ
1/2(k). If

Pζ
1/2(k) is bigger than 10−2 or so, then black holes will

form [4] with an abundance that can be ruled out [5] by
a variety of observations. A somewhat smaller value, say

Pζ
1/2 ∼ 10−3, would give an abundance whose effect may

be observable in the future. We want to see how such a
value may be generated over some range of k.
The spectral index n is defined by

n(k)− 1 =
d lnPζ(k)

d ln k
≃ −

d lnPζ(N)

dN
. (1)

In the final expression we assume almost-exponential in-
flation, with N(k) the number of e-folds of inflation re-
maining after the epoch of horizon exit k = aH for the
scale k. We will freely use N as an alternative variable
to ln k.

#1 The precise number refers to the pivot scale defined in Section
III. As usual, k is the coordinate wavenumber so that k/a is
the physical wavenumber, with a the scale factor of the Universe
normalized to 1 at present. The Hubble parameter is H ≡ ȧ/a
and horizon entry is defined as k = aH.
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We take N0 = 50 unless otherwise stated, where the
subscript 0 denotes the epoch of horizon exit for the
present Hubble scale k = H0. This is the largest observ-
able scale, and smaller scales leave the horizon ∆N > 0
e-folds later. For scales probed by WMAP and galaxy
surveys, ∆N ≤ 7 [2].
Until Section IXB we will assume that the black holes

form on the scale leaving the horizon at the end of infla-
tion, corresponding to N = 0. We will take the criterion
for significant black hole formation to be Pζ(0) = 10−3.
Then we need ln[Pζ(0)/Pζ(N0)] ≃ ln(10−3/10−9) ≃ 14.
With constant n this requires n− 1 ≃ 14/N0 ≃ 0.3. This
was compatible with observation for many years but is
now excluded.
Taking instead n′ ≡ dn/d lnk to be constant black hole

formation requires

14 = ln

[

Pζ(0)

Pζ(N0)

]

= N0(n0 − 1) +
1

2
N2

0n
′. (2)

Since observation requires n0 − 1 ≃ −0.05 [2], the first
term is negligible and we need n′ ≃ 28/N2

0 ≃ 0.01. As
we will see, this is compatible with observation. At the
end of inflation, nend− 1 ≃ n′×N0 ∼ 0.5. This might be
regarded as more or less compatible with the requirement
|n − 1| ≪ 1, that must hold if ζ at the end of inflation
is generated by the perturbation in a single light field
[6, 7, 8]. We are going to assume such a scenario and
therefore rule out |nend − 1| >∼ 1.
Finally, suppose that n′ increases monotonically as we

go down in scale. A significant increase would require
|nend − 1| >∼ 1 which we rule out. A significant decrease
would require n′

0 significantly bigger than 0.01, which as
we will see would be in conflict with observation.

B. The case Pζ ≫ 1

We end this section by discussing briefly the case
Pζ(k) ≫ 1. If ζ is generated from the inflaton perturba-
tion during slow-roll inflation (the standard paradigm),
this is ruled out. The reason is that the regime Pζ

>
∼ 1

then corresponds to eternal inflation [9], whose duration
is indefinitely long. Then the slow roll model has noth-
ing to do with the observed perturbations, which instead
have to be generated when the eternal inflation is over.
However, such a perturbation could also be generated

by the perturbation of a curvaton-like field [8, 10], as
one can readily understand from the non-perturbative
formula [1, 6, 11] ζ = δN which makes sense no matter
how big is ζ. In that case, a local observer would notice
nothing amiss before horizon entry, and it is not clear
what will happen at horizon entry.

III. RUNNING MASS MODEL

Now we assume that ζ is generated by the inflaton per-
turbation in a single-field slow-roll model. Of the many

such models that have been proposed, the only one giving
the large positive running required for black hole forma-
tion is the running mass model [12, 13, 14, 15, 20]#2 .
This model invokes softly broken global supersymmetry
during inflation, with a potential

V = V0 ±
1

2
m2(φ)φ2, (3)

and a running mass m2(φ) whose form is determined by
Renormalization Group Equations (RGE’s).

