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Abstract

The defining relations (triple relations) of n pairs of parafermion operators f±

j (j = 1, . . . , n)
are known to coincide with a set of defining relations for the Lie algebra so(2n+ 1) in terms of
2n generators. With the common Hermiticity conditions, this means that the “parafermions of
order p” correspond to a finite-dimensional unitary irreducible representationW (p) of so(2n+1),
with highest weight (p

2
, p
2
, . . . , p

2
). Although the dimension and character of W (p) is known

by classical formulas, there is no explicit basis of W (p) available in which the parafermion
operators have a natural action. In this paper we construct an orthogonal basis for W (p), and
we present the explicit actions of the parafermion generators on these basis vectors. We use
group theoretical techniques, in which the u(n) subalgebra of so(2n+ 1) plays a crucial role: a
set of Gelfand-Zetlin patterns of u(n) will be used to label the basis vectors of W (p), and also
in the explicit action (matrix elements) certain u(n) Clebsch-Gordan coefficients are essential.

1 Introduction

It has been known for a long time that Fermi-Dirac and Bose-Einstein statistics do not yield
all possible descriptions of particle systems [7, 11]. The classical work of Green [7] is nowadays
considered as the basic underlying mathematical formulation of the problem of generalized quantum
statistics. In this paper, the notions of Bose oscillators or bosons and Fermi oscillators or fermions
are generalized to parabosons and parafermions. Parabosons and parafermions are of interest in
many applications, in particular in quantum field theory [5,21,23] and generalizations of quantum
statistics (para-statistics) [7, 11–13,16].

The “creation and annihilation operators” for parabosons or parafermions satisfy certain triple
relations, which can be considered as their defining relations. The main object to construct is then
the generalization of the boson or fermion Fock space, i.e. the paraboson or parafermion Fock space.
Such a Fock space (with unique vacuum vector) is characterized by a certain parameter p, known as
the order of parastatistics. One way to construct the Fock space of order p was already discussed by
Green, and is referred to as the so-called Green ansatz [7]. The mathematical equivalent is related
to finding a proper basis of an irreducible constituent of a p-fold tensor product [11, 16], in fact
a superalgebra tensor product for parabosons [16, 26]. The computational difficulties arising here
turn out to be very hard, and did not lead to a complete solution of the problem (constructing a
proper orthonormal basis of the Fock space, with explicit actions of the paraboson or parafermion
operators on this basis).

In a recent paper [17] this problem of giving a complete construction of the Fock space of order p
was solved for the paraboson case. The solution relies on an important observation by Ganchev and
Palev [6], who showed that the triple relations for n pairs of paraboson operators are the defining
relations for the orthosymplectic Lie superalgebra osp(1|2n) [14]. As a consequence, the paraboson
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Fock space of order p is a certain infinite-dimensional unitary irreducible representation (unirrep)
of osp(1|2n). The construction of this representation was performed in [17], using group theoretical
techniques and in particular the branching osp(1|2n) ⊃ sp(2n) ⊃ u(n). The result is a complete
description of a proper basis (an orthogonal Gelfand-Zetlin-basis) and the explicit action (matrix
elements) of the paraboson operators in this basis [17].

In the present paper we tackle the same problem for the case of parafermions. It is already
known for a long time that the triple relations for n pairs of parafermion operators are the defining
relations for the orthogonal Lie algebra so(2n+ 1) [15,27]. The parafermion Fock space of order p
then corresponds to a unirrep of so(2n + 1), namely to the finite-dimensional unirrep W (p) with
highest weight (p2 ,

p
2 , . . . ,

p
2). Contrary to infinite-dimensional unirreps of the Lie superalgebra

osp(1|2n), where little was known, a lot is known about finite-dimensional unirreps of Lie algebras
and in particular of so(2n + 1). For example, it is easy to write down the character of W (p) and
compute its dimension. On the other hand, a proper basis of W (p), in which the action of the
parafermion operators can be given explicitly, is not known. The celebrated Gelfand-Zetlin (GZ)
basis for finite-dimensional irreducible representations of the orthogonal Lie groups or Lie algebras,
given in [9], is in fact not appropriate here. In the GZ-basis of [9] for so(2n + 1), the action is
given for a set of 2n generators, which are however different from the parafermion operators (and
also different from the Chevalley generators; in fact, the generators in [9] are not root vectors).
The relations between the parafermion operators and the generators used in [9] or the Chevalley
generators are highly nonlinear [25], and hence do not lead to a practical and explicit expression of
the parafermion matrix elements.

