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Abstract

Aspects of super-planckian gravitational scattering and black hole formation are in-

vestigated, largely via a partial-wave representation. At large and decreasing impact pa-

rameters, amplitudes are expected to be governed by single graviton exchange, and then by

eikonalized graviton exchange, for which partial-wave amplitudes are derived. In the near-

Schwarzschild regime, perturbation theory fails. However, general features of gravitational

scattering associated with black hole formation suggest a particular form for amplitudes,

which we express as a black hole ansatz. We explore features of this ansatz, including

its locality properties. These amplitudes satisfy neither the Froissart bound, nor appar-

ently the more fundamental property of polynomial boundedness, through which locality

is often encoded in an S-matrix framework. Nevertheless, these amplitudes do satisfy a

macroscopic form of causality, expressed as a polynomial bound for the forward-scattering

amplitude.
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1. Introduction

The puzzles of quantum gravity come into particularly sharp focus in non-perturbative

contexts, such as black holes and quantum cosmology. One avenue towards better fram-

ing these puzzles and investigating their possible resolution is via study of high-energy

gravitational scattering. Above the Planck energy, such scattering can probe the non-

perturbative sector, through what is classically described as black hole formation. How-

ever, unlike in cosmology, in the scattering context one can place such questions in a more

tractable framework because one expects a simple description of asymptotic in and out

states. Thus, working about a flat background geometry, one can investigate properties of

the gravitational S-matrix.

The description of such scattering hinges on the fate of quantum black holes. For

example, if Hawking’s original picture of information loss[1] were correct, scattering should

instead be described by a superscattering matrix, that parametrizes non-unitary evolution

of density matrices. Likewise, a scenario with black hole remnants would have important

consequences for final state properties. However, both of these proposals appear to lead

to unacceptable physics (violations of energy conservation[2] and/or Lorentz invariance[3],

and instability,1 respectively), and thus the belief has grown that the resolution of the

information paradox2 will involve unitary evolution without remnants. Such a scenario, in

which information escapes in Hawking radiation from a macroscopic black hole, appears

to require macroscopic violations of locality;3 early proposals in this direction include [8]

and the holographic ideas of ’t Hooft[9] and Susskind[10].

While the question of the exact mechanism for unitarity restoration in black hole

evaporation remains mysterious, we consider it a likely result. Moreover, in an S-matrix

context, one doesn’t necessarily have to commit to such an internal explanation in order

to investigate some aspects of the physics; assuming that the physics is indeed unitary, one

can explore properties of the corresponding S-matrix directly.

If there is indeed a fundamental breakdown of locality in nonperturbative gravity, it

is ultimately important to characterize this breakdown and understand its consequences.

Even formulating the principle of locality is difficult in a gravitational theory. Due to

diffeomorphism invariance, precise local observables appear not to exist, and instead seem

1 See e.g. [4].
2 For reviews, see [5,6].
3 For a short summary of some issues in locality of gravity, see [7].
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to be recovered only approximately in certain states from “proto-local” observables, as

is described in [11,12]. This complicates usual formulations of microcausality phrased

in terms of commutativity of local operators. But another set of criteria for locality

involve properties of the S-matrix, particularly various bounds on its high-energy behavior.

A basic approach of this paper will be to assume expected general properties of high-

energy scattering, such as black hole formation and unitary evolution; the result is a black

hole ansatz for the structure of partial-wave scattering amplitudes. One can then inquire

whether this ansatz yields an S-matrix that respects usual locality criteria. We will find

that it apparently does not – not only does it violate the Froissart bound[13], but also

it does not respect a more fundamental constraint of locality, polynomial boundedness of

amplitudes. Interestingly and importantly, though, it does appear to respect constraints of

causality through a polynomial bound on the forward scattering amplitude. Such scattering

behavior seems like a potentially important further clue about the status of locality in

gravity, and about the ultimate structure of the quantum theory.

In outline, in section two we will discuss some basic issues of scattering in gravity,

and in particular argue that an S-matrix approach is plausibly justifiable in gravity. We

also summarize some of the important regimes for gravitational scattering, organized by

decreasing impact parameter, and review aspects of partial-wave decompositions in general

dimension. Section three then treats scattering in the large impact parameter regime; at

the longest distances this is simply Born exchange, and at shorter distances the Born ampli-

tudes are unitarized by the eikonal amplitudes. The latter correspond nicely to a classical

description, providing additional evidence that one is justified in relying on features of the

semiclassical picture in the strong-gravity regime, where the impact parameter reaches the

Schwarzschild radius given by the center-of-mass energy. Section four turns to description

of the quantum physics in this regime, in terms of very general assumptions about prop-

erties of black holes that would appear as resonances in the scattering amplitude. As a

result, we outline a black hole ansatz for the two-two exclusive S-matrix, given in terms

of its partial-wave amplitudes. Section five then investigates asymptotic properties of this

ansatz, and in particular the status of the Froissart[13] and Cerulus-Martin[14] bounds,

and polynomial boundedness, revealing the apparently nonlocal but causal behavior.