Over the limited range of cosmological scales, n(N)
typically has the two-parameter form

n(N)− 1

2
= sec(N0−N) − c. (4)

With

c ≃ 10−1 to 10−2 (5)

this gives

n0 = 2(s− c)− 1, n′

0 = 2sc, (6)

whose inverse is

c = −
n0 − 1

4
±

√

(

n0 − 1

4

)2

+
n′

0

2
. (7)

We see that significant negative running is forbidden;#3

n′

0 > −(n0 − 1)2/8 ∼ −3× 10−4. (8)

Higher derivatives n(m) ≡ dmn/d(−N)m are sup-
pressed;

n(m+1) ≃ cn(m), m ≥ 1, (9)

but as the form (4) is only approximate one should not
take higher derivatives too seriously.

Going further down in scale, the form of n(N) depends
on the assumed interactions that determine the RGE’s.
Typically, n′ will increase or decrease monotonically. As
we have seen, black hole formation will then need n′ to
have a roughly constant value, n′ ∼ 10−2, and this can
be achieved with suitable interactions [20]. From Eq. (7),

n′ ∼ 10−2 corresponds to to c ≃ s ≃ ±
√

n′

0/2, making
|c| ∼ 10−1, in agreement with the expectation (5).

#2 See for instance [21] and references therein for models with strong
negative running

#3 This corrects the relation n′

0 > (n0 − 1)2/4 given in [14]. We are
ignoring the correction to slow roll invoked in part of that work.
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IV. OBSERVATIONAL BOUND ON THE

RUNNING MASS MODEL

The most recent comparison of the running mass model
with observation was made in 2004 using WMAP (year
on) and galaxy survey data available at the time [15]. It
gave n′

0 < 0.04 or so, easily allowing black hole formation
in versions of the model where n′ does not increase too
strongly going down in scale. In this section we report
an update to the earlier bound, using year three WMAP
data and more recent galaxy survey results.
In the earlier fit, we took c and s as the parameters

to be fitted, and only afterward generated contour plots
of n0 versus n′

0. In the present fit, we instead took n0

and n′

0 as the parameters to be fitted. Taking advantage
of the fact that Eq. (4) practically excludes negative n′

0,
and that it requires n′ to have slow variation, we took n′

to be constant and imposed n′

0 > 0 as a prior. As in the
previous fit we took the tensor perturbation to be negli-
gible since that is a prediction of the model. This differs
substantially from the method adopted in [2] where the
running of the spectral index was let free to negative val-
ues and where tensors were included. In that case a neg-
ative value of the running is obtained, with no running
excluded at the level of ∼ 1σ (see e.g. [2, 16, 17, 18, 19]).
While this approach is obviously correct when a general
set of inflationary models is considered, it is important
to stress that in our case, where we don’t consider mod-
els with n′ < 0, the inclusion of those models could bias
the result towards more restrictive bounds. Moreover, a
model with n′ = 0 gives an acceptable goodness-of-fit to
the WMAP data and it is therefore statistically legiti-
mate to assume the prior n′ ≥ 0.

As is now common practice, we base our analysis on
Markov Chain Monte Carlo methods making use of the
publicly available cosmomc package [22]. We sample
the following dimensional set of cosmological parame-
ters, adopting flat priors on them: the physical baryon
and CDM densities, ωb = Ωbh

2 and ωc = Ωch
2, the ra-

tio of the sound horizon to the angular diameter dis-
tance at decoupling, θs, the scalar spectral index, n, and
the optical depth to reionization, τ . We consider purely
adiabatic initial conditions. We choose a pivot scale at
k = 0.002h−1Mpc.
The MCMC convergence diagnostics are done on 7

chains applying the Gelman and Rubin “variance of chain
mean”/“mean of chain variances” R statistic for each
parameter. Our 1 − D and 2 − D constraints are ob-
tained after marginalization over the remaining “nui-
sance” parameters, again using the programs included in
the cosmomc package. Temperature, cross polarization
and polarization CMB fluctuations from the WMAP 3
year data [2, 23, 24, 25] are considered and we include a
top-hat age prior 10 Gyr < t0 < 20 Gyr.

