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ABSTRACT

Nonlinear evolution is sometimes modeled by assuming there is a deterministic map-
ping from initial to final values of the locally smoothed overdensity. However, if an
underdense region is embedded in a denser one, then it is possible that its evolution is
determined by its surroundings, so the mapping between initial and final overdensities
is not as ‘local’ as one might have assumed. If this source of nonlocality is not accounted
for, then it appears as stochasticity in the mapping between initial and final densi-
ties. Perturbation theory methods ignore this ‘cloud-in-cloud’ effect, whereas methods
based on the excursion set approach do account for it; as a result, one may expect
the two approaches to provide different estimates of the shape of the nonlinear counts
in cells distribution. We show that, on scales where the rms fluctuation is small, this
source of nonlocality has only a small effect, so the predictions of the two approaches
differ only on the small scales on which perturbation theory is no longer expected
to be valid anyway. We illustrate our results by comparing the predictions of these
approaches when the initial-final mapping is given by the spherical collapse model.
Both are in reasonably good agreement with measurements in numerical simulations
on scales where the rms fluctuation is of order unity or smaller.

If the deterministic mapping from initial conditions to final density depends on
quantities other than the initial density, then this will also manifest as stochasticity in
the mapping from initial density to final. For example, the Zeldovich approximation
and the Ellipsoidal Collapse model both assume that the initial shear field plays an
important role in determining the evolution. We compare the predictions of these
approximations with simulations, both before and after accounting for the ‘cloud-in-
cloud’ effect. Our analysis accounts approximately for the fact that the shape of a cell
at the present time is different from its initial shape; ignoring this makes a noticable
difference on scales where the rms fluctuation in a cell is of order unity or larger.

On scales where the rms fluctuation is 2 or less, methods based on the spherical
model are sufficiently accurate to permit a rather accurate reconstruction of the shape
of the initial distribution from the nonlinear one. This can be used as the basis for a
method for constraining the statistical properties of the initial fluctuation field from
the present day field, under the hypothesis that the evolution was purely gravitational.
We illustrate by showing how the highly non-Gaussian nonlinear density field in a
numerical simulation can be transformed to provide an accurate estimate of the initial
Gaussian distribution from which it evolved.

Key words: methods: analytical - dark matter - large scale structure of the universe

1 INTRODUCTION

The present work is primarily concerned with the prob-
ability distribution function (hereafter pdf; some authors

⋆ E-mail: tylam@sas.upenn.edu, shethrk@physics.upenn.edu

prefer to call this the probability density function), which
describes the probability that a randomly placed cell of
specified shape and volume contains a certain amount of
mass. In the best studied cosmological models, the pdf
has a Gaussian form initially, but becomes increasingly
positively skewed at later times. There are two methods
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for estimating the evolution of the dark matter pdf.
One is based on perturbation theory (Bernardeau 1994;
Protogeros & Scherrer 1997; Gaztañaga & Croft 1999;
Scherrer & Gaztañaga 2001; Bernardeau et al. 2002) and
the other is based on excursion set methods (Sheth 1998).
The perturbation theory based calculation is not expected
to be accurate on scales where the variance is of order
unity or larger; in hierarchical models, this means that
perturbation theory is not expected to be accurate on
small scales. Hyperextended Perturbation Theory (HEPT)
(Scoccimarro & Frieman 1999) is expected to be valid in
the larger variance (small cell) regime where standard
perturbation theory breaks down; it provides explicit
expressions for the moments of the pdf rather than a closed
form expression. For the special case of clustering from
white-noise Gaussian initial conditions, the excursion set
method predicts exactly the same pdf as does HEPT,
despite the fact that the methods used by the two ap-
proaches are very different. Motivated by this coincidence,
the purpose of the present note is twofold: first, to show
that, for more general initial conditions, the excursion set
approach actually makes rather similar predictions to those
of perturbation theory on scales where the variance is small;
the second is to understand why.

In the analysis which follows, we distinguish between
two steps in the calculation of the pdf. The first is the ap-
proximation for nonlinear evolution which we will call the
dynamics. The second is how this approximation is used to
translate from the initial pdf to an evolved one, which we
call the statistics. In the first half of this paper, we study
approximations for the dynamics which are based on the as-
sumption of spherical symmetry. In this case, the perturba-
tion theory method provides what is, in effect, a monotonic,
deterministic mapping between the initial and final overden-
sities. Because the final overdensity at a specified position
in space is determined solely by the initial value at that po-
sition, this is sometimes also called a ‘local’ mapping, since
values of the initial fluctuation field at other positions are
assumed to not affect the mapping.

The excursion set approach accounts for the fact that
the evolution of a given region may actually be determined
by less local surroundings. For example, consider the evolu-
tion of an underdense region which is surrounded by a dense
shell. If the shell is sufficiently dense, then it will eventu-
ally collapse, crushing the smaller region within it. The lo-
cal approximation would have predicted expansion rather
than collapse for the smaller underdense region. Sheth &
van de Weygaert (2004) call this the void-in-cloud problem,
although it is clear that this is an extreme example of a more
general ‘cloud-in-cloud’ problem. Clearly, in such cases, the
mapping between initial and final overdensities is not as ‘lo-
cal’ as perturbation theory assumes, and accounting for this
‘cloud-in-cloud’ problem is likely to be more important for
small ‘clouds’. If not accounted for, this effect will mani-
fest both as stochasticity (since the same initial overdensity
may map to many different final densities depending on the
surroundings) and, perhaps, as a bias. The excursion set ap-
proach provides an algorithm which accounts for this source
of non-locality; it assumes that, once the correct large scale
has been chosen, the mapping is deterministic.

