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7 The first Hochschild cohomology group of a

schurian cluster-tilted algebra

Ibrahim Assem ∗ and Maŕıa Julia Redondo†‡

Abstract

Given a cluster-tilted algebra B we study its first Hochschild coho-
mology group HH1(B) with coefficients in the B-B-bimodule B. We find
several consequences when B is representation-finite, and also in the case
where B is cluster-tilted of type Ã.

2000 Mathematics Subject Classification : 16E40

1 Introduction

Cluster categories were introduced in [11] and also in [17] for type A, in order to
understand better the cluster algebras of Fomin and Zelevinsky [20]. Cluster-tilted
algebras were defined in [12] and also in [18] for type A. These algebras have been
studied by several authors (see, for instance, [1, 18, 12, 13]). Our objective here is,
for a cluster-tilted algebra B, to study its first Hochschild cohomology group HH1(B)
with coefficients in the B-B-bimodule B, see [19]. As a first step, we consider the
case where B is schurian: this includes the case of all representation-finite cluster-tilted
algebras. There are several reasons for this restriction. Indeed, it was shown in [1]
that, if C is a tilted algebra, then the trivial extension C ⋉ Ext2C(DC,C) of C by the
C-C-bimodule Ext2C(DC,C) is cluster-tilted, and, conversely, any cluster-tilted algebra
is of this form. As a consequence, one can describe the ordinary quiver of B knowing
that of C. But the relations are more difficult to compute. However, they are known
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in the representation-finite case, see [13], and one can assume, as an approximation,
that the algebra is schurian. Also, in a schurian algebra, normalized derivations are
diagonalizable and this simplifies considerably our calculations. The main step in our
proof consists in defining an equivalence relation between the arrows in the quiver of
B which are not in the quiver of C. The number of equivalence classes is then denoted
as nB,C . Our main theorem is the following.

THEOREM 1.1 Let k be an algebraically closed field and B be a schurian cluster-
tilted algebra. If C is a tilted algebra such that B = C ⋉ Ext2C(DC,C) then there is a
short exact sequence of abelian groups

0 → HH1(C) → HH1(B) → knB,C → 0.

We find several interesting consequences in the representation-finite case. Also, if
B is a schurian cluster-tilted algebra, then we prove that HH1(B) = 0 if and only if
B is hereditary with ordinary quiver a tree. We then also study the case where B is
cluster-tilted of type Ã. In this case, B is not necessarily schurian, but it is gentle (see
[3] or also [14]), hence we can apply the results of [16].

We now describe the contents of the paper. After a short preliminary section,
we introduce our equivalence relation in Section 2, prove our main theorem and its
consequences in Section 3, then study the case Ã in Section 4.

2 Preliminaries.

2.1 Notations.

Throughout this paper, algebras are basic, connected and finite dimensional over an
algebraically closed field k. For such an algebra C, there exists a quiver Q and an
admissible ideal I of the path algebra kQ of Q such that C ≃ kQ/I. We denote by Q0

the set of points of Q, and by Q1 its set of arrows. For a point x ∈ Q0, we denote by ex
the corresponding primitive idempotent of C. For an arrow α ∈ Q1 we denote by s(α)
and t(α), respectively, its source and its target, and by α−1 its formal inverse. A walk
in Q is a composition of arrows and formal inverses of arrows. A relation from x ∈ Q0

to y ∈ Q0 is a linear combination ρ =
∑m

i=1 aiwi where each ai is a non-zero scalar and
each wi is a path of length at least two from x to y. If m = 1 then ρ is monomial and,
if m = 2 then it is binomial. Any admissible ideal of kQ is generated by a finite set of
relations. Following [9], C = kQ/I can equivalently be considered as a k-category with
object class C0 = Q0 and set of morphisms C(x, y) from x to y equal to the quotient
of the k-vector space kQ(x, y) of all linear combinations of paths from x to y by the
subspace I(x, y) = I ∩ kQ(x, y). A full subcategory C ′ of C is convex if any path in
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C with source and target in C ′ lies entirely in C ′. An algebra C is triangular if its
quiver is acyclic, that is, without oriented cycles. It is schurian if, for any x, y ∈ C0,
we have dimkC(x, y) ≤ 1. If C = kQ/I is schurian, then I is generated by monomial
and binomial relations.