We also consider the small-scale CMB measure-
ments of the CBI [26], VSA [27], ACBAR [28] and
BOOMERANG-2k2 [29] experiments. We combine the
CMB data with the real-space power spectrum of galax-
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FIG. 1: 68% and 95% c.l. likelihoods in the n − n′ plane
from the WMAP data alone (Top Panel) and WMAP+LSS
(Bottom Panel).

ies from the 2dF survey [30]. We restrict the analysis to
a range of scales over which the fluctuations are assumed
to be in the linear regime (technically, k < 0.2h−1 Mpc)
and we marginalize over a bias b considered as an addi-
tional nuisance parameter.
In Figure 1 we plot the 68% and 98% confidence levels

in the n-n′ plane for two different choices of our datasets:
WMAP data alone, that should be considered as the
most conservative result, and “WMAP+LSS” that in-
cludes the remaining CMB data and galaxy clustering
data from 2dF.
As we can see from the Figure, when negative running

is not considered, the data is still in good agreement with
a small, but still non-zero running. When the WMAP
dataset is considered we found a 95% c.l. upper limit
of n′ < 0.039, while the spectral index is bound to be
n = 0.935+0.039

−0.049 again at 95%. The best fit (maximum
likelihood) model has a negligible running n′ = 0.005
and n = 0.953. When the remaining cosmological data
are included, we found a stronger bound on running, with
n′ < 0.026, and n = 0.940+0.032

−0.040 at 95% c.l.. The best fit
(maximum likelihood) model has parameters n′ = 0.0026
and n = 0.951. We conclude that the value n′ ∼ 10−2
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FIG. 2: The band corresponds to the spectrum Pζ versus ln k,
with constant slope corresponding to n = 0.94. The width of
the band corresponds to a fractional uncertainty 0.025. The
range of ln k corresponds to the range of cosmological scales,
explored by observation of the cmb anisotropy and galaxy
surveys. We see that the band is narrow enough to make the
variation of Pζ significant over the cosmological range.

required by the running mass model is still viable.

We have checked that our limits on n’ are also con-
sistent with the WMAP results even in the case when a
negative running is allowed. The fitted parametes are in
reasonable agreement with the limits we quoted above,
even if slightly more stringent due to the inclusion of
negative running.
In performing this fit, we chose a pivot point k =

0.002hMpc−1, corresponding to ∆N = 1.8. Our fitted
value n = 0.94 therefore corresponds to n0 = 0.94−1.8n′.
(Recall that the subscript 0 denotes the scale k = H0 =
0.00033hMpc−1.) In Figure 2, we plot the shape of
the spectrum with (i) no running and n = 0.95, (ii),
n′ = 0.01, and n = 0.95 at the pivot point. In the second
case, n− 1 soon climbs to positive values as we go down
below the pivot scale. (The finite width of the band is not
important at this stage, and will be discussed in Section
VI.)

V. SLOW ROLL FORMALISM

In the future, observation may require negligible run-
ning on cosmological scales. We have seen that this would
not permit black hole formation if n′ increased or de-

creased monotonically as we go down in scale, but black
hole formation may still be possible with a more compli-
cated behavior of n′. We are going to exhibit a couple of
forms of n(k) that would do the job, and still be compat-
ible with slow-roll inflation. In order to do that, we need
to consider carefully what the slow-roll approximation
involves. #4

The slow roll formalism is reviewed for instance in
[7, 32, 33, 34]. It starts from the exact Friedmann equa-
tion#5

3M2
PH

2 = V (φ) +
1

2
φ̇2, (10)

and the exact unperturbed field equation

φ̈+ 3Hφ̇+
dV

dφ
= 0, (11)

from which follow the identity

ḢM2
p = −φ̇2/2. (12)

In its most basic form, the slow-roll approximation con-
sists of the two assumptions;

∣

∣

∣

∣

∣

φ̇2

H2M2
p

∣

∣

∣

∣

∣

≪ 1

∣

∣

∣

∣

∣

φ̈

Hφ̇

∣

∣

∣

∣

∣

≪ 1. (13)

These assumptions are usually stated in the equivalent
forms

3M2
PH

2 ≃ V (φ) (14)

3Hφ̇ ≃ −V ′(φ), (15)

and they imply ǫ ≪ 1 where

ǫ ≡
1

2
M2

P

(

V ′

V

)2

. (16)

To calculate the spectrum Pζ(k) one usually considers
additional parameters;

η ≡ M2
P

V ′′

V
(17)

ξ2 ≡ M4
P

V ′V ′′′

V 2
(18)

σ3 ≡ M6
P

V ′2V ′′′′

V 3
. (19)

The last two parameters can have either sign despite the
notation.

#4 We consider only single-field inflation models. The generation
of black holes has recently been investigated within a double
inflation model with a strong negative running [31].