Previous attempts to solve this problem followed essentially Green’s ansatz. In terms of the Lie
algebra so(2n+1), this amounts to constructing W (p) as one of the irreducible components in the
p-fold tensor product W (1)⊗p of W (1), where W (1) is the so(2n + 1) unirrep with highest weight
(12 ,

1
2 , . . . ,

1
2), i.e. W (1) is the usual fermion Fock space of dimension 2n (the spinor representation

of so(2n + 1)). In a number of papers, further attention was given to the actual decomposition
of W (1)⊗p into its irreducible components [3, 10, 24]. In [3, 24], the “vacuum subspaces” of the
irreducible components of W (1)⊗p were considered, and shown to correspond to unirreps of the
subalgebra u(n). These approaches did not lead to solution for the parafermion matrix elements,
however.

In the current paper we present an explicit solution to this problem. Our solution is based upon
group theoretical techniques: we use, in particular, the branching so(2n + 1) ⊃ u(n), an induced
representation construction, the known Gelfand-Zetlin basis description for u(n) [8], u(n) Clebsch-
Gordan coefficients, the method of reduced matrix elements, and the computational techniques
developed in [17]. Our main result is a specific orthogonal basis for W (p) described by means of
GZ-patterns, and the explicit action (matrix elements) of the parafermion operators in this basis.

The structure of the paper is as follows. In section 2 we give the defining relations for the
parafermion operators, and for the parafermion Fock space W (p). In section 3 we relate the
parafermion operators to a set of generators for the Lie algebra so(2n+1), and we give a character
formula and a dimension formula for W (p). Section 4 is the core of the paper: using an induced
module construction, we find a proper basis for W (p) and we compute the explicit action of the
parafermion creation and annihilation operators on the basis vectors. An example is given in
section 5, and we conclude the paper with a summary and some final remarks in section 6.
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2 The parafermion Fock space W (p)

For a system consisting of n fermions, with creation and annihilation operators F±
i (i = 1, 2, . . . , n),

the defining relations are written by means of anticommutators:

{F−
i , F+

j } = δij , {F−
i , F−

j } = {F+
i , F+

j } = 0. (2.1)

The n-fermion Fock space is defined as a Hilbert space with vacuum vector |0〉, with

〈0|0〉 = 1, F−
i |0〉 = 0, (F±

i )† = F∓
i (i = 1, . . . , n). (2.2)

This Hilbert space is finite-dimensional and irreducible under the action of the algebra spanned by
the elements 1, F+

i , F−
i (i = 1, . . . , n), subject to (2.1). A set of orthogonal basis vectors of this

space is given by

|θ1, . . . , θn〉 = (F+
1 )θ1 · · · (F+

n )θn |0〉, θ1, . . . , θn ∈ {0, 1}. (2.3)

This Fock space, denoted by W (1), has dimension 2n. We shall see that it is a certain unirrep of
the Lie algebra so(2n + 1), with highest weight (12 , . . . ,

1
2 ) (the spinor representation).

The purpose of this paper is to study Fock representations of a system of n parafermions. For
such a system, with creation and annihilation operators f±

i (i = 1, . . . , n), the defining relations
are usually given by

[f−
j , [f+

k , f−
l ]] = 2δjkf

−
l , [f−

j , [f+
k , f+

l ]] = 2δjkf
+
l − 2δjlf

+
k , [f−

j , [f−
k , f−

l ]] = 0,

and their conjugates. They can be written in the following unified form:

[[f ξ
j , f

η
k ], f

ǫ
l ] =

1

2
(ǫ− η)2δklf

ξ
j − 1

2
(ǫ− ξ)2δjlf

η
k , (2.4)

where j, k, l ∈ {1, 2, . . . , n} and η, ǫ, ξ ∈ {+,−} (to be interpreted as +1 and −1 in the algebraic
expressions ǫ− ξ and ǫ− η).

The parafermion Fock space W (p) is the Hilbert space with unique vacuum vector |0〉, defined
by means of (j, k = 1, 2, . . . , n)

〈0|0〉 = 1, f−
j |0〉 = 0, (f±

j )† = f∓
j ,

[f−
j , f+

k ]|0〉 = p δjk |0〉, (2.5)

and by irreducibility under the action of the algebra spanned by the elements f+
j , f−

j (j = 1, . . . , n),
subject to (2.4). The parameter p is known as the order of the parafermion system. For p = 1 the
parafermion Fock space W (p) coincides with the fermion Fock space W (1). In order to understand
the structure of W (p) for general (integer) p-values, it will be necessary to make the connection
between the algebraic relations (2.4) and the defining relations of the Lie algebra so(2n + 1).