By a C-module is meant a finitely generated right module. We denote by modC
their category. For more notations or facts about algebras or modules, we refer to [6].

2.2 Cluster-tilted algebras.

Let A be a hereditary algebra and Db(modA) denote the bounded derived category over
modA. The cluster category CA is the orbit category Db(modA)/F where F = τ−1[1] is
the composition of the Auslander-Reiten translation τ−1 with the shift [1] ofDb(modA).
Then CA is a triangulated category with almost split triangles. An object T̃ is tilting if
Ext1CA(T̃ , T̃ ) = 0 and the number of isomorphism classes of indecomposable summands

of T̃ equals the rank of the Grothendieck group of A, see [11]. The endomorphism
algebra of a tilting object B = EndCA(T̃ ) is a cluster-tilted algebra, see [12]. It is shown
in [1] that, if T is a tilting module over a hereditary algebra A, so that C = EndA(T ) is a
tilted algebra, then the trivial extension C̃ = C⋉Ext2C(DC,C) (the relation-extension
of C) is cluster-tilted and, conversely, any cluster-tilted algebra is of this form (but in
general, not uniquely: see [2]). As a consequence, we have a description of the quiver
of C̃. Let R be a system of relations for the tilted algebra C = kQ/I, that is, R is a
subset of ∪x,y∈Q0

I(x, y) such that R, but no proper subset of R, generates I as an ideal
of kQ. It is shown in [1] that the quiver Q̃ of C̃ is as follows:

(a) Q̃0 = Q0;

(b) For x, y ∈ Q0, the set of arrows in Q̃ from x to y equals the set of arrows in Q
from x to y (which we call old arrows) plus |R∩ I(y, x)| additional arrows (which
we call new arrows).

LEMMA 2.1 Let C = kQ/I be a schurian tilted algebra, then its relation-extension
C̃ contains no walk of the form w = αw′β, where α, β are new arrows, and w′ is a walk
not containing zero relations and consisting entirely of old arrows.

Proof. Suppose there exists such a walk, and assume, without loss of generality, that
the length of w′ is minimal. Since new arrows correspond to relations in C, and the
quiver Q is acyclic, then the existence of such a walk in the quiver Q̃ of C̃ implies that
C contains a subquiver (maybe not full) of one of the forms

(a)

a1
//l h c _ [ V

· · · // ar = b1 · · · bs = c1 //
h d _ Z V Q

· · · // ct
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(b)

• . . . •

  @
@@

@@
@@

@

a1
//l h c _ [ V
. . . // ar = b1 . . . bs = c1

;;xxxxxxxxx

##F
FF

FF
FF

FF
______________ ct

• . . . •

>>~~~~~~~~

(c)

• . . . •

##G
GG

GG
GG

GG

a1

>>}}}}}}}}

  A
AA

AA
AA

A
______________ ar = b1 . . . bs = c1 //

h d _ Z V Q
. . . // ct

• . . . •

;;wwwwwwwww

(d)

• . . . •

##G
GG

GG
GG

GG
• . . . •

  @
@@

@@
@@

@

a1

>>}}}}}}}}

  A
AA

AA
AA

A
______________ ar = b1 . . . bs = c1

;;xxxxxxxxx

##F
FF

FF
FF

FF
______________ ct

• . . . •

;;wwwwwwwww
• . . . •

>>~~~~~~~~

(e)

bs = a1

g c _ [ W
// . . . // ar = b1

GG
GG

GG
GG

G

•

wwwwwwwww
• . . . • •

(f)