The reader wishing to proceed directly to the interesting features of the strong gravity

regime may choose to quickly peruse section two, then read sections four and five.
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2. Basics of gravitational scattering

2.1. Framework

Our interest is gravitational scattering at energies well above the Planck scale. We

currently lack a complete description of quantum-gravitational dynamics making predic-

tions for such scattering. Moreover, there are significant indications that such a theory

will not simply be a local field theory, say based on quantization of the Einstein action

supplemented by some matter terms.4 For that reason, we will fall back to a more basic

viewpoint, and inquire about the essential features of the S-matrix describing this scatter-

ing.

Given an underlying microphysics, one ordinarily expects to be able to compute the S-

matrix (in cases where it exists); conversely, given the S-matrix, one also expects to be able

to learn a great deal about the microphysics. Our specific approach will be to investigate

properties of the S-matrix that follow from generic behavior expected of a gravitational

theory. In the light of the fact that gravity is likely not described by a local field theory,

it is important to outline what we believe are valid assumptions about such a theory.

Specifically, we will assume that the theory is quantum mechanical.5 We will moreover

assume that states of the theory exist corresponding to excitations of flat Minkowski space,

and can be labeled by “in” and “out” basis representations as with familiar S-matrix

theory. These states include a vacuum, and excitations about this described as asymptotic

multiparticle states of widely separated particles. These should include graviton states, as

well as states of the matter fields. (In the case of string theory, these asymptotic states

are multi-string states of the stable string modes.) We will also assume that the theory is

Lorentz invariant. By this we mean that there is a unitary action of the Lorentz group on

the asymptotic states, such that the vacuum is invariant, and such that the S-matrix (see

below) is Lorentz covariant. However, it is important to stress that we will not necessarily

assume that there is a more local notion of Lorentz invariance, or even a precise local

notion of space and time. But we will assume that there is a regime where there is a

semiclassical approximation to the full quantum dynamics described by general relativity

plus matter fields.

4 For some further discussion, see [7].
5 A proposal for a quantum framework sufficiently general to incorporate quantum gravity

appears in [15].
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As a simple example, one might consider a theory that in the semiclassical limit

corresponds to gravity minimally coupled to a single massive scalar field. This theory will

be kept in mind as a model for generic dynamics, although one may wish to consider more

elaborate matter contents, or strings.

Given a labeling of asymptotic states |α〉in, |α〉out, as described above, one may define

the S-matrix,

Sαβ = out〈α|β〉in . (2.1)

However, due to masslessness of the graviton (and possibly other fields) there may be

subtleties in its definition resulting from soft particle emission and corresponding infrared

divergences. While our ultimate interest is in four non-compact dimensions, we will largely

sidestep these issues by working in spacetime dimensionD > 4. (We thus implicitly assume

these issues are not fundamental.) Dimension D ≥ 5 is sufficient to eliminate soft-graviton

divergences, and D ≥ 7 is needed for existence of the total cross section. Even here, as we

will see, masslessness of the graviton has various consequences for analyticity properties of

the S-matrix.

2.2. Scattering regimes

We will particularly focus on scattering of massive particles, e.g. scalars, of momenta

p1, p2. The Mandelstam parameters are

s = −(p1 + p2)
2 = E2 , (2.2)

and, in the case of exclusive 2 → 2 scattering to particles with momenta p3, p4,

t = −(p1 − p3)
2 , u = (p1 − p4)

2 . (2.3)

As is outlined in [16,17], there are different regimes with different dynamics dominating

the scattering behavior; much earlier work on this scattering has been done by Amati,

Ciafaloni, and Veneziano[18-21]. These can be classified in terms of s and t, or even more

intuitively, in terms of the center-of-mass (CM) energy E and impact parameter b, and are

determined by the D-dimensional gravitational constant GD, as well as other parameters

such as for example the string scale, etc. The three regions of generic interest are:

1. The Coulomb (or Born) regime. Here the scattering is well-described by one-graviton

exchange. This regime corresponds to b >∼ (GDE
2)1/(D−4).
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2. The eikonal regime. Here scattering is well-described by the sum of ladder diagrams,

exponentiating the single-graviton exchange diagram. This closely corresponds to

classical gravitational scattering, and is expected to be valid in a region bounded by

(GDE
2)1/(D−4) >∼ b >∼ RS(E) ∼ (GDE)1/(D−3).

3. The strong gravity or black hole regime. Here a perturbative description of the dynam-

ics fails.6 In a semiclassical picture this regime corresponds to black hole formation;

the appropriate quantum description of this regime is a central problem. This occurs

at impact parameters RS(E) >∼ b.

String theory, or other theories representing new dynamics (e.g. composite structures)

at a given scale, add possible subregimes, where tidal excitation of strings or composite

structure, etc., can play a role in the description of the asymptotics.