However, there is another source of non-locality which
spherical evolution models ignore. This source plays a cru-

cial role in models which account for the influence of the
external shear field on the evolution. The simplest of these
more sophisticated models for the dynamics is the Zeldovich
approximation (Zeldovich 1970). Here, the nonlinear density
is determined not just by the initial overdensity, but by two
other quantities which are related to the surrounding shear
field. These quantities also play an important role in exten-
sions of the Zeldovich approximation (Makler et al. 2001)
as well as in ellipsoidal collapse models (White & Silk 1979;
Bond & Myers 1996). In all these models, the nonlinear den-
sity is a deterministic function of three quantities associated
with the initial fluctuation field. In the context of perturba-
tion theory models for the pdf, the mapping from initial
density to final density will appear to be stochastic if the
influence of the two other variables is not accounted for. In
the excursion set approach, this stochasticity is in addition
to that which derives from the cloud-in-cloud problem which
is now associated with all three variables.

To explore the consequences of this additional source
of stochasticity we show the result of inserting the Ellip-
soidal collapse model into the perturbation theory and ex-
cursion set calculations. We do this in two steps: by showing
the predictions when expanding the dynamics to first, and
then to second order. To first order, the Ellipsoidal collapse
model reduces to the Zeldovich approximation; hence, our
perturbation theory discussion of the first order approxi-
mation extends previous work on the Zeldovich approxima-
tion (Kofman et al. 1994; Hui, Kofman & Shandarin 2000).
However, our analysis also accounts for another subtlety as-
sociated with non-spherical collapse models—that the fi-
nal shape of a patch is different from its initial shape
(Betancort-Rijo 1991; Padmanabhan & Subramanian 1993;
Betancort-Rijo & Lopez-Corredoira 2002). We then present
the results of the simplest excursion set treatment of this
problem which accounts for the evolution in the volumes
but not the shapes of cells.

The perturbation theory and excursion set predictions
associated with spherical dynamics are presented in Sec-
tion 2. This section also contains a discussion of the Log-
normal model. It includes a comparison of these predictions
with measurements in simulations. The perturbation and ex-
cursion set treatments of the Zeldovich and ellipsoidal col-
lapse models are in Section 3. A final section summarizes
our findings, and includes a discussion of the fact that local
deterministic mapping models of nonlinear evolution moti-
vate a simple method for reconstructing the shape of the
initial pdf from that at late times. We illustrate the method
using the spherical evolution model; we also show that, for
the present purposes, the spherical model is a good enough
approximation to the second order ellipsoidal collapse dy-
namics.

2 DETERMINISTIC MAPPINGS FROM

INITIAL TO FINAL DENSITY

This section describes the perturbation theory and excur-
sion set models of the pdf when the mapping from linear to
nonlinear density is deterministic. In both, the variance of
the initial density fluctuation field when smoothed on scale
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RM plays an important role. It is denoted by

σ2
L(M) ≡

Z

dk

k

k3 PL(k)

2π2
|W (kRM )|2 (1)

where PL(k) is the power spectrum of the initial field, W (x)
is the Fourier transform of the smoothing window, and
RM ≡ (3M/4πρ̄)1/3. We will also use the quantity

γ ≡ −3
d ln σ2

L

d lnM
. (2)

For P (k) ∝ kn, γ = (n+ 3).

2.1 Perturbation theory-based methods

These methods make three important assumptions. First, an
initial overdensity δL can be mapped to an evolved density
ρ. Because ρ at any given position in space is determined
from δL at the same position (in Lagrangian coordinate),
the mapping is said to be ‘local’. Because ρ depends on δL
and nothing else, the mapping is said to be ‘deterministic’.
Notice that these ‘local’ ‘deterministic’ assumptions make no
mention of the scale on which they apply. In what follows,
we will write the evolved density in a cell of volume V , in
units of the background density, as

ρ ≡ M

ρbV
≡ 1 + δ; (3)

we hope that this slight abuse of notation will not cause
confusion. Since the evolved density is clearly smoothed on
scale V , the question is: on what smoothing scale should the
initial overdensity δL associated with ρ be defined? This is
where the third key assumption is made: the appropriate
scale is that which initially contains mass M . As a result of
this assumption, the cumulative distributions of the evolved
(Eulerian) pdf at fixed V and the initial (Lagrangian) pdf at
fixed mass scale M are related as follows (see Section 5.4.3
in Bernardeau et al. 2002):
Z ∞

M

dM p(M |V )
M

M̄
=

Z ∞

δL(M|V )/σL(M)

dx
exp(−x2/2)√

2π
,

(4)
where M̄ ≡

R∞

0
dM p(M |V )M , σL is given by equation (1),

and the right hand side assumes that the initial distribution
was Gaussian. Differentiating with respect to M yields

M

M̄
p(M |V ) =

exp[−(δL/σL)
2/2]√

2π

d (δL/σL)

dM
. (5)

Since M/M̄ ≡ ρ, the expression above implies that

ρ2 p(ρ|V ) = exp

»

− δ2L
2σ2

L

–

s

δ2L
2πσ2

L

d ln(δL/σL)

d ln ρ
. (6)

The requirement that the left hand side of equation (4) de-
creases monotonically with increasing M (since we want
p(M |V ) ≥ 0 for all M) means that δL/σL must increase
monotonically with increasing M . As a result, the range
of allowed δL(M |V ) relations is constrained by the relation
σL(M), i.e., by the initial power spectrum.