#5 As usual MP = 2× 1018 GeV is the reduced Planck mass and V
is the potential of the inflaton field φ.
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Using Eq. (15) one finds

d lnH

dN
= ǫ (20)

d(ln ǫ)

dN
= −4ǫ+ 2η (21)

dη

dN
= −2ǫη + ξ2 (22)

dξ2

dN
= −(4ǫ− η)ξ2 + σ3. (23)

More generally one can define

αm ≡ M2m
P

V ′m−1(dm+1V/dφm+1)

V m
, (24)

which satisfy

dαm

dN
= [(m− 1)η − 2mǫ]αm + αm+1, (25)

Assuming that the first derivative of Eq. (15) is also a
valid approximation, one finds

φ̈

Hφ̇
= ǫ− η, (26)

Comparing Eq. (15) with the exact equation, we see that
the fractional error in Eq. (15) is O(ǫ, η), and so we re-
quire the additional condition

|η| ≪ 1. (27)

Assuming that the curvature perturbation is generated
from the vacuum fluctuation of δφ, its spectrum in the
slow roll approximation is given by [35]

Pζ(k) =
1

24π2M4
P

V

ǫ
[1 +O (ǫ, η)] , (28)

=
1

12π2M6
p

V 3

(

3Hφ̇
)2 [1 +O(ǫ, η)] (29)

The right hand side is evaluated at the epoch of hori-
zon exit. The displayed uncertainty takes account of the
fractional error in the slow roll approximation that we
just estimated, and first order (linear) corrections to the
calculation of the vacuum fluctuation described by the
Mukhanov-Sasaki equation [37, 38, 39, 40] (It does not
account for nonlinear effects, coming from interactions of
δφ. Such effects, which would generated non-gaussianity
of ζ, are expected to be small [41].
Now differentiate Eq. (28) with respect to ln k, using

d ln k = −dN and ignoring the uncertainty. One finds
[36]

n− 1 = 2η − 6ǫ (30)

n′ = 2ξ2 + 24ǫ2 − 16ǫη. (31)

The error in n − 1, coming from the derivative of the
error in Pζ , is O(ξ2, ǫ2, ǫη). We will assume that there is

no cancellation between the two terms of Eq. (30), and
make a similar assumption for n′ and higher derivatives.
Also, we will assume that ǫ is negligible compared with
η, ξ2 and any other relevant αm. Then the fractional
uncertainty in n− 1 will be small if and only if

|ξ2| ≪ |η|. (32)

Similarly, the fractional error in n′ will be small if and
only if

|σ3| ≪ |ξ2|. (33)

In principle one can go on to calculate higher derivatives
of n, requiring a more extended hierarchy

|αm+1| ≪ |αm|. (34)

From Eq. (21), this is equivalent to
∣

∣

∣

∣

dmln ǫ

dNm

∣

∣

∣

∣

≪

∣

∣

∣

∣

dm−1ln ǫ

dNm−1

∣

∣

∣

∣

. (35)

We have been exploring the validity of successive
derivatives with respect to N , of the slow-roll approx-
imation Eq. (30) for n − 1. Barring cancellations, the
validity of these up to a given order will be equivalent to
the validity of derivatives of the slow-roll approximation
for the field equation Eq. (11), up to one higher order. To
see this, start with Eq. (26) which expresses the validity
of the first derivative of Eq. (11). Put it into Eq. (11),
and use ln(1 + x) ≃ x to find the approximation

ln(|V ′|) = ln(3H |φ̇|) +
ǫ− η

3
. (36)

Assuming that the derivative of the approximation
Eq. (26) is also valid, we can differentiate this with re-
spect to N :

d ln |V ′|

dN
=

d ln(3Hφ̇)

dN
+

d

dN

(

ǫ− η

3

)

. (37)

Barring cancellations, the first term on the right hand
side is of order n − 1 as is easily seen by comparing it
with the derivative of Eq.(29). Therefore, barring can-
cellations, the validity of this approximation is indeed
equivalent to the validity of the first derivative of the
approximation Eq. (30), and so on for higher derivatives.
The equivalence that we saw in the last paragraph

means that the standard slow-roll approximation for
n− 1, n′ and so on will be valid, if the second, third and
so on derivatives of the slow-roll approximation Eq. (26)
to the exact field equation Eq. (11) are valid. Reverting
to our assumption that ǫ is negligible, we conclude that
the hierarchy Eq. (32), Eq. (33) etc. will hold (justifying
the standard formulas for n − 1, n′ etc.) to the extent
that derivatives of the slow-roll approximation Eq. (26)
hold.
With the hierarchy in place, one can systematically im-

prove the predictions (28), (30) and (31) [38, 39]. The hi-
erarchy is in general satisfied by the running mass model,
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and including the leading order correction [38], the run-
ning mass prediction (4) becomes [14]

n(N)− 1

2
= (s+ 1.06cs) ec(N0−N) − c (38)