We will also work in an angular-momentum (partial-wave) representation. While

to be precise, one should convert to this representation via an impact parameter-angular

momentum transformation, the above regimes can be approximately converted into regimes

for l using the classical relation

l = Eb/2 . (2.4)

In particular, this leads to the definition of a critical angular momentum,

L(E) = ERS(E)/2 ∝
(

GDE
D−2

)1/(D−3)
, (2.5)

below which one enters the strong-gravitational regime.

2.3. Partial wave essentials

A partial-wave representation will be particularly useful for describing features of the

scattering. This subsection will collect some of the basic formulas needed for our analysis,

and more are provided in the appendix. The transition matrix element T for exclusive

scattering may be defined via S = 1 + iT , with

Tp3p4,p1p2
= (2π)DδD(p1 + p2 − p3 − p4)T (s, t) . (2.6)

This has partial-wave expansion[22]

T (s, t) = ψλs
2−D/2

∞
∑

l=0

(l + λ)Cλ
l (cos θ)fl(s) (2.7)

6 Even apparently in string theory.
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where λ = (D − 3)/2,

ψλ = 24λ+3πλΓ(λ) , (2.8)

and Cλ
l are Gegenbauer polynomials. Here we use the ultrarelativistic relation for the

scattering angle,

−t/s = q2/s = sin2
θ

2
. (2.9)

The individual partial-wave amplitudes fl(s) can be derived from (2.7) using the

orthogonality of the Cλ
l (see the appendix) with the result

fl(s) =
s(D−4)/2

γDCλ
l (1)

∫ π

0

dθ sinD−3 θ Cλ
l (cos θ)T (s, t) , (2.10)

with

γD = 2Γ

(

D − 2

2

)

(16π)(D−2)/2 . (2.11)

The partial-wave amplitudes should satisfy the unitarity conditions[22]

Imfl(s) ≥ |fl(s)|2 . (2.12)

The general such amplitudes can be written in terms of the real parameters δl and βl:

fl(s) =
e2iδl(s)−2βl(s) − 1

2i
. (2.13)

The real and imaginary parts, and the norm, are

rl(s) = Refl(s) =
1

2
e−2βl(s) sin(2δl(s)) , (2.14)

al(s) = Imfl(s) =
1

2

[

1− e−2βl(s) cos(2δl(s))
]

, (2.15)

|fl(s)|2 =
1

4

[

1− 2e−2βl(s) cos(2δl(s)) + e−4βl(s)
]

. (2.16)

3. Scattering in the eikonal and Born regimes

In order to begin understanding the partial-wave description of gravitational scatter-

ing, we first investigate this scattering in the large impact parameter regime. As stated, in

this regime ladder and crossed-ladder diagrams are dominant contributions to scattering.
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Working in the approximation −t/s ≪ 1, one can sum all such amplitudes to obtain the

eikonal amplitude, [18,19,23,24]

iTeik(s, t) = 2s

∫

dD−2x⊥e
−iq⊥·x⊥(eiχ(x⊥,s) − 1) . (3.1)

Here q⊥ is the (D − 2)-vector component of the momentum transfer q perpindicular to

the CM collision axis; in terms of CM variables, |q⊥| = (
√
s sin θ)/2. (Note that at small

angles, q2⊥ ≈ q2.) χ(x⊥, s) is the eikonal phase, which is given by 1/s times the Fourier

transform of the one-graviton exchange or tree amplitude,

Ttree(s, t) = −8πGDs
2/t . (3.2)

This Fourier transform is taken with respect to the transverse momentum variable, giving

χ(x⊥, s) =
1

2s

∫

dD−2k⊥
(2π)D−2

e−ik⊥·x⊥Ttree(s,−k2⊥)

=
4π

(D − 4)ΩD−3

GDs

xD−4
⊥

,

(3.3)

where

Ωn =
2π(n+1)/2

Γ[(n+ 1)/2]
(3.4)

is the volume of the unit n-sphere.

The small expansion parameter justifying use of the leading eikonal amplitude (3.1) is

thus θ ≪ 1. Higher-order loop diagrams corresponding to connecting the two external lines

with multipoint graviton tree diagrams can be seen[19] to be subleading in an expansion

in (RS/b)
D−3 ∼ θ, and thus are also small for θ ≪ 1.