3 The Lie algebra so(2n+ 1) and its unirrep W (p)

The orthogonal Lie algebra so(2n + 1) consists of matrices of the form:





a b c
d −at e

−et −ct 0



 , (3.1)
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where a is any (n×n)-matrix, b and d are antisymmetric (n×n)-matrices, and c and e are (n× 1)-
matrices (t stands for transpose). Denote by eij the matrix with zeros everywhere except a 1 on
position (i, j) (where i, j ∈ {1, . . . , 2n+1}). Then the Cartan subalgebra h of so(2n+1) is spanned
by the diagonal elements

hj = ejj − en+j,n+j (j = 1, . . . , n). (3.2)

In terms of the dual basis ǫj of h∗ the root vectors and corresponding roots of so(2n+1) are given
by:

ejk − ek+n,j+n ↔ ǫj − ǫk, j 6= k = 1, . . . , n,

ej,k+n − ek,j+n ↔ ǫj + ǫk, j < k = 1, . . . , n,

ej+n,k − ek+n,j ↔ −ǫj − ǫk, j < k = 1, . . . , n, (3.3)

ej,2n+1 − e2n+1,j+n ↔ ǫj, j = 1, . . . , n,

en+j,2n+1 − e2n+1,j ↔ −ǫj, j = 1, . . . , n.

The positive roots are given by ∆+ = {ǫj (j = 1, . . . , n); ǫj − ǫk, ǫj + ǫk (1 ≤ j < k ≤ n)}. Then it
is easy to verify that the following multiples of some of the root vectors

f+
k =

√
2(ej,2n+1 − e2n+1,n+j), f−

k =
√
2(e2n+1,j − en+j,2n+1) (k = 1, . . . , n) (3.4)

satisfy the defining triple relations of n parafermions (2.4). Furthermore, note that all other root

vectors of so(2n + 1) can be obtained by considering all possible commutators [f ξ
j , f

η
k ]. This was

one of the main results of [15,27]:

Theorem 1 As a Lie algebra defined by generators and relations, so(2n + 1) is generated by the
2n elements f±

k subject to the parafermion relations (2.4).

The parafermion operators f+
j are part of the positive root vectors, and the f−

j are part of
the negative root vectors. The generating vector |0〉 of the parafermion Fock space W (p) satisfies
(j, k = 1, . . . , n)

f−
j |0〉 = 0, [f−

j , f+
k ]|0〉 = p δjk |0〉. (3.5)

Furthermore, it is easy to verify that

[f−
j , f+

j ] = −2hj (j = 1, . . . , n), (3.6)

from which one deduces hj |0〉 = −p
2 |0〉. Hence we have the following:

Corollary 2 The parafermion Fock space W (p) is the unitary irreducible representation of so(2n+
1) with lowest weight (−p

2 ,−
p
2 , . . . ,−

p
2 ).

A lot is known about finite-dimensional representations of the Lie algebra so(2n + 1) (or of
any simple Lie algebra). In particular, dimension and character formulas are available for such
representations. In these formulas, one uses the Weyl group W and the Weyl tool ρ. For the case
of so(2n + 1), W = Sn × {−1,+1}n, of order n! · 2n (Sn is the symmetric group). And from (3.3)
one can verify that the Weyl tool is

ρ =
1

2

∑

α∈∆+

α =

n
∑

j=1

2n+ 1− 2j

2
ǫj = (

2n − 1

2
, . . . ,

5

2
,
3

2
,
1

2
).

Weyl’s character formula for an irreducible representation V (Λ) with highest weight Λ reads [29]

char V (Λ) =
∑

w∈W

ε(w)ew(Λ+ρ)/
∑

w∈W

ε(w)ew(ρ), (3.7)
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where ε(w) = ±1 is the signature of w, and e stands for the formal exponential. Usually, one
denotes eǫj by xj; then the character is a (symmetric) polynomial in the variables x1, x2, . . . , xn.

In the current case, W (p) is an so(2n+1) representation with lowest weight (−p
2 ,−

p
2 , . . . ,−

p
2 ).

If p is a positive integer, this is the lowest weight of a finite-dimensional irreducible representation
with highest weight Λ = (p2 ,

p
2 , . . . ,

p
2 ). Note that, with (ǫ1 − ǫ2, . . . , ǫn−1 − ǫn, ǫn) as simple root

system, the Dynkin labels of this highest weight are [0, 0, . . . , 0, p]. Let us compute the character
of this representation: splitting the Weyl group into its symmetric group and {−1,+1}n, the
numerator in (3.7) becomes

∑

w∈W

ε(w)ew(Λ+ρ) =
∑

w∈Sn

ε(w) w





n
∏

j=1

(x
p/2+(2n+1−2j)/2
j − x

−p/2−(2n+1−2j)/2
j )



 ;

in terms of a determinant, this can be written as
∑

w∈W

ε(w)ew(Λ+ρ) = det
1≤i,j≤n

(

x
p/2+(2n+1−2j)/2
i − x

−p/2−(2n+1−2j)/2
i

)

= (x1 · · · xn)−p/2−(2n−1)/2 det(xp+2n−j
i − xj−1

i ).