• . . . •

##G
GG

GG
GG

GG

bs = a1

;;wwwwwwwww

##G
GG

GG
GG

GG
______________ ar = b1

44
44

44
44

44
44

44

• . . . •

;;wwwwwwwww

•
















• . . . • •
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where the walk b1−· · ·−bs (with s ≥ 1) is non-zero and dotted lines represent relations.
Here the last two cases occur in case α = β. Let C ′ be the full subcategory of C
generated by the points ai, bj , ck. By [21, III.6.5, p. 146], C ′ is a tilted algebra. It
follows from our minimality assumption and the hypothesis that C̃, and hence C, are
schurian, that in C ′ there is no additional arrow between two bj’s. Now, in each of the
cases above, let M be the C ′-module defined as a representation by

M(x) =

{
k, if x ∈ {b1, . . . , bs},
0, if x 6∈ {b1, . . . , bs},

also, if α is an arrow such that s(α) and t(α) both belong to {b1, . . . , bs}, we let
M(α) = 1, while, for all other arrows α, we letM(α) = 0. ThenM is an indecomposable
C ′-module, and it is can be seen that both its projective and its injective dimensions
equal 2, a contradiction because C ′ is tilted. �

In this paper we mainly consider schurian cluster-tilted algebras. We now prove
that representation-finite cluster-tilted algebras are schurian. We recall that, if B is a
representation-finite cluster-tilted algebra and C is a tilted algebra such that B = C̃,
then C is tilted of Dynkin type, see [12].

LEMMA 2.2 Let B be a representation-finite cluster-tilted algebra. Then B is schurian.

Proof. Let x, y ∈ B0 be such that dimk B(x, y) ≥ 2 and C be a tilted algebra such
that B = C̃. Assume first that x = y. Then dimkB(x, x) ≥ 2. In particular, there
exists in the quiver Q̃ of B a non-zero cycle γ from x to x. This cycle γ must contain
a new arrow, because C is triangular. But then, by Lemma 2.1, such an arrow must
be unique, and this yields a contradiction, again by Lemma 2.1. Therefore x 6= y. Let
e = ex + ey, then eBe has as quiver

•
''
77...
•

and thus is representation-infinite, a contradiction to the representation-finiteness of
B. �

2.3 Example

Clearly, there exist schurian representation-infinite cluster-tilted algebras. Let C be
given by the quiver

•

γ

��~~
~~

~~
~

•

βoo

• •

α′

��~~
~~

~~
~

α
__@@@@@@@

•

γ′

__@@@@@@@
•

β′

oo
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bound by αβ = 0, α′β′ = 0. Then C is tilted of type Ã and B = C̃ is given by the
quiver

•

γ

��~~
~~

~~
~

δ

**TTTTTTTTTTTTTTTTTTT •

βoo

• •

α′

��~~
~~

~~
~

α
__@@@@@@@

•

γ′

__@@@@@@@ δ′

44jjjjjjjjjjjjjjjjjjj
•

β′

oo

bound by αβ = 0, βδ = 0, δα = 0, α′β′ = 0, β′δ′ = 0, δ′α′ = 0, see [3] or Section 5 below.
Thus, B is representation-infinite and schurian.

3 Arrow equivalence

LEMMA 3.1 Let B = kQ̃/Ĩ be a schurian cluster-tilted algebra, and C = kQ/I be
a tilted algebra such that B = C̃. Let ρ = a1w1 + a2w2 be a binomial relation in Ĩ.
Then either ρ is a relation in I, or there exist exactly two new arrows α1, α2 such that
w1 = u1α1v1, w2 = u2α2v2 (with u1, u2, v1, v2 paths consisting entirely of old arrows).

Proof. By the main result of [5, 2.4] (see also [4, 3.2]), either ρ is a relation in I, or
there exist at least two new arrows α1, α2 such that w1 = u1α1v1, w2 = u2α2v2, with
u1, u2, v1, v2 paths. The uniqueness of each of α1, α2 follows from Lemma 2.1. �

The Lemma 3.1 above brings us to our main definition. Let B = kQ̃/Ĩ be a schurian
cluster-tilted algebra, and C = kQ/I be a tilted algebra such that B = C̃. We define a
relation ∼ on the set Q̃1 \Q1 of new arrows as follows. For every α ∈ Q̃1 \Q1, we set
α ∼ α. If ρ = a1w1 + a2w2 is a binomial relation in Ĩ and α1, α2 are as in Lemma 3.1
above, then we set α1 ∼ α2.