Partial-wave amplitudes in this regime are straightforwardly derived. Since χ(x⊥, s)

is a function only of the magnitude of the (D− 2)-vector x⊥, we can integrate over angles

in eq. (3.1) to get[23]

Teik(s, t) = −2is(2π)(D−2)/2q
−(D−4)/2
⊥

∫ ∞

0

dx⊥x
(D−2)/2
⊥ J(D−4)/2(q⊥x⊥)(e

iχ(x⊥,s) − 1) ,

(3.5)

where Jν is a Bessel function. We can now plug eq. (3.5) into eq. (2.10) to get the eikonal

approximation for the partial-wave amplitudes,

f eik
l (s) = −il+1 (4π)

λ+1

γD

Cλ
l (0)

Cλ
l (1)

s(λ+1)/2

∫ ∞

0

dx⊥ x
λ
⊥Jl+λ(

1
2

√
sx⊥)(e

iχ(x⊥,s) − 1) , (3.6)
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where again λ = (D− 3)/2. Note that the result is proportional to Cλ
l (0), which vanishes

for odd l; see Appendix A. This would follow from t ↔ u crossing symmetry, but we

have not assumed that our initial particles are identical, and so should not expect t ↔ u

crossing symmetry to hold as a general result. Instead, it is an artifact of the small-angle

approximation used to derive the amplitude. Such a small angle approximation cannot

accurately predict fine-scale structure of the partial-wave coefficients as a function of l,

but should only be trusted to give an overall envelope function that changes slowly with

l. We will revisit this issue below.

Defining a new integration variable v = x⊥
√
s/2l and plugging in the values of Cλ

l (0)

and Cλ
l (1) from Appendix A, we get (for l even)

f eik
l (s) = −i 2

−λΓ[ 1
2
(l + 1)]lλ+1

Γ[ 12 (l + 1) + λ]

∫ ∞

0

dv vλJl+λ(lv)[e
ilε(l,s)/vD−4 − 1] , (3.7)

where

ε(l, s) = (4π)−(D−4)/2Γ(D−4
2 )

GDs
(D−2)/2

lD−3

=

√
π(D − 2)Γ[(D − 4)/2]

4Γ[(D − 1)/2]

[

L(E)

l

]D−3

.

(3.8)

Here L(E) is the critical angular momentum defined in eq. (2.5), with E = s1/2. We will

be in the eikonal regime for l ≫ L(E); here ε is small. Since we are interested in high

energies, we have L(E) ≫ 1, and so we can also take l ≫ 1 in eq. (3.7). We can then write

the Bessel function as

Jl+λ(lv) =
1

2π

∫ +π

−π

dφ ei(l+λ)φ−ilv sinφ +O(1/l) ; (3.9)

this formula is exact if l+λ is an integer. Inserting this in eq. (3.7), and taking the large-l

limit in the prefactor, we find

f eik
l (s) =

−il
2π

∫ +π

−π

dφ

∫ ∞

0

dv (veiφ)λ eil(φ−v sinφ)(eilε/v
D−4 − 1) +O(1/l) , (3.10)

We can now evaluate this double integral by stationary phase. Then we must minimize

S = φ − v sinφ + ε/vD−4 with respect to both φ and v. For ε ≪ 1, the solution is

v = 1 + O(ε2) and φ = −ε + O(ε3); at this point, S = ε + O(ε3), and the determinant

of the matrix of the second derivatives of S is −1 + O(ε2). We can then account for the

−1 term in the integrand by subtracting the result with ε set to zero. (A more careful
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analysis shows that this is correct up to corrections that are suppressed by a relative factor

of ε1/2.) For l ≫ 1 and ε≪ 1, we thus find

f eik
l (s) =

−il
2π

(

2π

l

)

(eilε − 1) = −i(eilε − 1) (3.11)

for even l, and (as previously noted) zero for odd l. Comparing with eq. (2.13), we see

that this even-l result is too large by a factor of two to be unitary. However, as previously

discussed, we cannot trust the eikonal approximation to get the correct fine structure of

the partial-wave amplitudes as a function of l, but only to give an envelope function that

changes slowly with l. Since the odd-l amplitudes are zero, we get this envelope function

by taking half of eq. (3.11), and applying it for both even and odd l. This gives a unitary

result, with the real and imaginary parts of the partial-wave phase shifts given by

δeikl (s) =

√
π(D − 2)Γ[(D − 4)/2]

8Γ[(D − 1)/2]

L(E)D−3

lD−4
,

βeik
l (s) = 0 .

(3.12)

In the Coulomb regime, δeikl (s) ≪ 1, this is simply the partial-wave phase shift correspond-

ing to the tree-level Coulomb amplitude. Thus we see that the eikonal approximation

provides a unitarization of the tree-level phase shifts.

As one leaves the regime θ ≪ 1, corrections to the leading eikonal phase shifts (3.12)

become important. The leading contributions from the iterated tree graph exchanges have

been argued[20,21] to yield corrections to the eikonal phase (3.3) that correspond to higher-

order classical corrections to the linearized metric. Specifically, these corrections appear to

match the classical picture, which is scattering of Aichelburg-Sexl shock waves[25]. This

serves as motivation7 to rely on features of the semiclassical picture in the regime b ∼ RS.

One should also note that various corrections can lead to non-zero absorptive co-

efficients βl. A universal contribution comes from gravitational bremsstrahlung of soft

gravitons. Using methods of [28], one can estimate their contributions to have parametric

dependence

βSG
l ∼ L3D−9/l3D−10 (3.13)

in the eikonal regime.