Hence, one obtains

charW (p) = (x1 · · · xn)−p/2 det(xp+2n−j
i − xj−1

i )

det(x2n−j
i − xj−1

i )
. (3.8)

The quotient of determinants appearing here has a nice expression in terms of Schur functions
sλ(x), see [20, p. 84, eq. (2′)]. It reads:

charW (p) = (x1 · · · xn)−p/2
∑

ℓ(λ′)≤p

sλ(x1, . . . , xn). (3.9)

Herein, the Schur functions sλ(x) are, as usual [20], labeled by a partition λ = (λ1, λ2, . . .), where
all λi are nonnegative integers and λ1 ≥ λ2 ≥ · · · . The number of nonzero parts λi is the length of
λ, denoted by ℓ(λ). As sλ(x) = sλ(x1, . . . , xn) with only n variables xi, only those λ with ℓ(λ) ≤ n
appear (since for ℓ(λ) > n one has sλ(x1, . . . , xn) = 0). In (3.9), λ′ stands for the conjugate partition
of λ (a partition whose Young diagram [20] is the transpose of the Young diagram of λ). Otherwise
said, the sum in (3.9) is over all partitions λ whose Young diagram fits inside the (n× p) rectangle.
In what follows, the expansion (3.9) will be very relevant. For a more general context in which
identities such as (3.9) appear, see [22] (the expression (3.9) appears there as [22, Theorem 2.3(1)]).
The origin of (3.9) goes back to work of Bracken and Green [2], who do not give (3.9) explicitly,
but obtain it implicitly by describing the branching so(2n + 1) ⊃ u(n) for W (p).

Apart from the character formula, there is also Weyl’s dimension formula [29] for an irreducible
representation V (Λ) with highest weight Λ:

dimV (Λ) =

∏

α∈∆+
〈Λ + ρ|α〉

∏

α∈∆+
〈ρ|α〉 . (3.10)

Using (3.3) and 〈ǫi|ǫj〉 = δij , this yields:

dimW (p) =
∏

1≤j≤k≤n

p+ 1 + 2n− j − k

1 + 2n − j − k
=

⌊(n−1)/2⌋
∏

i=0

(p+2n−2i−1
2n−4i−1

)

(2n−2i−1
2n−4i−1

) . (3.11)

In the last expression with binomial coefficients, the upper limit for i is the largest integer not
exceeding (n− 1)/2.

The character and dimension of W (p) give already a lot of information, but not yet what we
really want, namely an explicit orthogonal basis of W (p) and the action of f±

i on these basis vectors.
In order to obtain this, we shall follow the induced module construction used in [17].
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4 The construction of W (p)

From (3.3) it is already clear that the 2n elements f±
j are a set of generators for so(2n + 1). In

fact, all basis elements of so(2n + 1) (all root vectors plus a basis of the Cartan subalgebra) are
given by

f±
j (1 ≤ j ≤ n), [f±

j , f±
k ] (1 ≤ j < k ≤ n), [f+

j , f−
k ] (1 ≤ j, k ≤ n). (4.1)

Some relevant subalgebras of so(2n+1) are easy to describe by means of these parafermion gener-
ators f±

j :

Proposition 3 A basis for the subalgebra so(2n) of so(2n + 1) is given by the elements

[f±
j , f±

k ] (1 ≤ j < k ≤ n), [f+
j , f−

k ] (1 ≤ j, k ≤ n). (4.2)

The n2 elements
[f+

j , f−
k ] (1 ≤ j, k ≤ n) (4.3)

are a basis for the so(2n) subalgebra u(n).

In fact, with [f+
j , f−

k ] = 2Ejk, the triple relations (2.4) imply the relations [Eij , Ekl] = δjkEil −
δliEkj. In other words, the elements [f+

j , f−
k ] form, up to a factor 2, the standard u(n) or gl(n)

basis elements.
So the parafermion generators f±

j highlight the subalgebra chain so(2n + 1) ⊃ so(2n) ⊃ u(n).
We use here the notation u(n), algebraically the same as the general linear Lie algebra gl(n), but
with the conditions (f±

j )† = f∓
j implying that we are dealing with the “compact form” u(n).

The subalgebra u(n) can be extended to a parabolic subalgebra [30] P of so(2n + 1):

P = span{[f+
j , f−

k ] (1 ≤ j, k ≤ n), f−
j (1 ≤ j ≤ n), [f−

j , f−
k ] (1 ≤ j < k ≤ n)}. (4.4)

Recall that [f−
j , f+

k ]|0〉 = p δjk |0〉, with [f−
j , f+

j ] = −2hj . This means that the space spanned by |0〉
is a trivial one-dimensional u(n) module C|0〉 of weight (−p

2 , . . . ,−
p
2 ). Since f

−
j |0〉 = 0, the module

C|0〉 can be extended to a one-dimensional P module. Now we can define the Verma module or
the induced so(2n+ 1) module W (p):

W (p) = Ind
so(2n+1)
P C|0〉. (4.5)

This is an so(2n + 1) representation with lowest weight (−p
2 , . . . ,−

p
2 ). By the Poincaré-Birkhoff-

Witt theorem [4], it is easy to give a basis for W (p):

(f+
1 )k1 · · · (f+

n )kn([f+
1 , f+

2 ])k12([f+
1 , f+

3 ])k13 · · · ([f+
n−1, f

+
n ])kn−1,n |0〉, (4.6)

k1, . . . , kn, k12, k13 . . . , kn−1,n ∈ Z+.