2.2 Excursion set method

The excursion set model (Sheth 1998) exploits the fact that
σ2
L(M) is a monotonic function of M , so the local collapse

model δL(M |V ) defines a curve in the space of δL versus
σ2
L. In what follows, we will set S(M) = σ2

L(M). Then, the
excursion set model for the distribution of M in cells of size
V is

ρ2p(ρ|V ) = Sf(S|V )
d lnS

d ln ρ
(7)

where f(S|V ) dS denotes the probability that a random
walk with uncorrelated steps first crosses a barrier of height
B(S|V ) on scale S (where S denotes the variance in walk
heights). The collapse dynamics is included in this solution
of the statistical problem by setting B(S|V ) = δL(σ

2
L). It is

by relating the counts in cells distribution to the first cross-
ing distribution that the excursion set model accounts for
the ‘cloud-in-cloud’ problem discussed in the Introduction.
Note that this method allows a larger range of δL(M |V )
relations than does perturbation theory.

We have used two methods for computing f(S|V ) dS:
one is a Monte-Carlo approach, where we simulate a large
ensemble of random walks and count the distribution of first
crossings, and the other is the analytical approximation of
Sheth & Tormen (2002). This approximation sets

f(S|V )dS = |T (S|V )| exp
»

−B(S|V )2

2S

–

dS/S√
2πS

, (8)

where T (S|V ) denotes the first few terms of the Taylor ex-
pansion of B about S. For the barrier shapes of interest in
this paper, including only the first two terms is sufficient, so

T (S|V ) ≈ B(S|V )

»

1− ∂ lnB(S|V )

∂ lnS

–

, (9)

where the derivative is evaluated at S. Thus,

ρ2p(ρ|V ) = exp

»

−B(S|V )2

2S

–

r

B(S|V )2

2πS

d lnS

d ln ρ

×
˛

˛

˛

˛

1− ∂ lnB(S|V )

∂ lnS

˛

˛

˛

˛

= exp

»

− δ2L
2σ2

L

–

s

δ2L
2πσ2

L

˛

˛

˛

˛

d ln(δL/σ
2
L)

d ln ρ

˛

˛

˛

˛

, (10)

where the final expression uses the fact that B2/S ≡
(δL/σL)

2. Comparison with perturbation theory (equa-
tion 6) shows that the only difference is in the Jacobian
like term, which differs by a factor of σL.

2.3 Normalization

Direct implementation of the two methods described above
produces distributions which are guaranteed to have the
correct mean value,

R

dρ p(ρ|V ) ρ = 1, but, in general,
R

dρ p(ρ|V ) 6= 1. (Strictly speaking, the analytic approxi-
mation to the random walk does not integrate to unity; the
Monte-Carlo solution, of course, does; nevertheless the ana-
lytical formula gives a very good approximation.) To ensure
that this integral also equals unity, one must define

N ≡
Z ∞

0

dρ p(ρ), ρ′ ≡ Nρ, and ρ′2p′(ρ′) = ρ2p(ρ). (11)

The quantities ρ′ and p′(ρ′) now satisfy both normalisation
requirements:

R

dρ′ p′(ρ′) = 1 and
R

dρ′ p′(ρ′) ρ′ = 1.
Note that although this procedure is standard
(Kofman et al. 1994; Protogeros & Scherrer 1997;
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Ohta et al. 2004), this procedure has no physical mo-
tivation, other than to insure correct normalization.

The last of the expressions above shows that plots of
ρ2 p(ρ) versus log(ρ) can be turned into properly normalized
plots simply by shifting along the log(ρ) direction. This is
useful because, as equations (6) and (7) show, it is ρ2 p(ρ)
which is the fundamental prediction of both models for the
statistics. We will use this in what follows.

2.4 Example: The Lognormal distribution

The standard form of the Lognormal distribution is

ρ2 p(ρ) =
exp[−(ln ρ+ µ)2/2σ2]√

2π

ρ

σ
(12)

where µ = σ2/2 and σ2 = ln〈ρ2〉. This can be scaled to a
Gaussian distribution in the variable δL with mean zero and
variance σL by setting ρ ≡ 1+ δ ∝ exp(δL) so ln(1+ δ) ∝ δL
where the constant of proportionality is set by requiring that
〈ρ〉 = 1.

However, if one views the transformation ρ ∝ exp(δL)
as a local deterministic mapping between the initial over-
density δL and evolved density ρ (see Coles & Jones 1991
and Smith, Scoccimarro & Sheth 2007 for motivation), then
equation (12) is not the form which one obtains from the
perturbation theory-like argument we have just described.
In this context, equation (12) corresponds to the Lagrangian
rather than Eulerian space pdf. This curious fact does not
appear to have received attention before. The distinction is
important, because, for most power spectra of current inter-
est, δL(M |V )/σL(M) ∝ ln(M/V )/σL(M) is not monotonic
in M , so the method of Section 2.1 breaks.

2.5 Example: Spherical collapse dynamics

The spherical collapse model relates δL and ρ; it is well ap-
proximated by

1 + δNL ≡ ρ =

„

1− δL
δc

«−δc

(13)

(Bernardeau 1994). The exact value of δc depends on the
background cosmology. It is δc ≈ 1.686 in an Einstein de-
Sitter model, and δc ≈ 1.66 for the simulation results we
present later. As a result, setting δc = 5/3 is an excellent
approximation which we will use to provide simple analytic
examples of our results. Note that the model studied by
Sheth (1998) was, in effect, δc = 1; for white-noise initial
conditions (initial spectral slope n = 0), the resulting excur-
sion set prediction is in exact agreement with HEPT. As we
discuss in more detail later, this expression with δsc = 3 is
what the Zeldovich approximation yields for the collapse of
a spherical perturbation.