There are also model-dependent contributions arising from the substructure of the

scattered states. An example of this is scattering of strings: at sufficiently small impact

7 Additional motivation is discussed in [26,27].
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parameter, tidal forces become large enough to excite internal vibrations of the scattered

strings[16]. If one scatters any other composite objects (for example, hydrogen atoms or

neutrons), one likewise expects a tidal excitation threshold where the internal structure

becomes excited. In the string case, this excitation is the diffractive excitation found in

[18,19], and the corresponding absorptive coefficients have size

βTS
l ∼ (lsE)2

L

(

L

l

)D−2

, (3.14)

where ls is the string length. Absorptive coefficients in other cases clearly depend on the

details of the composite structure.

4. The black hole ansatz

4.1. Quantum scattering

As we have discussed, some basic features of high-energy gravitational scattering at

large impact parameter are well-described by semiclassical and/or perturbative physics.

In particular, the leading eikonal diagrams represent the leading contribution to what

is essentially classical scattering, working to lowest order in an expansion in RS/b, and

[20,21] have argued that subleading eikonal diagrams correspond to higher-order terms

in the expansion of the classical metric in RS/b. Thus, one has what appears to be a

relatively reliable picture of the scattering for b >∼ RS. However, such an expansion should

clearly break down in the impact parameter regime b <∼ RS , where the perturbation theory

apparently diverges.

This is the regime where the collision would classically form a black hole[29,30]. An

explicit derivation of quantum amplitudes in this regime apparently requires knowledge of

the non-perturbative dynamics of quantum gravity. However, since in the classical picture

the resulting black hole is large, and has weak curvature at the horizon, one might expect

that at least crude features of the quantum dynamics are captured by the semiclassical

description. Semiclassically, one predicts black hole formation, and subsequent Hawk-

ing evaporation. We will assume that this describes gross features of the true quantum

dynamics.

Specifically, we will assume that the full quantum dynamics has a spectrum of states

corresponding to black holes, whose decay rates and spectra are approximately predicted

by semiclassical Hawking radiation. However, we do make one very important assumption
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that deviates strongly from this picture: we will assume that amplitudes for formation

and evaporation of a black hole respect unitary evolution. If this is correct, the thermal

description of Hawking radiation must only be an approximation to more fundamental

amplitudes where appropriate phases and correlations restore quantum purity. Then the

black hole states should appear as resonances in scattering amplitudes.

It appears that any dynamics that could produce such unitary evolution must have

intrinsic nonlocality. Indeed, [31] has argued for a breakdown of perturbative gravity at

an intermediate step in calculating Hawking’s mixed-state density matrix[1]. Whether

or not there is some valid perturbative approach to calculating this density matrix, a

plausible conjecture is that[16,32,33] nonperturbative gravitational effects provide sufficient

nonlocality to produce quantum-mechanical evolution, and unitarize amplitudes for black

hole formation and evaporation.

In the S-matrix context we do not need to understand how the dynamics respects

unitarity, only that it does. (In turn, as we’ll discuss, properties of scattering respect-

ing unitary evolution may furnish clues to the “how” question.) Among the quantum

amplitudes representing different possible final states of our two-particle collision are the

amplitudes for a two-particle final state, which will be of the form (2.6), (2.7), (2.13). In

general, properties of the phase shift δl and absorptive coefficients βl depend on properties

of the intermediate states. Thus in the regime of interest, l <∼ L(E), these will be related

to properties of black holes.

4.2. Black hole spectrum

Basic features of the black hole spectrum appear to be the following. First, a black

hole of energy E and momentum l has a Bekenstein-Hawking entropy SBH(E, l), which

for l ≪ ERS(E), takes the form

SBH (E, 0) =
RS(E)D−2ΩD−2

4GD
, (4.1)

with ΩD−2 given in (3.4). For more complete angular-momentum dependence see the

appendix. We expect this entropy to characterize the density of quantum black hole

states. Specifically, the number of black hole states in an energy range (E,E + δE) is

expected to be

N (E,E + δE; l) = ρ(E, l)δE , (4.2)
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where the behavior of the density of states ρ(E, l) is determined by the entropy,

ρ(E, l) = eS(E,l) . (4.3)

Here S(E, l) also incorporates possible subleading corrections to the Bekenstein-Hawking

entropy. These states are to be thought of as resonances, as they have characteristic decay

widths

Γ(E, l) ∼ 1/RS(E) , (4.4)

given by the typical time to emit a Hawking quantum. In particular, note that the spacing

between states is exponentially small as compared to their widths. The comparatively

large widths lead to a smooth average density of states (4.3).