Note that W (p) is infinite-dimensional. It is in general not an irreducible representation of so(2n+
1). Let M(p) be the maximal nontrivial submodule of W (p). Then the simple module (irreducible
representation), corresponding to the parafermion Fock space, is

W (p) = W (p)/M(p). (4.7)

For W (p), it is easy to compute its character. Using the fact that the weight of |0〉 is (−p
2 , . . . ,−

p
2 ),

the basis (4.6), and the Cauchy identity [18]

1
∏n

i=1(1− xi)
∏

1≤j<k≤n(1− xjxk)
=
∑

λ

sλ(x1, . . . , xn) =
∑

λ

sλ(x), (4.8)

6



where the sum is over all partitions λ and sλ(x) is the Schur symmetric function, one finds

charW (p) =
(x1 · · · xn)−p/2

∏n
i=1(1− xi)

∏

1≤j<k≤n(1− xjxk)
= (x1 · · · xn)−p/2

∑

λ

sλ(x). (4.9)

These Schur functions sλ(x) are the characters of finite-dimensional u(n) representations. Hence
this expansion yields the branching to u(n) of the so(2n + 1) representation W (p). This gives an
elegant possibility to label the basis vectors of W (p). For each irreducible representation of u(n)
one can use the corresponding Gelfand-Zetlin basis [1, 8]. The union of all these GZ basis is then
the basis for W (p). Thus the new basis of W (p) consists of vectors of the form (the label p is
dropped from the notation of the vectors)

|m) ≡ |m)n ≡

∣

∣

∣

∣

∣

∣

∣

∣

∣

m1n · · · · · · mn−1,n mnn

m1,n−1 · · · · · · mn−1,n−1
... . .

.

m11











=

∣

∣

∣

∣

∣

[m]n

|m)n−1

)

. (4.10)

The top line of this pattern, also denoted by the n-tuple [m]n, is any partition λ (consisting of
non increasing nonnegative numbers). The remaining n − 1 lines of the pattern will sometimes
be denoted by |m)n−1. All mij in the above GZ-pattern are nonnegative integers, satisfying the
betweenness conditions

mi,j+1 ≥ mij ≥ mi+1,j+1 (1 ≤ i ≤ j ≤ n− 1). (4.11)

Since the weight of |0〉 is (−p
2 , . . . ,−

p
2 ), the weight of the above vector is determined by

hk|m) =



−p

2
+

k
∑

j=1

mjk −
k−1
∑

j=1

mj,k−1



 |m). (4.12)

Now we use the same technique as in [17]. The triple relations (2.4) yield

[[f+
i , f−

j ], f+
k ] = 2δjkf

+
i .

With the identification [f+
i , f−

j ] = 2Eij in the standard u(n) basis, this is equivalent to the action

Eij · ek = δjkei. Hence the set (f+
1 , f+

2 , . . . , f+
n ) is a standard u(n) tensor of rank (1, 0, . . . , 0). So

one can attach a unique GZ-pattern with top line 10 · · · 0 to every f+
j , corresponding to the weight

+ǫj. Explicitly:

f+
j ∼

10 · · · 000
10 · · · 00
· · ·
0 · · · 0
· · ·
0

, (4.13)

where the pattern consists of j − 1 zero rows at the bottom, and the first n− j + 1 rows are of the
form 10 · · · 0. The tensor product rule in u(n) reads

([m]n)⊗ (10 · · · 0) = ([m]n+1)⊕ ([m]n+2)⊕ · · · ⊕ ([m]n+n) (4.14)

where ([m]n) = (m1n,m2n, . . . ,mnn) and a subscript ±k indicates an increase of the kth label by
±1:

([m]n±k) = (m1n, . . . ,mkn ± 1, . . . ,mnn). (4.15)

7



In the right hand side of (4.14), only those components which are still partitions (i.e. consisting of
nondecreasing integers) survive.