The perturbation theory prediction for the pdf associ-
ated with the spherical collapse mapping (equation 13) is

ρ2p(ρ|V ) =
1

p

2πσ2
L(ρ)

exp

»

− δ2L(ρ)

2σ2
L(ρ)

–

×
„

1− δL(ρ)

δc
+

γ

6
δL(ρ)

«

. (14)

Figure 1. Comparison of equation (A5) (solid, short-dashed, dot-
short dashed) and equation (A8) (dotted, long-dashed, dot-long
dashed) for σV = 0.5, 1.0, 2.0 respectively.

The corresponding excursion set expression is

ρ2p(ρ|V ) =
1

p

2πσ2
L(ρ)

exp

»

− δ2L(ρ)

2σ2
L(ρ)

–

×
„

1− δL(ρ)

δc
+

γ

3
δL(ρ)

«

. (15)

Note that this differs from the perturbation theory expres-
sion only because it has a factor of γ/3 rather than γ/6.
For |δL(ρ)| ≪ 1, or for γ ≪ 6/δsc ≈ 18/5, this difference is
negligible, and the two models will give very similar results.
Demonstrating this agreement between the two methods is
one of the central results of this paper.

To illustrate the similarity, and to get a feel for the
magnitude of the differences, Figure 1 shows the nonlinear
pdf predicted by these models when δc = 5/3 and the initial
power spectrum was P (k) ∝ k−6/5. The three sets of curves
are for σV = 1/2, 1,and 2 (narrowest to broadest distribu-
tions).

2.6 Comparison with simulations

We compare our predictions with measurements made in
the Very Large Simulation (VLS) (Yoshida et al. 2001).
The simulation box represents a cube 479h−1 Mpc on
a side in a cosmological model where (Ωm,ΩΛ, h, σ8) =
(0.3, 0.7, 0.7, 0.9). It contains 5123 particles, so the associ-
ated particle mass is 6.86× 1010h−1 M⊙.

We initially counted particles in cubic cells of side
(479/37) h−1Mpc; the volume of each cell is equivalent to
that of a sphere of radius 8.03 h−1Mpc. In the results which
follow, counts in larger cells were obtained by summing up
counts in neighbouring cells. For cells near the boundary of

c© 0000 RAS, MNRAS 000, 1–12



Nonlinear dark matter pdf 5

Figure 2. Comparison of the measured ρ2 p(ρ) (filled squares) with various spherical collapse based predictions for this quantity. Top:

dot-dashed (green) curves show the standard Lognormal (equation 12). Short-dashed (orange) and dotted (red) curves show perturbation
theory before (equation 14) and after the normalization discussed in Section 2.3 (the dotted curve is simply shifted slightly to the right);
solid (cyan) curves show the exact Monte-Carlo solution of the excursion set model, and long-dashed (blue) curves show the associated
analytic approximation (equation 15). The nonlinear rms fluctuations of different models are shown in the following order: the VLS
simulation (0.968 and 0.513), the Lognormal (1.069 and 0.560), the perturbation theory before normalization (0.921 and 0.523), the
perturbation theory after normalization (1.004 and 0.539), the exact Monte-Carlo soultion of the excursion set model (1.134 and 0.559),
and the analytic approximation (1.094 and 0.549); Bottom: the normalized distributions and the Lognormal divided by the measurements.

the box, we used the fact that the simulation was run using
periodic boundary conditions.

Because one does not simulate the nonlinear evolution
of a continuous density field, rather, one simulates the mo-
tion of particles, the relation between the discrete particle
pdf one measures in simulations is non-trivial. Typically, one
assumes that the distribution of particle counts in cells is

p(N |V ) =

Z

dM p(M |V ) p(N |M), (16)

where p(N |M) denotes the probability that a mass M

is represented by N particles. If m denotes the particle
mass, then the Poisson model assumes that p(N |M) =
(M/m)N exp(−M/m)/N !. Our comparisons with the theo-
retical models of the previous section assume that discrete-
ness effects are negligible, so N/N̄ = M/M̄ .

The top panel of Figure 2 shows the pdf of the dark mat-
ter in cells of two different volumes (equivalent to spheres of
radii 8 and 16 h−1Mpc), chosen to have rms fluctuation val-
ues of unity or less. Black squares show the measurements in
the VLS, where ρ ≡ 1 + δNL = N/N̄ . Curves show the pre-
dictions of the different models: the Lognormal is dot-dashed

c© 0000 RAS, MNRAS 000, 1–12



6 T. Y. Lam & R. K. Sheth

Figure 3. Same as previous figure, but for smaller cells, in which the rms fluctuation is significantly larger than unity. The results from

the exact Monte-Carlo solution of the excusrion set model are not included as the associated analytical approximation gives very similar
results.

(this model has one free parameter, the nonlinear variance,
which we compute from the fitting formula in Smith et al.
(2003), rather than using the value measured in the simu-
lations); raw and normalized perturbation theory model are
short-dashed and dotted (note that the normalised curve is
simply shifted to the right of the unnormalised curves); and
the excursion set model is solid (long-dashed curve shows
the analytic approximation). The nonlinear variances σ as-
sociated with these various models are also shown (from left
to right, top to bottom: VLS simulation, lognormal, unnor-
malised perturbation theory, normalised perturbation the-
ory, excursion set from Monte-Carlo, and excursion set from
the approximation formula).