By Lemma 2.1, the relation ∼ is unambiguously defined. It is clearly reflexive and
symmetric. We let ≈ be the least equivalence relation defined on the set Q̃1 \Q1 such
that α ∼ β implies α ≈ β (that is, ≈ is the transitive closure of ∼).

We define the relation invariant of B to be the number nB,C of equivalence classes
under the relation ≈.

We now prove that, in the representation-finite case, the two relations ∼ and ≈
coincide (so, ∼ is an equivalence relation).

LEMMA 3.2 Let B = kQ̃/Ĩ be a representation-finite schurian cluster-tilted algebra,
and C = kQ/I be a tilted algebra such that B = C̃. Then there exists no triple (α, β, γ)
of pairwise distinct new arrows such that α ∼ β and β ∼ γ.
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Proof. Since every new arrow of Q̃ corresponds to a relation in I, then there exist
three relations ρ, σ, ξ in I such that each of the pairs (ρ, σ) and (σ, ξ) belongs to two
parallel paths.

• oo
ρ

•oo

v1

���_
�_

�_
�_

•

u1

??
?�

?�
?�

?�

u2

���_
�_

�_
�_

•

• oo σ
•oo

v2
??

?�
?�

?�
?�

v3

��
�_

�_
�_

�_

•

u3

??
?�

?�
?�

?�

u4

��
�_

�_
�_

�_

•

• oo
ξ

•oo

v4
??

?�
?�

?�
?�

By Lemma 2.1, we get that ui, vj are actually paths in C. If at least two of the
relations ρ, σ, ξ are binomial, then the algebra C contains a representation-infinite full
subcategory. If exactly one of these three relations is binomial, then we obtain a
contradiction to Lemma 2.1 again. Thus, we may assume the three relations to be
monomial.

Let E be the convex envelope in C of all the points belonging to one of the paths
ui, vj , ρ, σ, ξ. We claim that E does not contain a non-trivial path from a point in ui
to a point in uj, with i 6= j. Indeed, if such a path exists and contains a relation, then
we get a contradiction to Lemma 2.1. If it contains no relation and is of length at least
one, then we have a representation-infinite full subcategory. This establishes our claim.
On the other hand, there may exist a non-trivial path from a point in ui to a point
in vj . In this case, this path must contain a monomial relation, because of Lemma
2.1. Let d be the total number of relations between the points of E, then d ≥ 3. Let
v = (vx)x∈E0

be the following vector

vx =





−1, if x lies in the convex envelope of the ui,
1, if x lies in the convex envelope of the vj,
0, otherwise.

Evaluating the Tits quadratic form of E in this vector yields

qE(v) =
∑

v2x −
∑

x
α
→y

vxvy +
∑

x
ρ
→y

vxvy

= 1 + 1− d
= 2− d < 0

In particular, it is not positive definite. This contradicts the fact that E is a full convex
subcategory of C, which is tilted of Dynkin type. �
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COROLLARY 3.3 Let B = kQ̃/Ĩ be a representation-finite cluster-tilted algebra,
and C = kQ/I be a tilted algebra such that B = C̃. Let R and R̃ be respectively
systems of relations for I and Ĩ, and n′

B,C be the number of binomial relations which

belong to R̃ \R, then nB,C = |R| − n′
B,C .

4 The main result and its consequences

For the Hochschild cohomology groups, we refer the reader to [19, 22]. We recall that,
it B is a finite dimensional k-algebra, then the first Hochschild cohomology group of
B can be written as HH1(B) = Der0B/ Int0 B, where Der0B is the k-vector space
of the normalized derivations, that is, of the derivations δ such that δ(ex) = 0 for
every primitive idempotent ex, and Int0B is the subspace of the interior normalized
derivations (see, for instance, [22, 3.1]).