≃ (s+ 0.50n′) ec(N0−N) − c. (39)

Such corrections are usually equivalent to a change in
parameters whose values are not known (in this case, a
change to s), making them of limited practical impor-
tance.
Of course, a given inequality in the hierarchy will

fail for a few Hubble times if its right hand side passes
through zero. For instance, Eq. (32) will fail if η passes
through zero. Then, if ǫ is negligible, n − 1 will pass
through zero as well, and while it is doing so the frac-

tional error in its predicted value will become large. Ac-
cording to our fit to the data, n(N)− 1 will indeed pass
through zero on some scale near the bottom end of the
cosmologically accessible range, if n′ has a slowly vary-
ing value of order 10−2. The passage of n − 1 through
zero need not be a matter of concern, as the absolute er-

ror remains the same. The running mass prediction (39)
should remain valid even as n passes through zero.
More generally, it could happen that derivatives of

Eq. (15) beyond the first are invalid over an extended
range, so that the hierarchy fails over an extended range.
To handle such cases one can use the exact (at first order)
Mukhanov-Sasaki equation or an analytic approximation
[40].

VI. FINITE DIFFERENCE VERSION OF THE

SPECTRAL INDEX

Although the hierarchy leads to simple and widely-
used results, we have seen that its use may sometimes
be problematic and we will see some more examples of
that in the following two sections. For that reason, we
explain in this section how the hierarchy can if necessary
be avoided.
The starting point is to realise that the prediction

Eq. (28), with a suitably small error, will accurately de-
fine the variation of Pζ over a finite range, even if the
mathematical derivative should have large errors (com-
ing for instance from an oscillation or a break). This is
illustrated in Figure 2.
Let us therefore redefine n − 1 so that it specifies a

finite difference:

ñ− 1 ≡
lnPζ2 − lnPζ1

∆ ln k
, (40)

where ∆ ln k ≡ ln k2 − ln k1 and Pζi ≡ Pζ(ki). To the
extent that observational bounds on the variation of n(k)
are quite weak, this finite difference is really about all
that observation can determine at present, with ∆ ln k ≃
7 or so.

The error in ñ− 1 generated by a fractional error x in
the prediction (28) will be at most of order

δ(ñ− 1) ≃
x

∆ ln k
. (41)

Let us assume x ≃ 0.025, corresponding to Eq. (28) with
ǫ ≪ |η| ≃ 0.05 (the observed value of |n− 1|). Then the
error in the theoretical prediction will be small, if the
prediction satisfies

|ñ− 1| ≫
x

∆ ln k
≃ 0.004. (42)

As illustrated in Figure 2, this is very well satisfied if
ñ− 1 has the observed value ≃ −0.05.
We can go a bit further, to consider a finite-difference

version of the running;

ñ′ ≡

(

lnPζ1 − lnPζ3

∆ ln k/2
−

lnPζ3 − lnPζ2

∆ ln k/2

)

/ (∆ ln k/2)(43)

=

(

lnPζ2 − 2 lnPζ3 + lnPζ1

(∆ ln k)2/4

)

, (44)

with 2 lnk3 ≡ ln k1 + ln k2. The error in ñ′ generated by
the error x in the prediction will be at most of order#6

δñ′ ∼
10x

(∆ ln k)2
. (45)

The error will be small if the prediction satisfies

|ñ′| ≫
10x

(∆ ln k)2
≃ 5× 10−3, (46)

where we again set x = 0.025 as an illustration. Taking
account of the uncertainties, the prediction for the finite-
difference version of the running may be valid if n′ ∼
10−2.