To reduce the dynamic range, the bottom panel shows
the predictions and Lognormal all ratioed to the measure-
ments. This shows clearly that both the normalised pertur-

bation theory and excursion set models are in better agree-
ment with the simulations than is the Lognormal. We note in
passing that Betancort-Rijo & Lopez-Corredoira (2002) pro-
vide a relatively simple analytic expression for the nonlinear
pdf. Their expression is, essentially, yet another prediction
for the spherical evolution based pdf. It fares substantially
worse than either of our models - it overpredicts the high
density tail - so we do not show it here.

Figure 3 shows that these spherical collapse based pre-
dictions remain accurate even on scales where the rms fluc-
tuation is significantly larger than unity. This is well beyond
the regime where standard perturbation theory is expected
to be valid, and indeed, the perturbation and excursion set
predictions for the high density tails differ significantly. Per-
turbation theory provides a substantially better description
of the simulations when the rms fluctuation is of order 2 (left

c© 0000 RAS, MNRAS 000, 1–12



Nonlinear dark matter pdf 7

panel) but is worse when the rms is larger (right panel). On
the other hand, the average density within the virial radius
of a dark matter halo is about 200 times the background
density; thus, in the regime where ln ρ ≥ 5, the mapping of
equation (13) is suspect.

Figures 2 and 3 show that the spherical model produces
rather accurate predictions for the shape of the nonlinear
pdf, at least on scales where the nonlinear rms fluctuation is
smaller than about 2. We show later that this can be used
to motivate an algorithm which uses the nonlinear density
field to provide an estimate of the initial pdf.

3 STOCHASTIC MAPPINGS FROM INITIAL

TO FINAL DENSITY

In this section we replace the assumption of a spherical col-
lapse in favor of the ellipsoidal collapse model. This evolu-
tion is considerably more complex, and so we only present
results to first and second order in the dynamics. We use the
formulation of this model in which it reduces, to lowest or-
der, to the Zeldovich Approximation (Bond & Myers 1996).

3.1 The Zeldovich Approximation

In the Zeldovich Approximation, the nonlinear density is a
deterministic function of three numbers in the initial dis-
tribution. These are the eigenvalues λi of the deformation
tensor, a 3 × 3 symmetric matrix whose elements are the
second derivatives of the initial potential field.

The initial density δL is the sum of the three eigenvalues,
whereas the nonlinear density is

ρ =
3
Y

i=1

(1− λi)
−1. (17)

(note that ρ → 1 +
P

i λi when λ ≪ 1). All three eigenval-
ues are the same for a sphere, in which case λ = δL/3. In
this case, the relation above reduces to that of the spheri-
cal model from the previous section with δc = 3. Similarly,
δc = 2 is associated with regions where the smallest eigen-
value is zero, and the other two are each equal to δL/2. If
one calls such an object a filament, then a sheet has two
eigenvalues equal to zero and the third equal to δL, so the
evolution is given by equation (13) with δc = 1.

The evolved pdf of this model has

ρ p(ρ|V ) dρ =

Z

dλ p(λ|σ) δD
 

ρ =

3
Y

i=1

(1− λi)
−1

!

(18)

(Padmanabhan & Subramanian 1993;
Hui, Kofman & Shandarin 2000;
Betancort-Rijo & Lopez-Corredoira 2002).

For Gaussian initial conditions, the joint distribution
of p(λ1, λ2, λ3|σ) is known (Doroshkevich 1970), and it is
straightforward to evaluate the integral above by Monte
Carlo methods. In practice, this distribution is a function
of λi/σ, so it is useful to think of the expression above as

ρ p(ρ|V ) dρ =

Z

dλ p(λ|1) δD
 

ρ =
3
Y

i=1

(1− σλi)
−1

!

. (19)

Notice that if σ = σL(ρ̄V ) ≡ σV, then

Z

p(ρ|V ) dρ =

Z

dλ p(λ|1)
3
Y

i=1

(1− σVλi) = 1. (20)

This choice is made by Hui et al. (2000); in this case,
the normalization problems of Section 2.3 do not arise.
However, the analysis of the previous sections suggests
that this ignores the effects of smoothing, and that set-
ting σ = σL(M) is almost certainly a better choice
(Betancort-Rijo 1991; Padmanabhan & Subramanian 1993;
Betancort-Rijo & Lopez-Corredoira 2002).

Notice that if any one of the eigenvalues equals unity
then the density diverges, and that the density becomes neg-
ative if one and only one or all three eigenvalues exceed
unity. This happens often when σ ≥ 1 (with probability 11%
when σ = 1), thus restricting the use of this approximation
to large scales where σ is small. Accounting for the effects
of smoothing will mitigate this somewhat, since σM ≪ σV

when ρ ≫ 1, where we have defined σM ≡ σL(M) and
σV ≡ σL(ρ̄V ). For simplicity, on the few occasions when
the density does go negative, we take the absolute value of
the rhs of equation (17); there is no physical motivation for
this choice, but, in practice, this happens sufficiently rarely
that it does not affect our results.

The expression above is still not entirely self-consistent.
Although it tries to account for the fact that the final
size of a region is different from its initial size, it does
not account for the fact that the shape has also changed
(Betancort-Rijo 1991; Padmanabhan & Subramanian 1993;
Betancort-Rijo & Lopez-Corredoira 2002). If the final vol-
ume V is spherical, the initial volume was not; the analy-
sis above does not account for this. However, this can be
done in a relatively straightforward way by simply setting
σL(λ), where, for Eulerian spheres V of radius RE we require
that RE = Ri(1 − λi). This means that the delta function
picks out ellipsoids in the initial field which contained mass
M ∝Q3

i=1 Ri, and which are now spheres of volume V which
contain the same mass M . The function σL(λ) is the rms
fluctuation in the initial field when smoothed with a triaxial
filter of shape given by (R1, R2, R3); we have checked that
it is well approximated by

σEll
L (λ) = σSph

L (M) exp

(

−B

2

X

i<j

»

ln

„

1− λi

1− λj

«–2
)

, (21)

where B = 0.0486, and the subscripts ell and
sph stand for ellipsoidal and spherical respectively
(Betancort-Rijo & Lopez-Corredoira 2002). This, then, is
our perturbation theory based estimate associated with the
Zeldovich Approximation.