THEOREM 4.1 Let B be a schurian cluster-tilted algebra, and C be a tilted algebra
such that B = C̃. Then there exists a short exact sequence of abelian groups

0 → HH1(C) → HH1(B) → knB,C → 0.

Proof. As usual, we let B = kQ̃/Ĩ and C = kQ/I. Let δ ∈ Der0B then, for every
arrow α : x → y in Q̃1, we have α = exαey , hence

δ(α) = δ(exαey) = exδ(α)ey ∈ exBey.

Since B is schurian, there exists a scalar λα such that δ(α) = λαα. Let then α1α2 . . . αt

be a path in Q̃, then

δ(α1α2 . . . αt) = (λα1
+ . . .+ λαt)α1α2 . . . αt.

In particular, δ is uniquely determined by its value on the arrows.
Let ρ = a β1 . . . βr−b γ1 . . . γs, with a, b ∈ k∗, be a binomial relation, then ρ ∈ Ĩ implies

0 = a δ(β1 . . . βr)− b δ(γ1 . . . γs)

which yields

a (

r∑

i=1

λβi
) β1 · · · βr = b (

s∑

j=1

λγj ) γ1 · · · γs

and hence
r∑

i=1

λβi
=

s∑

j=1

λγj .
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We use this observation to define a morphism ζ : Der0 C → Der0 B as follows. Let
δ ∈ Der0 C, then we let δ̃ = ζ(δ) be defined by its action on the arrows according to

δ̃(α) =

{
δ(α), if α ∈ Q1,

−(
∑r

i=1 λβi
)α, if α ∈ Q̃1 \Q1,

where β1 · · · βr is a path appearing in the relation in I which defines the new arrow α.
Since B = C̃ is schurian, this relation is either monomial or binomial and, in the latter
case, the above argument shows that

∑r
i=1 λβi

is uniquely determined and hence δ̃(α)
is unambiguously defined. Clearly, ζ : Der0C → Der0B is an injective map.
We now claim that ζ(Int0 C) = Int0B. Let δa ∈ Int0 C, then there exists a ∈ C such
that δa(c) = ac − ca (for every c ∈ C). Since δa is normalized, we have, for every
primitive idempotent ex,

0 = δa(ex) = aex − exa.

Hence

a = a.1 = a
∑

ex =
∑

aex =
∑

(aex)ex =
∑

(exa)ex =
∑

axex

with ax ∈ k for every x. This indeed follows from the fact that exaex ∈ exCex and C
is schurian.
Let δ̃ = ζ(δa). For α ∈ Q1, we have

δ̃(α) = δa(α) = aα− αa = (as(α) − at(α))α.

Let now α ∈ Q̃1 \Q1 and β1 · · · βr be a path appearing in the relation defining α. Note
that

δα(βi) = λβi
βi = (as(βi) − at(βi))βi

for every i such that 1 ≤ i ≤ r. Therefore

r∑

i=1

λβi
=

r∑

i=1

(as(βi) − at(βi)) = −as(α) + at(α)

so we have

δ̃(α) = −(

r∑

i=1

λβi
)α = (as(α) − at(α))α.

This shows that ζ(Int0C) ⊆ Int0 B. Now, because δa is determined by the element
a =

∑
axex and Q0 = Q̃0, we actually have ζ(Int0 C) = Int0B. This establishes our

claim.
We now define a map

φ : Der0 B → knB,C

9



as follows. For a derivation δ ∈ Der0 B, let δ|C denote its restriction to C. Clearly,

δ|C ∈ Der0C. We let δ̃|C = ζ(δ|C) then we set

φ(δ) = (λα −

r∑

i=1

λβi
)α∈S

where S is a complete set of representatives of the equivalence classes of the new arrows
under the relation ≈, and, for α ∈ S, we let β1 · · · βr be a path in C occurring in the
relation defining α. As observed above, the sum