VII. FLOW EQUATIONS

In the above analysis we worked directly with the po-
tential. A different approach works initially with the field
φ(t), connecting only later with the potential. The start-
ing point is Eq. (12), providing a parameter ǫH which
may be written in various forms;

ǫH ≡ −
Ḣ

H2
=

d(lnH)

dN

=
1

2M2
P

(

dφ

dN

)2

= 2M2
P

(

1

H

dH

dφ

)2

, . (47)

#6 The factor 10 accounts roughly for the 1/4 in the denominator
and the four terms of the numerator.
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Its derivatives satisfy the exact set of equations

d(ln ǫH)

dN
= −2(ǫH + δ1) (48)

dδm
dN

= (δ1 −mǫH)δm + δm+1, (49)

where [39, 40]

δm ≡ dmφ/dtm/Hmφ̇. (50)

Equivalently, one can use φ instead of N as the vari-
able. Then [42]

d(ln(ǫH)

dφ
= −2(ǫH − β1) (51)

dβm

dφ
= [(m− 1)β1 −mǫH ]βm + βm+1, (52)

where [43]

βm ≡

(

2MP

H

)m (

dH

dφ

)m−1
dm+1H

dφm+1
, (53)

These are referred to as flow equations.

The flow equations (equivalently Eqs. (49) and (50))
resemble Eqs. (20), (21), and (25) but are exact. Slow
roll with the potential hierarchy (34), up to m = M , is
obtained if there is a hierarchy#7

|δm+1| ≪ |δm|, (54)

or equivalently

|βm+1| ≪ |βm| (55)

up to m = M + 1. Following [43] one might call this the
‘Hubble hierarchy’, as opposed to the ‘potential hierar-
chy’ (34).

Conversely, if the potential hierarchy is satisfied up to
m = M , then one can expect the solution φ(t) to satisfy
the hierarchy (55) (equivalently (54)) up to m = M + 1,
at least for low M . This is because the slow-roll approx-
imation (15) is known to be a strong attractor for a wide
range of initial conditions. As with the potential hierar-
chy, the Hubble hierarchy will fail briefly if a parameter
(δm or βm passes through zero, and it might not be valid
at all.

#7 The stronger hierarchy |δm+1|1/(m+1) <
∼ |δm|1/(m) is sometimes

considered (equivalently |βm+1|1/(m+1) <
∼ |βm|1/(m). It implies

the potential hierarchy |αm+1|1/(m+1) <
∼ |αm|1/(m), which is

satisfied by a wide class of potentials but not by the running
mass potential.

VIII. TWO FORMS FOR THE POTENTIAL

Now we consider forms of the potential, which would
permit slow roll inflation leading to black hole formation,
and be consistent with a negligible value of n′

0. A com-
mon procedure for generating potentials consistent with
assigned values of (say) n0 and n′

0 uses the flow equa-
tions. The equations are numerically integrated with an
initial hierarchy imposed such as |βm+1|/|βm| < 1/5 [44]
or 1/10 [42]. This procedure is quite complicated, and
will obviously miss potentials violating the initial hierar-
chy as discussed at the end of the previous section.#8

Our procedure will be to simply specify suitable forms
for d(ln ǫ)/dN). (It resembles the one advocated in [45].)
From these the potential can be constructed using

ǫ(N) = ǫ(N0) exp

[

−

∫ N0

N

d ln ǫ

dN

]

(56)

H(N) = H(N0) exp

[

−

∫ N0

N

ǫ(N)dN

]

(57)

φ(N0)− φ(N) = MP

∫ N0

N

√

2ǫ(N)dN (58)

V (φ) = 3M2
PH

2(φ). (59)

The value H(N0) is determined once the inflation scale
V (N0) is set, and then ǫ(N0) is obtained from Eq. (28)
using the observed value Pζ(N0) = (5× 10−5)2.
To keep things simple we focus on small-field inflation,

which corresponds to ǫ far below 1. To be precise, we
assume ǫ ≪ 1/N0 for 0 < N < N0, corresponding to
tensor fraction r ≪ 16/N0 ≃ 0.03. Then V can be taken
to be constant, and black hole formation requires

∆ ln ǫ ≡ ln[ǫ(N0)/ǫ(0)] ≃ ln[Pζ(0)/Pζ(N0)] ≃ 14. (60)

The predictions for the spectral index and its running
are then

n− 1

2
= η ≡ M2

P

V ′′

V

(

≃
1

2

d ln ǫ

dN

)

(61)

n′

2
= ξ2 ≡ M4

P

V ′V ′′′

V 2

(

≃
1

2

d2 ln ǫ

dN2

)

(62)

We have considered following two forms.