4.3. Exclusive amplitudes

We are now prepared to investigate properties of the partial-wave amplitudes for the

two-particle final state. Since these correspond to what is classically described as black

hole formation, we expect that absorption dominates the elastic amplitude. In particular,

the semiclassical picture is that the two incoming particles form a black hole, which then

evaporates. The probability that this black hole will evaporate into precisely a two-particle

final state is expected to be of order exp{−S(E, l)}; we conjecture that this basic feature

is not modified in the full unitary dynamics.8 This immediately leads to an ansatz for the

absorption parameters in the black hole regime:

βl = S(E, l)/4 , l <∼ L(E) . (4.5)

While several important features of the scattering appear to depend on the absorption

parameters alone, it is also of interest to explore possible forms for the phase shifts. Here,

we recall that formation of a resonant state contributes π to the phase shift. Thus, from the

collection of black hole states described above, we could conjecture that the gross features

of the phase shift are captured by an expression of the form

δl(E) = π

∫ E

dEρ(E, l) ∼ πeS(E,l) . (4.6)

8 For related discussion, see [34].

12



At first sight, (4.6) may seem puzzling in another context, which is the identification

of the phase shift with the time delay, through the formula

τ(E, l) ≈ dδl(E)

dE
. (4.7)

This produces a time delay for decay into the two-particle state that is exponentially large

in the entropy, and seems at odds with the expected Hawking decay time of the black

hole, which is of order RSS(E, l). However, note that this actually fits with the statement

above, that the partial width of the black hole into the two-particle final state is of order

exp{−S(E, l)}. This in turn means that the corresponding decay time into such an atypical

final state is indeed exponentially long, and thus supports the conjectured form (4.6).

Thus, we conjecture that gross features of high-energy scattering amplitudes in the

regime of strong gravitational dynamics are summarized by the amplitudes of such a black

hole ansatz,

TBHA(s, t) =
i

2
ψλs

2−D/2
L
∑

l=0

(l + λ)Cλ
l (cos θ)

[

1− e−2βl(E)+2iδl(E)
]

, (4.8)

with βl and δl approximated by (4.5), (4.6).

4.4. Transition to black hole regime

It is also of interest to understand the transition between the eikonal regime and

that of strong gravity; in particular, this is where perturbative gravitational calculations

apparently fail. At our current level of understanding we can only outline the transition at

the level of the expected change in the partial-wave amplitudes. Specifically, imagine fixing

l and increasing E into the regime where l ∼ L. As we see from (3.12), below this energy

threshold the leading eikonal phase shifts are approaching a value of order δl ∼ L ∼ ED−2.

However, past the threshold one expects the behavior (4.6). Thus, at the threshold we

apparently find a very rapid variation of the phase. Part of this variation may be captured

by the eikonal contributions corresponding to the higher-order corrections to the classical

metric.

The absorptive coefficients are also typically expected to jump, but not as severely.

Moreover, their change is related to model-dependent properties of the scattering, as out-

lined in section three. For example, in the case of string theory, tidal string excitation

becomes an important contribution to the asymptotic structure of the states as one ap-

proaches the black hole threshold. (The arguments of [16,17] however strongly suggest that
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string excitation occurs on different time scales than horizon formation, and thus does not

critically modify the picture that strong gravity becomes relevant.) Estimated absorptive

coefficients for soft graviton emission and tidal string excitation are given in (3.13) and

(3.14), and can be compared to the expected absorption coefficients (4.5) in the black hole

regime, which for fixed l have energy dependence

βBHA
l ∝ E(D−2)/(D−3) . (4.9)

Note that the soft graviton absorption coefficients at l ≃ L are comparable in size, in

accord with a semiclassical picture in which a non-zero fraction of the collision energy is

emitted in gravitational radiation.

5. Bounds, analyticity, and locality

High-energy scattering behavior of a theory can convey important information about

its structure, in particular through the asymptotics of amplitudes at high energies, which

contain information about locality of the theory. As we have described, there are some

reasons to believe that non-perturbative gravity is intrinsically nonlocal. We can take a

different tack on this locality question by asking whether scattering amplitudes that have

basic properties expected of a gravitational theory have asymptotics corresponding to those

of local theories, or not.

To explore contributions to scattering from the strong gravity region, let us examine

the black hole ansatz (4.8). Note that the second term in brackets is exponentially sup-

pressed in the energy. Moreover, the sum over the first term can be performed explicitly

(see formulas given in [35], below eq. (2.5)). The result is an expression of the form:

TBHA(s, t) =
i

2
ψλs

2−D/2

[(

L

2
+ λ

)

Cλ
L(cos θ) + λ(1 + cos θ)Cλ+1

L−1(cos θ)

]

+O(e−S(E)/2) .

(5.1)

Begin by considering the total cross section, given by the optical theorem in terms

of the θ = 0 limit of this expression. Evaluating (5.1) at θ = 0, and using (A.3) and the

asymptotic behavior of the gamma functions, we find that for large E and thus L,

σT,BHA ∼ RS(E)D−2 +O(e−S/2) . (5.2)

This is as expected for formation of an object of size RS(E).
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While the total cross section receives contributions from the other regimes as well,

one can imagine isolating the contribution (5.2) from, for example, Coulomb scatter-

ing, by focusing on the absorptive part of the cross section. (Strong absorption due to

tidal/bremsstrahlung effects can however be an additional confounding factor.) In any

case, our expectations are that contributions of other regimes do not reduce the total cross

section from the value (5.2).