∑r
i=1 λβi

is uniquely determined by
α. We still have to prove that φ(δ) does not depend on the particular representative
chosen in the class of α. Assume then that α ∼ α′. Then there exists a binomial
relation ρ = a(uαv)− a′(u′α′v′), with a, a′ ∈ k∗ and u, v, u′, v′ paths in C. Let β′

1 · · · β
′
s

be a path occurring in a relation defining α′. Then we have

(λα −
∑r

i=1 λβi
)a(uαv) = (δ − δ̃|C )(auαv)

= (δ − δ̃|C )(a
′u′α′v′)

= (λα′ −
∑s

j=1 λβ′

j
)a′(u′α′v′).

This shows that φ is unambiguously defined. Clearly, φ is k-linear.
We now show that φ is surjective. Let (µα)α∈S ∈ knB,C and define δ ∈ Der0B by its
value on the arrows as follows

δ(α) =

{
0 if α ∈ Q1

µα′α if α ∈ Q̃1 \Q1 and α ∼ α′

This is clearly a derivation and moreover δ|C = 0. Then φ(δ) = (µα)α∈S .
Finally, we prove that Kerφ = Der0 C. Indeed, Kerφ consists of the δ ∈ Der0 B such

that δ − δ̃|C = 0. By definition, this set equals Im ζ = Der0 C.
We have thus shown that there exists a short exact sequence of k-vector spaces

0 → Der0 C
ζ
→ Der0 B

φ
→ knB,C → 0.

Since ζ(Int0 C) = Int0 B, the statement follows at once. �

Before our first corollary, we introduce some notation. Let B = kQ̃/Ĩ be a schurian
cluster-tilted algebra. By [8], the fundamental group π1(Q̃, Ĩ) does not depend on the
particular presentation of B, we may then denote it as π1(B). If B is representation-
finite, then π1(B) is a free group [23]. We denote by Lm the free group on m letters.
Also, let SH1(B) denote the first (simplicial) homology group of the classifying space
of B, see [15, 10].

COROLLARY 4.2 Let B be a representation-finite cluster-tilted algebra. Then:

10



(a) HH1(B) = knB,C ;

(b) π1(B) ∼= LnB,C
;

(c) SH1(B) ∼= Z
nB,C ;

(d) |R| ≥ n′
B,C for every tilted algebra C such that B = C̃.

Proof.

(a) Since C is tilted of Dynkin type, then HH1(C) = 0. The result follows then from
Theorem 4.1.

(b) Since B is schurian, we have HH1(B) ∼= Hom(π1(B), k+) by [24]. Since π1(B) ∼=
Lm for some m, comparing dimensions yields m = nB,C .

(c) This follows from the Poincaré-Hurwitz theorem.

(d) This is trivial. �

COROLLARY 4.3 Let B be a schurian cluster-tilted algebra. Then HH1(B) = 0 if
and only if B is hereditary having a tree as ordinary quiver.

Proof. Since the sufficiency is obvious, we prove the necessity. Let B be a schurian
cluster-tilted algebra and C be a tilted algebra such that B = C̃. By Theorem 4.1,
HH1(B) = 0 implies nB,C = 0. But then there are no new arrows. Consequently,
B = C and it is therefore hereditary. By [22] the quiver of B is a tree. �

COROLLARY 4.4 Assume B is a schurian cluster-tilted monomial algebra. Then
HH1(B) ∼= HH1(C) ⊕ k|R|, as k-vector spaces, for every tilted algebra C such that
B = C̃. If C is monomial and HH1(B) ∼= HH1(C)⊕ k|R|, then B is monomial.