Figure 4 shows how the shape depedence of the rms
fluctuation changes the predicted dark matter pdf. In the
top panel the dotted curves are the predictions of pertur-
bation theory using equation (19) with σL(M) whereas the
dashed curves use σL(λ). The difference between these two
is significant, meaning the shape dependence is important,
in the high density tail (ln(ρ) > 1) of the 8h−1Mpc cells.
The bottom panel compares the ratios of different models
to the measurements. In neither cases does the Zeldovich
Approximation agree well with the simulations: the differ-
ence is more than a factor of two in low density regions
(ln(ρ) < −2 in 8h−1Mpc and ln(ρ) < −1.5 in 16h−1 Mpc).
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8 T. Y. Lam & R. K. Sheth

Figure 4. Comparison of the measured ρ2 p(ρ) (filled squares) and various Zeldovich approximation-based predictions and second

order ellipsoidal model using perturbation-theory for this quantity. In the top panel red (dotted) and cyan (solid) curves show the
normalized perturbation-theory and excursion-set predictions using the spherical linear variance approximation. Magenta (dash) shows
the perturbation-theory prediction using the ellipsoidal variance approximation (equation 21). Blue (dotted-dash) shows the normalized
perturbation-theory predictions using second order ellipsoidal collapse model (equation 30). The numbers shown are the rms values
for (from top to bottom) VLS simulation, excursion-set (spherical variance), perturbation-theory (spherical variance), perturbation-
theory (Zeldovich approximation using ellipsoidal variance), and perturbation-theory (second ellipsoid collapse using ellipsoidal variance).
Bottom panel shows the corresponding distributions divided by the measurements.

It is rather more complicated to account approximately
for the effect of the change in shape in the excursion set
approach. Our Monte Carlo algorithm works as follows. We
generate (λ1, λ2, λ3) in each step of the walk following the
procedure described by Sheth & Tormen (2002). The vari-
ance associated with step n is S(n). This has an associ-
ated scale R(n). We are interested in patches which today
are spheres of radius RE. (The extension to ellipsoids at
the present time is straightforward). These are those initial

patches which satisfy R
(n)
i (1 − λ

(n)
i ) = RE, where λ

(n)
i is

the value of λi after n steps. We then want the largest mass

associated with the various R
(n)
i . Since mass is proportional

to
Q

i Ri, we want the largest value of R
(n)
i for each i; in

effect, we want the first crossing values ni for each of the
three barriers R

(n)
i (1−λ

(n)
i ) = RE. Let f(n1, n2, n3) denote

the fraction of walks which first cross the three barriers after
(n1, n2, n3) steps. Then the excursion set model sets

ρ p(ρ|V ) dρ = f(M123) dM123. (22)

where

M123 ∝ R
(n1)
1 R

(n2)
2 R

(n3)
3 (23)
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Nonlinear dark matter pdf 9

denotes the mass associated with the first crossing at
(n1, n2, n3). We then renormalize the left hand size follow-
ing the discussion in Section 2.3. In Figure 4 the cyan (solid)
curves show the predictions of the excursion set approach.
While they fit better than the perturbation theory’s results
the agreement is not very good at the low density region.

Although this algorithm allows for different shapes in
the initial distribution, it only approximates the exact prob-
lem we wish to solve, because the nth step in any given di-
rection is associated with the same value of Sn, whatever
the values of n in the other directions. In effect, we are ap-
proximating S(n1, n2, n3) with the spherical value Sni

for
each axis i.

3.2 The ellipsoidal collapse model

The late time evolution in the ellipsodial collapse model
is more complicated than in the Zeldovich Approximation
(Bond & Myers 1996). Nevertheless, we can still write the
nonlinear density as a deterministic (albeit complicated)
mapping of the three eigenvalues λ in the initial field.

Thus, the non-linear density is given by an expression
that is analogous to equation (17). Namely,

ρ =
3
Y

i=1

(1− ξi)
−1, (24)

where in an Einstein-de Sitter universe the evolution of ξi is
described by

a2 d
2ξi
da2

+
3

2
a
dξi
da

=
3

2
(1− ξi)

„

1

3
δ +

1

2
biδ + Lext,i

«

, (25)

with

bi =
4

15
(3ξi −

X

j

ξj) +O(ξ2), and (26)

Lext,i = λi − 1

3

X

j

λj (27)

This expression for Lext is known as the linear tide approxi-
mation (Bond & Myers 1996). The initial condition of equa-
tion (25) is the Zeldovich Approximation.

The solution of the differential equation above can be
written as a series: ξi =

P

j ζ
(j)
i aj . In what follows we only

consider the first two terms in this series:

ζ
(1)
i = λi (28)

ζ
(2)
i =

3

50
(I21 − 2I2) +

11

175
I2 +

3

50
λi(2I1 − 5λi), (29)

where I1 ≡ P

j λj and I2 ≡ P

j 6=k λjλk (Ohta et al. 2004
provide a similar expansion).

We then apply the same argument as in the previous
section for the perturbation-theory approach to calculate
the pdf of the evolved density field. Namely, we set

ρ p(ρ|V ) dρ =

Z

dλ p(λ|1) δD
 

ρ =
3
Y

i=1

(1− σξi)
−1

!