This is a first hint of nonlocality of the dynamics. Local quantum field theories satisfy

the Froissart bound[13], whose D-dimensional version[35] states that the total cross section

has a bound of the form

σT ≤ (R0 logE)D−2 . (5.3)

for some constant R0. However, violation of this bound does not conclusively imply nonlo-

cality, as one of the assumptions in deriving the Froissart bound is the existence of a mass

gap, which is not expected in gravitational dynamics.

Another important bound in local theories is the Cerulus-Martin bound[14], which is

a lower bound on fixed angle scattering, of the form

T (s, θ) ≥ e−f(θ)E logE . (5.4)

The fixed-angle asymptotics of (5.1) are readily found from asymptotic expressions for the

Gegenbauer polynomials[36]. At angles θL≫ 1, we find

TBHA(s, t) ∼
iψλ

2λ(λ− 1)!

s2−D/2Lλ

sinλ+1 θ

{

sin

[

(L+ λ)θ − λπ

2

]

+ sin

[

(L+ λ+ 1)θ − λπ

2

]

+O
(

1

L sin θ

)

}

+O(e−S/2) .

(5.5)

This expression does not violate the Cerulus-Martin bound.9 While amplitudes from the

regime l > L also make contributions, there is no reason to expect that these contributions

lead to cancellations such that the total fixed-angle amplitude violates the lower bound

(5.4).

However, the behavior (5.5) is interesting from another perspective. In particular, at

large energies, it exhibits the feature of not being polynomial bounded. Specifically, if we

use L ∼ ERS(E) and continue to complex E, we find an exponentially growing amplitude.

9 This appears in contradiction to expectations expressed in [34].
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Or, if we rewrite θ in terms of t and s, and continue to positive t (which involves going

around the Coulomb pole of the full amplitude), we find behavior of the form

TBHA(s, t > 0) ∼ e2RS(E)
√
t , (5.6)

again violating polynomial bounds. (Here we reasonably assume no cancellation from the

O(e−S/2) terms.)

Polynomial boundedness is in fact a way that locality enters into the assumptions in

proving the Froissart bound. Thus we have tracked the behavior (5.2) to a more primitive

source, which is independent of the issue of a gap. Indeed, boundedness of amplitudes

in the complex energy plane is essential for causality, as usual discussion of dispersion

relations shows. The basic idea is that if we have a system with a linear response, such

that the response r(t) to a signal s(t) is of the form

r(t) =

∫ ∞

−∞
dt′S(t− t′)s(t′) , (5.7)

then causality implies the condition that the Fourier transform of S(t) be analytic and

bounded in the upper half plane. Exponential growth, such as

S(E) ∼ eτImE , (5.8)

corresponds to acausal behavior with a time advance of size τ .

Translated to the scattering context, and considering forward scattering, θ = 0, then

the scattered wave should not traverse the scattering region faster than a corresponding

wave traveling at infinity at the speed of light. This condition likewise implies polynomial

boundedness of the forward scattering amplitude T (s, 0). This is actually not in conflict

with the above statements, as the asymptotic expression (5.5) is not valid at zero angle.

Indeed, we found a polynomial-bounded expression in evaluating (5.2).

Violation of a polynomial bound at non-zero angle does not necessarily imply violation

of causality, if the scattering is finite in range. The reason is that a finite range scatterer

can shorten the path the incoming wave takes to become an outgoing wave if θ 6= 0. For an

interaction of fixed range R, this corresponds to a relative time advance ≈ 2R sin(θ/2) ≈
2R|q|/E. Note that this nicely accords with the behavior (5.6), with the identification that

the characteristic scattering range is the radius of the strong gravity region.

Thus, the black hole ansatz and behavior of the form (5.5), (5.6) respect a macroscopic

form of causality, which is good – were they to do otherwise, one would suspect basic
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inconsistencies. However, the lack of a non-forward polynomial bound corresponds to

an interaction range that grows with energy. This is not local behavior by traditional

measures.

Notice that these conclusions rely only on very general features of the expected be-

havior of high-energy gravitational scattering. Thus, either some of these features are not

present, or this behavior supports the statement that nonperturbative gravity is not local

in the standard sense. Note also that these conclusions really only apparently depend on

the expected form (4.5) of the absorption coefficients. Due to the large absorption that

these parametrize, the expressions (5.1)-(5.2) and (5.5)-(5.6) appear essentially insensitive

to the real phase shifts δl. Indeed, note that the black hole ansatz is very similar to black

disk scattering. In particular, the elastic cross section is

σel(s) ∝
∞
∑

l=0

(l + λ)
[

1− 2e−2βl(s) cos(2δl(s)) + e−4βl(s)
]

≈
L
∑

l=0

(l + λ) +O(e−S/2) , (5.9)

and, in the same units, the total absorption cross section is

σabs(s) ∝
∞
∑

l=0

(l + λ)(1− e−4βl) ≈
L
∑

l=0

(l + λ) +O(e−S/2) . (5.10)

From these, σel ≈ σabs. The elastic contribution is that of diffraction scattering and should

exhibit the appropriate diffractive peak.