Now a general matrix element of f+
j can be written as follows [17]:

(m′|f+
j |m) =

(

[m]n+k

|m′)n−1

∣

∣

∣

∣

∣

f+
j

∣

∣

∣

∣

∣

[m]n

|m)n−1

)

=

(

[m]n

|m)n−1
;

10 · · · 00
10 · · · 0
· · ·
0

∣

∣

∣

∣

∣

[m]n+k

|m′)n−1

)

× ([m]n+k||f+||[m]n). (4.16)

The first factor in the right hand side is a u(n) Clebsch-Gordan coefficient [17, 28], the second
factor is a reduced matrix element. By the tensor product rule, the first line of |m′) has to be of
the form (4.15), i.e. [m′]n = [m]n+k for some k-value.

The special u(n) Clebsch-Gordan coefficients (CGCs) appearing here are well known. They can
be found, e.g. in [28]. They are expressed by means of u(n)-u(n− 1) isoscalar factors and u(n− 1)
CGC’s, which on their turn are written by means of u(n−1)-u(n−2) isoscalar factors and u(n−2)
CGC’s, etc. The explicit form of the special u(n) CGCs appearing here is given in Appendix A
of [17].

Just as in [17], the main problem is now to find expressions for the reduced matrix elements,
i.e. for the functions Gk([m]n), where

Gk([m]n) = Gk(m1n,m2n, . . . ,mnn) = ([m]n+k||f+||[m]n), (4.17)

for arbitrary n-tuples of non increasing nonnegative integers [m]n = (m1n,m2n, . . . ,mnn). In that
case, one can write the explicit actions:

f+
j |m) =

∑

k,m′

(

[m]n

|m)n−1
;

10 · · · 00
10 · · · 0
· · ·
0

∣

∣

∣

∣

∣

[m]n+k

|m′)n−1

)

Gk([m]n)

∣

∣

∣

∣

∣

[m]n+k

|m′)n−1

)

, (4.18)

f−
j |m) =

∑

k,m′

(

[m]n−k

|m′)n−1
;

10 · · · 00
10 · · · 0
· · ·
0

∣

∣

∣

∣

∣

[m]n

|m)n−1

)

Gk([m]n−k)

∣

∣

∣

∣

∣

[m]n−k

|m′)n−1

)

. (4.19)

The key calculation to determine the unknown functions Gk is to start from the following action:

[f−
n , f+

n ]|m) = −2hn|m) = (p − 2(

n
∑

j=1

mjn −
n−1
∑

j=1

mj,n−1))|m). (4.20)

Now one can express the left hand side by means of (4.18)-(4.19), using the explicit form of the
CGCs and isoscalar factors (which are rather simple in the case j = n). The result is a complicated
system of coupled recurrence relations for the functions Gk. It is quite surprising that this system
of coupled nonlinear recursion equations has a rather simple solution. Using the relevant boundary
conditions, we have been able to solve this system of recurrence relations. This task would have
been hardly impossible without the use of Maple. Our main computational result is:

Proposition 4 The reduced matrix elements Gk appearing in the actions of f±
j on vectors |m) of

W (p) are given by:

Gk(m1n,m2n, . . . ,mnn) =


−
(En(mkn + n− k) + 1)

∏n
j 6=k=1(mkn −mjn − k + j)

∏⌊n/2⌋

j 6= k
2
=1

(mkn −m2j,n − k + 2j)(mkn −m2j,n − k + 2j + 1)





1/2

(4.21)
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for k even; and by

Gk(m1n,m2n, . . . ,mnn) =






(p−mkn + k − 1)(On(mkn + n− k) + 1)
∏n

j 6=k=1(mkn −mjn − k + j)
∏⌈n/2⌉

j 6= k+1

2
=1

(mkn −m2j−1,n − k + 2j − 1)(mkn −m2j−1,n − k + 2j)







1/2

(4.22)

for k odd.

Herein E and O are the even and odd functions defined by

Ej = 1 if j is even and 0 otherwise,

Oj = 1 if j is odd and 0 otherwise; (4.23)

where obviously Oj = 1 − Ej, but it is still convenient to use both notations. Also, note that
products such as

∏n
j 6=k=1 means “the product over all j-values running from 1 to n, but excluding

j = k”. The notation ⌊a⌋ (resp. ⌈a⌉) refers to the floor (resp. ceiling) of a, i.e. the largest integer
not exceeding a (resp. the smallest integer greater than or equal to a).

To present all the details of this computational result is unrealistic. Just as in [17], the proof
consist of verifying that all triple relations (2.4) hold when acting on any vector |m). Each such
verification leads to an algebraic identity in the n variables of the partition, m1n, . . . ,mnn. In such
computations, there are some intermediate verifications: e.g. the action [f+

j , f−
k ]|m) should leave

the top row of the GZ-pattern |m) invariant (since [f+
j , f−

k ] belongs to u(n)). In fact, it must
give (up to a factor 2) the known action of the standard u(n) matrix elements Ejk in the classical
GZ-basis.