, (30)

where σξi ≡ σζ
(1)
i + σ2ζ

(2)
i and σ includes the shape effect

(equation 21, with ξi values replacing λi values).
Figure 5 shows the correlation between the initial and

final densities in this model for 8h−1 Mpc cells. Recall that,
because the evolution depends on all three λi, whereas the

Figure 5. Stochasticity in the mapping between linear and non-
linear overdensity on scales of 8h−1 Mpc. In the upper panel,
points show the ellipsoidal collapse mapping associated with equa-
tion (30); solid line shows the spherical collapse mapping of
equation (13). Both are normalised as described in Section 2.3;
NEC = 1.087 for ellipsoidal collapse and NSC = 1.33 for the
spherical model. The lower panel shows the difference between
these two mappings.

initial density δL is simply proportional to
P

i λi, we expect
there to be some stochasticity in ρ at each δL. The Fig-
ure shows that this is not a very large effect. Moreover, the
solid line shows that the spherical collapse mapping (equa-
tion 13) provides a reasonably good description of the mean
mapping. We exploit this fact in the next section.

The dot-dashed lines in Figure 4 show the predicted
pdfs from this second order ellipsoidal collapse model. Note
that inclusion of these second order terms provides a clear
improvement over the Zeldovich Approximation prediction;
this is true over all ln(ρ) > −1 in both the 8 and 16h−1

Mpc cells. Although the discrepancies at small ρ are the
most dramatic (we discuss these in the next section), we are
actually more interested in the region around the peak of the
pdf: the bottom panels show clearly that the Zeldovich Ap-
proximation curves lie snake around the simulation results,
whereas this sideways S-shaped residual is largely absent in
the second order ellipsoidal collapse model.

4 DISCUSSION

We discussed two approaches (perturbation theory and ex-
cursion set) for calculating the dark matter pdf using two
different models for the dynamics (spherical collapse and the
Zeldovich Approximation) in each case. Although both ap-
proaches are deterministic, in the sense that the nonlinear
evolution is determined by the initial conditions locally, the
excursion set is slightly less ‘local’. We showed that both are
expected to give similar predictions whenever the dynam-
ics is approximated by local deterministic mappings (equa-
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10 T. Y. Lam & R. K. Sheth

tion 6), of which the spherical evolution model (equation 13)
is a special case (Figure 1). The agreement is important, be-
cause the excursion set calculation allows one to connect
discussions of the dark matter halo distribution with discus-
sions of the pdf (Sheth 1998).

Both the perturbation and excursion set approaches,
when combined with the spherical evolution model, provide
good descriptions of the nonlinear pdf seen in simulations
(Figures 2 and 3). This agreement is slightly unexpected,
in the sense that the spherical evolution model ignores the
fact that the nonlinear evolution of a region may be deter-
mined by quantities other than its initial density. The ellip-
soidal collapse model is a specific example of this; we studied
its first (Zeldovich Approximation) and second order expan-
sions in some detail. In this model, the evolution of a patch
is determined by its overdensity as well as the surrounding
shear field (only the overdensity matters for the spherical
collapse model). As a result, nonlinear evolution changes
the shape as well as the volume of a patch (in the spherical
collapse model, only the volume changes). We found that
including the evolution of the shapes is important when the
density is high, so this is particularly important when the
cell size is small. This shape dependence also complicates
the excursion set calculation (Section 3.1).

Despite its increased complexity compared to the spher-
ical evolution model, we found that the Zeldovich Approx-
imation resulted in significantly worse agreement with the
simulations (Figure 4). Going to second order in the ellip-
soidal collapse model resulted in more accurate predictions,
except in the lowest density regions. The relatively large dis-
crepancies in underdense regions, in both models, may be re-
lated to the following fact. A Taylor series in δ will converge
more rapidly when δ > 0 than when δ < 0, since the latter
will be an oscillating series. Thus, it may be that, to ac-
curately represent the evolution of underdense regions, one
must go beyond second order in the dynamics. Presumably,
going to even higher order would further improve agreement
with the simulations; this is the subject of work in progress.

Although our perturbation theory calculation accounts
for the evolution of shapes, our excursion set calcula-
tion does not. This too is the subject of on-going work.
The excursion set calculation is particularly interesting
in view of the fact that the marriage of ellipsoidal col-
lapse with the excursion set approach appears to provide
a substantially improved prediction of dark halo abun-
dances (Sheth, Mo & Tormen 2001). Finally, we note that
our study of the real space pdf can be extended to red-
shift space; we are in the process of extending previ-
ous work on this problem (Protogeros & Scherrer 1997;
Hui, Kofman & Shandarin 2000; Ohta et al. 2004).

4.1 An extension

The accuracy of the spherical collapse based predictions,
and the fact that the associated deterministic mapping from
initial to final overdensity also provides a good description
of the mean mapping in the ellipsoidal collapse model (Fig-
ure 5), suggests that one might be able to estimate the shape
of the initial pdf from a measurement of the evolved one
as follows. Starting from equation 13 and the normalization
method in section 2.3, there is a mapping from the final den-
sity to its initial value. For each measured M = ρ̄V (1+δNL)

set

ν =
1− [(1 + δNL)/Nsc]

−1/δc

σL(M/Nsc)/δc
, (31)

where δc is the critical linear density associated with col-
lapse in the spherical model, and Nsc is the corresponding
normalization factor (Section 2.3). Then make a histogram
of ν, but rather than having each cell count equally, weight
each by its value of (1 + δNL)/Nsc. The resulting distribu-
tion of ν should provide a good estimate of the shape of the
initial pdf of (δL/σL).