As a final comment, we note that due to the masslessness of the graviton, we don’t

expect all the usual analyticity properties of a gapped theory. In particular, cuts in the s

or t planes can extend all the way to their origins. This feature raises a possible subtlety

with crossing symmetry, an issue we leave for future examination.

6. Conclusion

If quantum gravity admits a state corresponding to the Minkowski vacuum, and exci-

tations about this state, an S-matrix investigation of its theory appears appropriate. We

have outlined features of such an S-matrix, at super-planckian energies, beginning first with

large impact parameters, and then with impact parameters that enter the strong-gravity

regime. At larger impact parameters, the Born or Coulomb amplitudes match onto the

eikonal amplitudes, and the latter appear to yield a unitary extension of the former to
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smaller impact parameters. As one approaches the regime b ∼ RS(E), diagrams corre-

sponding to exchange of gravitational tree amplitudes also become important, matching a

classical picture. As one reaches b ∼ RS(E), the perturbation series apparently diverges.

However, approximate validity of the classical picture in this vicinity suggests the utility

of a semiclassical description of black hole formation and evaporation for inferring general

properties of scattering in the strong gravity regime b <∼ RS(E). This leads to a proposal

for features of the S-matrix in this regime, in the form of a black hole ansatz, given in

section four. We have in particular investigated asymptotic properties of this ansatz in

section five, and found that appear not to respect a standard form of locality, namely

polynomial boundedness. This serves as additional evidence for the lack of a fundamental

role for locality in quantum gravity; such nonlocality of the nonperturbative theory may in

turn be an important aspect of the internal description of black holes[32,33,31], and may

play an important role in cosmology[34,37]. Such features of high-energy gravitational

scattering may thus be supplying important clues towards a fundamental formulation of a

quantum-gravitational theory.

Appendix A. Partial waves

This appendix will provide further details of the partial-wave expansion. We begin by

making contact with the expansion for the transition matrix element given in [22]:

T (s, t) = γDs
2−D/2

∞
∑

l=0

1

Nλ
l

Cλ
l (1)C

λ
l (cos θ)fl(s) ; (A.1)

recall γD is defined in (2.11), and Nλ
l is the normalization factor for the Gegenbauer

polynomials,

∫ 1

−1

d(cos θ)(sin θ)D−4Cλ
l (cos θ)C

λ
l′ (cos θ) = Nλ

l δll′ =
21−2λπΓ(l + 2λ)

l!(λ+ l)Γ2(λ)
δll′ . (A.2)

Using

Cλ
l (1) =

Γ(l + 2λ)

Γ(l + 1)Γ(2λ)
, (A.3)

(A.1) can be simplified to the form given in the main text[35], eq. (2.7). The expres-

sion (2.10) for the partial waves in terms of the amplitude can then be found using the

orthogonality relation (A.2).
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It is also useful to have an expression for the delta function:

∞
∑

l=0

1

Nλ
l

Cλ
l (1)C

λ
l (cos θ) =

2δ(cos θ − 1)

sinD−4 θ
. (A.4)

Here, accounting for the finite range of cos θ, we adopt the convention
∫ 1

0

dxδ(x− 1) =
1

2
. (A.5)

Finally, we record here the zero-argument value of the Gegenbauer polynomials:

Cλ
l (0) = (−)l/2

Γ
(

l
2 + λ

)

Γ
(

l
2
+ 1

)

Γ(λ)
, l = even ;

= 0 , l = odd .

(A.6)

Appendix B. Rotating black holes

In this appendix, we collect some basic formulas for rotating D-dimensional black

holes. We will consider the case with only one non-zero rotation parameter. We will not

give the full form of the metric, which was first given in [38]. These solutions are have a

characteristic “Schwarzschild” radius RS(E, l), determined by solving the equation

RD−5
S

(

R2
S +

(D − 2)2l2

4E2

)

=
16πGDE

(D − 2)ΩD−2
. (B.1)

Subsequent formulas are simplfied by defining a rotation parameter,

a∗ =
(D − 2)l

2ERS
. (B.2)

The Hawking temperature of the black hole is

TH =
D − 3 + (D − 5)a2∗

4πRS(1 + a2∗)
(B.3)

and the Bekenstein-Hawking entropy referred to in the main text is

SBH (E, l) =
E

(D − 2)TH

(

D − 3− 2a2∗
1 + a2∗

)

. (B.4)
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