The explicit expressions for the reduced matrix elements give the action of the generators in
the basis of W (p), for arbitrary p. The structure of the maximal submodule M(p) and hence of
the irreducible factor module W (p) is revealed by examining when these matrix elements vanish.
It follows from (4.21)-(4.22) that the only crucial factor is

(p−mkn + k − 1), (k odd).

In particular for k = 1 this factor is (p −m1n), and m1n is the largest integer in the GZ-pattern.
Starting from the vacuum vector, with a GZ-pattern consisting of all zeros, one can raise the entries
in the GZ-pattern by applying the operators f+

j . However, when m1n has reached the value p it can
no longer be increased. As a consequence, all vectors |m) with m1n > p belong to the submodule
M(p). This uncovers the structure of W (p):

Corollary 5 For p a positive integer, the parafermion Fock space W (p) has as a basis the vectors
|m) with m1n ≤ p. In other words, the top line of |m) is a partition λ with largest part not exceeding
p, i.e. ℓ(λ′) ≤ p. As a consequence, it follows from (4.9) that

charW (p) = (x1 · · · xn)−p/2
∑

λ, ℓ(λ′)≤p

sλ(x1, . . . , xn).

This last result coincides with (3.9). Note that p must be a positive integer in order to have a
positive inner product (m|m) for all possible patterns.

Of course, we did not make these hard computations just to find the character of W (p), which
was already determined by standard techniques. Our main purpose was to find a proper orthonor-
mal basis for W (p), in which the action of the parafermion operators f±

j can be computed explicitly.
This has now been obtained by means of (4.18)-(4.19) and (4.21)-(4.22). Let us summarize this
result, inserting also the explicit CGCs of [17, Appendix A].
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Theorem 6 An orthonormal basis for the parafermion Fock space W (p) is given by the vectors
|m), see (4.10), with m1n ≤ p. Its dimension is given by (3.11). The action of the Cartan algebra
elements of so(2n + 1) is:

hk|m) =



−p

2
+

k
∑

j=1

mjk −
k−1
∑

j=1

mj,k−1



 |m), (1 ≤ k ≤ n). (4.24)

The action of the parafermion operators f±
j is given below, first for j = n (simple case) and then

for general j. We have:

f+
n |m) =

n
∑

i=1

(

∏n−1
k=1(lk,n−1 − lin − 1)
∏n

k 6=i=1(lkn − lin)

)1/2

Gi(m1n,m2n, . . . ,mnn)|m)+in; (4.25)

f−
n |m) =

n
∑

i=1

(

∏n−1
k=1(lk,n−1 − lin)

∏n
k 6=i=1(lkn − lin + 1)

)1/2

Gi(m1n, . . . ,min − 1, . . . ,mnn)|m)−in; (4.26)

Herein, lij = mij − i, Gi is determined by (4.21)-(4.22), and ±i, n attached as a subscript to |m)
indicates a replacement mi,n → mi,n ± 1. In general,

f+
j |m) =

n
∑

in=1

n−1
∑

in−1=1

. . .

j
∑

ij=1

S(in, in−1)S(in−1, in−2) . . . S(ij+1, ij)

(

∏j−1
k=1(lk,j−1 − lij ,j − 1)
∏j

k 6=ij=1(lkj − lij ,j)

)1/2

×
n−j
∏

r=1

(
∏n−r

k 6=in−r=1(lk,n−r − lin−r+1,n−r+1 − 1)
∏n−r+1

k 6=in−r+1=1(lk,n−r+1 − lin−r ,n−r)
∏n−r+1

k 6=in−r+1=1(lk,n−r+1 − lin−r+1,n−r+1)
∏n−r

k 6=in−r=1(lk,n−r − lin−r ,n−r − 1)

)1/2

×Gin(m1n,m2n, . . . ,mnn) |m)+in,n;+in−1,n−1;...;+ij ,j; (4.27)

f−
j |m) =

n
∑

in=1

n−1
∑

in−1=1

. . .

j
∑

ij=1

S(in, in−1)S(in−1, in−2) . . . S(ij+1, ij)

(

∏j−1
k=1(lk,j−1 − lij ,j)

∏j
k 6=ij=1(lkj − lij ,j + 1)

)1/2

×
n−j
∏

r=1

(
∏n−r

k 6=in−r=1(lk,n−r − lin−r+1,n−r+1)
∏n−r+1

k 6=in−r+1=1(lk,n−r+1 − lin−r ,n−r + 1)
∏n−r+1

k 6=in−r+1=1(lk,n−r+1 − lin−r+1,n−r+1 + 1)
∏n−r

k 6=in−r=1(lk,n−r − lin−r ,n−r)

)1/2

×Gin(m1n, . . . ,min,n − 1, . . . ,mnn) |m)−in,n;−in−1,n−1;...;−ij ,j. (4.28)

Once again, each symbol ±ik, k attached as a subscript to |m) indicates a replacement mik,k →
mik,k ± 1, and

S(k, l) =

{

1 for k ≤ l
−1 for k > l.