d(ln ǫ)

dN
= B

(

N

N0

)p (

1−
N

N0

)q

−D : Case I,

(63)

#8 The flow equations were used in [44] to search for potentials
consistent with black hole formation but none were found. The
authors concluded that “... it seems extremely unlikely to us that
primordial black holes formed as a result of inflationary dynam-
ics”. It was the discrepancy between this result and the earlier
positive conclusion of [20] that motivated the present investiga-
tion. We suppose that it is caused by the use in [44] of the flow
equations and the hierarchy.
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n(N0) n(N0 −∆N) n′(N0) n′(N0 −∆N)

Case I 0.9500 0.9529 0 0.0017

Case II 0.9500 0.9511 1.4942 × 10−15 5.9700 × 10−16

TABLE I: n and n′ at N = N0 and N = N0 −∆N in Case I
and Case II.

and

d(ln ǫ)

dN
= B exp

[

−

(

N

N0 −∆N −A

)q]

−D : Case II.

(64)

In Fig. 3 we plot the schematic pictures in case I (top) and
case II (bottom), respectively. In figure 5 we show the
derivatives of d ln ǫ/dN with respect to N . The hierarchy
(35) is in general respected except where the denomina-
tors pass through zero.
We impose the observational constraints on Pζ , n and

n′. To be on the safe side we also impose a rough finite-
difference version of the constraint on n′ in the following
way. The WMAP data spans a range roughly ℓ ∼ O(1) –
O(103), corresponding to ∆N ∼ 7 (≡ ∆N , and n derived
from that data has an error of about 0.1. Therefore,
we require that n should change by less than 0.02 in
the range N0 to N0 − ∆N . We have checked that the
condition (60) needed for the PBH production is satisfied
with all of the observational constrains for p = 1, q = 3,
B ≃ 5.5, D ≃ 0.05, N0 = 60 and ∆N = 5 for Case
I, and q = 10, A = 5, B ≃ 0.5, D ≃ 0.05, N0 = 50
and ∆N = 10 for Case II. For the detailed numerical
values of n and n′, see Table I. It is clear that with a
parameterisation like the one in Figure 3, we can make
n practically constant over the range ∆N ∼ 10 of scales
probed by large-scale observations.
For the parameterisation I, the potential has a scal-

ing V0 ∝ (φ − φ0)
2. We plot it in Figure 4. Note that

V
1/4
0 /Mp should be less than ∼ 10−3 for the slow-roll in-

flation ǫ ≪ 1/N0 and φ < Mp. This shape is similar to
those in some classes of hilltop inflation models [46].

IX. BLACK HOLE FORMATION IN A

CURVATON-TYPE PARADIGM

The inflaton contribution ζi(k) is time-independent,
and is the only one present at horizon exit. Subsequently
though, the contribution ζc(t, k) of some other (curvaton-
type) field could grow and become dominant. (See [8] for
a discussion of the possibilities with extensive references.)
Eventually ζ(t) will level out to the observed value;

ζ(k) = ζi(k) + ζc(k), (65)

where the last term is the eventual time-independent
value of the curvaton-type contribution. In an obvious
notation, the observed spectrum is now

Pζ = Pi + Pc, (66)

10 20 30 40 50 60

0.1

0.2

0.3

0.4

0.5

10 20 30 40 50 60

0.1

0.2

0.3

0.4

FIG. 3: Schematic pictures of functional form of y(N) in Case
I (top) and Case II (bottom), respectively. For reference we
also plot the constant case, n = 0.3 (see the text).

FIG. 4: Form of the potential V as a function of the field
φ. The horizontal axis is the normalized value of φ, φ̃ =
h

φ−φ0

Mp

i

/

»

V
1/4
0

Mp
/10−3

–2

with φ0 ≡ φ(0) and V0 ≡ V (φ0). The

vertical axis means Ṽ =
h

V
V0

− 1
i

/

»

V
1/4
0

Mp
/10−3

–4

.
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FIG. 5: Derivatives of d(ln ǫ)/dN with respect to N for Case
I (top) and Case II (bottom), respectively. Here we plot the

higher derivatives (ln ǫ)(ℓ) = d(ℓ)(ln ǫ)/dN (ℓ) for ℓ = 2, 3, and
4.