Figure 6 shows the results of this algorithm for a num-
ber of different scales. Reconstruction of the initial pdf from
the nonlinear pdf measured on scales larger than 8h−1Mpc
works rather well (top panels). The reconstructed distribu-
tions trace the same Gaussian shape very well; for reference,
the smooth black curve shows a Gaussian with zero mean
and unit variance. This mapping works well even when the
cell size is as small as 4h−1Mpc (bottom left), but it fails
at 1h−1Mpc (bottom right). The Figure also shows that it
is important to account for the factor of 1 + δNL which re-
lates Eulerian and Lagrangian statistics: weighting each cell
in the nonlinear distribution equally would have lead one to
conclude incorrectly that the reconstruction is biased even
on very large scales. Studying whether or not this is relevant
for the MAK reconstruction method (Mohayaee et al. 2006)
is the subject of work in progress.

In effect, the spherical evolution model, when combined
with the nonlinear pdf, is able to provide a good descrip-
tion of the initial pdf for scales where the rms fluctuation is
smaller than about 2. In principle, this might be used as the
basis for a test of the Gaussianity of the initial conditions
because the algorithm makes no explicit assumption about
the form of the distribution of ν. The fact that the non-
linear pdfs from a range of different scales all map back to
the same zero mean, unit variance Gaussian curve suggests
that this method is a good test of Gaussianity. Although
this is not the first method to reconstruct the shape of the
initial one-point density field, it is simple and actually fares
rather well compared to a number of previous methods (e.g.
Kofman et al. 1994; Narayanan & Croft 1999).

This procedure is not as good a test of non-Gaussianity,
in the sense that it does not yield a simple estimate of the
shape of the initial distribution if it were non-Gaussian.
This is because the reconstruction requires an estimate of
the normalization factor Nsc, and to calculate it, one must
first specify the form of the initial distribution. So the al-
gorithm above is really a self-consistency check: it checks if
the assumed form of the initial pdf is consistent with that
reconstructed from the measured nonlinear pdf, under the
assumption that spherical evolution is a good model what-
ever the initial fluctuation field. Of course, rescaling to ν
involved a rescaling and transformation of the measured M ,
but it also involved σ(M); this is a consequence of the fact
that, for Gaussian fluctuations, information about the vol-
ume enters only through the scale dependence of the rms
value. For more general distributions this may not remain
true, in which case the mapping to the initial variable δL
may be more complicated than equation (31). Nevertheless,
Figure 6 suggests that this may be an interesting avenue
to explore in future work. We are in the process of extend-
ing this method to include redshift space effects, as well as
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Nonlinear dark matter pdf 11

Figure 6. Comparison of the reconstructed linear pdf of δ/σ (histogram) with the expected zero-mean unit-rms Gaussian form (solid
line). Different panels show results for reconstructions from different smoothing scales. The method works well for large cells (top panels),
but becomes increasingly inaccurate for smaller cells (bottom panels). When the nonlinear rms fluctuation is larger than 2 (bottom right),
then the reconstructed pdf is rather different from the Gaussian form, as one might expect from Figure 3. Dotted curves show the bias
which results from ignoring the extra weighting factor associated with the transformation from Eulerian to Lagrangian statistics.

galaxy bias. We believe it may be interesting to merge it with
the method recently proposed by Eisenstein et al. (2007) for
reconstructing the Baryon Acoustic Oscillation feature in
the galaxy distribution.
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APPENDIX A: FULLY ANALYTIC PDF IN

THE SPHERICAL MODEL

For a power-law power spectrum (P (k) ∝ kn), the spheri-
cal model allows a semi-analytical form of the pdf for some
special choices of n. To see this clearly, define δ̃L by

δL(ρ)

σL(ρ)
=

1

σV
δcρ

(n+3)/6(1− ρ−1/δc ) ≡ δ̃L(ρ)

σV
, (A1)

where σV is independent of ρ. If we set

n+ 3

6
=

1

2δc
, (A2)

then

ρ =

0

@

δ̃L
2δc

+

s

(
δ̃L
2δc

)2 + 1

1

A

2δc

(A3)

N =

Z ∞

−∞

dδ̃L
e−δ̃2

L
/2σ2

V

√
2πσV

0

@

δ̃L
2δc

+

s

(
δ̃L
2δc

)2 + 1

1

A

−2δc

.(A4)

and the normalised perturbation theory pdf is

ρ2 p(ρ) =
κ(ρ/N, δc)

2
p

2πσ2
V

exp

»

− δ2c
2σ2

V

κ2(ρ/N, δc)

–

, (A5)

where

κ(ρ, δc) = ρ1/2δc + ρ−1/2δc . (A6)

Setting δc = 5/3 means n = −6/5 and so

N =
5

3

e25/9σ
2

V

√
2πσV

»

K7/6

„

25

9σ2
V

«

+K13/6

„

25

9σ2
V

«–

, (A7)

were Kν(x) is a modified Bessel function of the second kind.
The random walk prediction for this model is

ρ2 p(ρ) =
(ρ/N)3/10
p

2πσ2
V

exp

»

− 25

18σ2
V

κ2(ρ/N, δc)

–

(A8)

where

N =
10

3

e25/9σ
2

V

√
2πσV

K7/6

„

25

9σ2
V

«

. (A9)

In this context, it is interesting that the family of models
studied by Sheth (1998) included modified Bessel functions
of the third, rather than second, kind. The solid and dotted
curves in Figure 1 show equations (A5) and (A8) for a few
values of σV .
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