(4.29)

5 Example: W (p) for so(5)

The above formulas for general n look rather involved, so it is perhaps useful to give an example.
Let us consider the case n = 2, i.e. the Lie algebra so(5). For any positive integer p, the parafermion
Fock space W (p) has dimension given by (3.11),

dimW (p) =
(p+ 3)(p + 2)(p + 1)

6
. (5.1)
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The set of orthonormal basis vectors of W (p) is given by all vectors with integer m-patterns of the
form

∣

∣

∣

∣

m12,m22

m11

)

, p ≥ m12 ≥ m11 ≥ m22 ≥ 0. (5.2)

Clearly, the number of different m-patterns satisfying these inequalities coincides with (5.1). The
action of the parafermion generators f+

1 and f+
2 is given by:

f+
1

∣

∣

∣

∣

m12,m22

m11

)

=
√

(m11 −m22 + 1)(p −m12)

∣

∣

∣

∣

m12 + 1,m22

m11 + 1

)

−
√

(m12 −m11)(m22 + 1)

∣

∣

∣

∣

m12,m22 + 1
m11 + 1

)

, (5.3)

f+
2

∣

∣

∣

∣

m12,m22

m11

)

=
√

(m12 −m11 + 1)(p −m12)

∣

∣

∣

∣

m12 + 1,m22

m11

)

+
√

(m11 −m22)(m22 + 1)

∣

∣

∣

∣

m12,m22 + 1
m11

)

. (5.4)

The action of f−
1 and f−

2 follows from the above expressions using (m′|f−
j |m) = (m|f+

j |m′). In this
case, it is not too difficult to check these actions by hand: one can do this by comparing the action
of the left hand side of the triple relation (2.4) with the action of the right hand side of (2.4) (for
some values of j, k, l and ξ, η, ǫ).

6 Summary and conclusion

In this paper we have given a complete description of the unitary irreducible representations W (p)
of so(2n + 1) with highest weight (p2 ,

p
2 , . . . ,

p
2 ), which in particular are of interest in the theory of

parafermion statistics because these representations are exactly the Fock spaces of n parafermions,
with p being the order of the parastatistics. Although many aspects of W (p) are known from general
Lie algebra representation theory, the problem of giving an appropriate orthogonal basis for W (p)
and the explicit action of the parafermion operators on such a basis was not solved. In the present
paper we solve this problem using some group theoretical methods and computational techniques.
A crucial role in our analysis is played by the u(n) subalgebra of so(2n + 1), generated by all
commutators of the parafermion creation and annihilation operators. Taking a certain parabolic
subalgebra P containing u(n) and a trivial module of P generated from the vacuum, i.e. the lowest
weight vector of weight (−p

2 ,−
p
2 , . . . ,−

p
2 ), an induced module W (p) of so(2n + 1) is constructed.

The Fock moduleW (p) is the quotient of this induced module by its maximal submoduleM(p). The
character of the induced module is readily obtained and by a classical result of Cauchy-Littlewood
the characters can be rewritten as an infinite sum over partitions of Schur symmetric functions.
This can be reinterpreted as a decomposition of the so(2n + 1) module into an infinite sum of
finite-dimensional simple u(n) modules labeled by partitions. For each irreducible representation of
u(n) one can use the corresponding Gelfand-Zetlin basis. The union of all these GZ basis vectors is
the basis for the induced module W (p). The main calculation is then the action of the parafermion
operators on this basis. Just as for the case of paraboson operators [17], the collection of the
n parafermion creation operators is a u(n) tensor operator of rank (1, 0, . . . , 0). To calculate its
matrix elements, they are written as a product of certain u(n) Clebsch-Gordan coefficient and a
reduced matrix element. As the relevant u(n) CGCs are known, the problem is to find the reduced
matrix elements. Solving a set of recurrence relations for these, leads to their expressions. These
explicit expressions give not only the action of the generators in the basis of W (p), they also yield
the structure of the maximal submodule M(p) and hence of the irreducible factor module W (p).
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This leads to the main result of the paper: an explicit basis of W (p) (consisting of all possible
GZ-patterns with integer entries at most p) and the explicit action of the generators in this basis.
As an illustration, the case n = 2 is given in more detail.

We have considered here the parafermion Fock spaces of order p for a finite degree of freedom
(n finite). The real interest lies in such quantum systems (parabosons and parafermions) with an
infinite degree of freedom (n = +∞), see e.g. [11,16]. In a forthcoming paper, we hope to report on
how the results of [17] and of the current paper can be used to construct representations of order
p for an infinite set of parabosons and parafermions. Also an investigation of representations of
the “parastatistics algebra” in which both parabosons and parafermions appear [19] should be of
interest.
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