FIG. 6: Two scenarios for generating black holes using a
curvaton-type paradigm.

and the spectral index is

n− 1 = fi(ni − 1) + fc(nc − 1), (67)

where fi = Pi/Pζ and fc = Pc/Pζ. We will consider
two different possibilities for the ratio Pi(k)/Pc(k), illus-
trated in Figure 6.

A. Black holes from the inflaton perturbation

We first assume that fc ≪ 1 at the end of inflation so
that black holes are generated by the inflaton perturba-
tion, but that fi ≪ 1 while cosmological scales leave the
horizon. To agree with observation, we will demand at
N = N0

nc − 1 ≃ n− 1 ≃ 0.05, (68)

and

fi|ni − 1| < 1× 10−2. (69)

To form black holes, Eq. (60) becomes

14 = ln[Pζ(0)/Pc(N0)] (70)

= ln[Pζ(0)/Pζ(N0)] + ln[fi(0)] (71)

= (ni − 1)N + ln(fi(0)), (72)

where we set n′

i = 0 to get the last line. These require-
ments are satisfied with, for example, fi(0) ≃ 10−1 and
ni ≃ 1.4, and the observational bound on the running
imposes no further constraint.
The required spectral index ni corresponds to η = 0.2

which is more or less compatible with the slow-roll re-
quirement |η| ≪ 1. In the context of supergravity such a
value is more natural than the small value η = −0.025 re-
quired to fit observation. This looks promising for black
hole formation, but we have to remember that in a cur-
vaton type model the prediction for n becomes [8]

n− 1 = 2ησσ − 2ǫ (73)

ησσ ≡ −
1

3H2
∗

∂2V

∂σ2
. (74)

If ǫ is negligible as we are assuming, this requires ησσ =
−0.025 which may difficult to achieve since σ will tend
to roll away from any maximum of its potential [8]. In a
curvaton type model it may therefore be more attractive
[33] to take ησσ negligible and ǫ = 0.025, but we have not
explored that option.

B. Black holes from the curvaton-type contribution

Now we suppose that the roles of the inflaton and
the curvaton are reversed, so that the inflaton gener-
ates the observation curvature perturbation while the
curvaton perturbation generates black holes. In this case
black hole generation occurs only when the curvaton-type
mechanism operates which will usually be long after in-
flation is over.
In this scenario, we have to modify Eqs. (69)–(72) by

interchanging i and c, and replacing the epoch N = 0 by
an earlier epoch Ncurv. This is the epoch at which the
scale leaves the horizon, that is entering the horizon when
the curvaton mechanism operates. To achieve black hole
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formation we will therefore generally need nc > 1.4, but
that need not be a problem. Indeed, within the context
of supergravity a value nc significantly bigger than 1 is
expected [8], just as it is for ni. This, our third scenario
for generating black holes, therefore seems at least as
good as the other two.
A particularly interesting possibility in this case, is

that the curvature perturbation generating the black
holes could easily be highly non–gaussian, to be pre-
cise the square of a gaussian quantity [8]. This would
not make much of a change [47] in the magnitude of Pζ

needed to generate black holes (upon which our estimates
are based) but it could alter the predicted shape of the
black hole mass function.

X. CONCLUSION

The possibility of primordial black hole formation at
the end of inflation has a long history, which was long
overdue for an update. The update is needed partly be-
cause observation now requires on cosmological scales a
tilt far below 0.3 (and with negative sign) and not too
much running. It is also needed because the original
paradigm, that the inflaton perturbation is entirely re-
sponsible for the curvature perturbation, is now only one
possibility.
According to the standard paradigm, the curvature

perturbation is generated during slow roll inflation from
the vacuum fluctuation of the inflaton field. Within
this paradigm, the running-mass model provides a well-
motivated way of achieving black hole formation. To
form black holes, the model probably requires strong run-
ning on cosmological scales, n′ ∼ 0.01.
Such running is allowed by the data. If a value

n′ ∼ 10−2 on cosmological scales is ruled out in the fu-
ture, n′ will still have to increase to >

∼ 10−2 in order
to form black holes. We saw that this may be achieved
within the standard paradigm by a suitable potential.
Alternatively, it might be achieved by a switch from the
standard paradigm to a curvaton-type paradigm, or by a
switch from the curvaton-type paradigm to the standard
paradigm.
For observers, we would like to re-iterate and earlier

conclusion [34], that an upper bound n′ < 10−3, or de-
tection, would have important implications and is a very
worthwhile goal.
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