Proof. The first statement follows directly from Theorem 4.1. Assume now that C
is monomial but B is not. Then there exists a binomial relation in B but none in C.
Then n′

B,C ≥ 1 and HH1(B) ∼= HH1(C) ⊕ knB,C gives a contradiction by comparing
dimensions. �
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4.1 Example

The dimension of HH1(B) is unbounded, even in the representation-finite case. Let C1

be the tilted algebra given by the quiver

•

α1 // •
β1 // •

bound by α1β1 = 0 and, for every d ≥ 1, let Cd be given by the quiver

•

•

β1

??~~~~~~~

•

α1

??~~~~~~~

α2

��@
@@

@@
@@

•

β2

��@
@@

@@
@@

•

•

β3

??~~~~~~~

•

α3

??~~~~~~~

��@
@@

@@
@@

•

•

αd

// •
βd

// •

bound by αiβi = 0 for every i. Then Cd is tilted of Dynkin type A and by [3] or [14],
B is monomial. Applying Corollary 4.4, we get HH1(B) = kd.

5 Cluster-tilted algebras of type Ã

If B is a cluster-tilted of type Ã then it is gentle, and hence monomial, see [3]. We
recall from [7] that an algebra C = kQ/I is called gentle if:

12



(1) For any x ∈ Q0, there are at most two arrows of Q having x as a source or as a
target;

(2) I is generated by paths of length two;

(3) For any α ∈ Q1, there is at most one arrow β and one arrow γ such that αβ 6∈ I
and γα 6∈ I;

(4) For any α ∈ Q1, there is at most one arrow ξ and one arrow η such that αξ ∈ I
and ηα ∈ I.

As observed in [3], if C is tilted and gentle, then either it is of type A (in which case
Q is a gentle tree containing no double zeros, that is, walks of the form w = αβw′γδ
where α, β, γ, δ ∈ Q1 are such that αβ, γδ ∈ I, and w′ is a non-zero walk), or else of
type Ã (in which case it contains a unique non-oriented cycle without double zeros and
all arrows attached to the cycle either enter it or all leave it). It is shown there that
B = C̃ is also gentle and in fact all relations occur in 3-cycles, that is, cycles of the
form

•

β

��@
@@

@@
@@

•

α
??~~~~~~~

•

γoo

where αβ, βγ and γα are relations in C̃.

PROPOSITION 5.1 Let B be a cluster-tilted algebra of type Ã, and C be a tilted
algebra such that B = C̃. Let R be a system of relations for C, then

HH1(B) = k|R|+ǫ+1

where 0 ≤ ǫ ≤ 2.

Proof. Since B is monomial, it follows from [16] that, in their notation,

dimkHH
1(B) = dimk Z(B)− |Q̃0||N |+ |Q̃1||N | − |(Q̃1||N)e| − dimk ImRg.

We now study each of these terms. Firstly, Z(B) is the center of B, so dimk Z(B) = 1.
Secondly, Q̃0||N is the set of non-zero oriented cycles in (Q̃, Ĩ) (where, as usual, B =
kQ̃/Ĩ), including the points. Then

|Q̃0||N | = |Q̃0| = |Q0|.

Thirdly, Q̃1||N is the set of pairs consisting of an arrow, and a non-zero path (including
points) parallel to this arrow. Since Q contains a unique non-oriented cycle, we have

|Q̃1||N | = |Q̃1|+ ǫ′
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where ǫ′ = 2 whenever Q̃ contains a double arrow, ǫ′ = 1 whenever Q̃ contains a bypass
(that is, an arrow α such that there exists a path β1 · · · βs parallel to α) and ǫ′ = 0,
otherwise. Next,

(Q̃1||N)e = (Q̃1||N) \ {(Q̃1||N)g ∪ (Q̃1||N)a}

where

(1) (Q̃1||N)g is the set of pairs (α, γ) ∈ Q̃1||N where γ is either a point, or a path
starting or ending with the arrow α. In view of the discussion above, the only
such pairs are of the form (α,α) with α ∈ Q̃1. Therefore |(Q̃1||N)g| = |Q̃1|.

(2) (Q̃1||N)a is the set of pairs (α, γ) ∈ Q̃1||N such that, in each relation ρ where α
appears, replacing α by γ yields a zero path.

Finally, let R||N be the set of pairs (w,w′) where w,w′ are parallel paths such that
w ∈ R and w′ is non-zero. Then Rg is the linear map from k(Q̃1||N)g to k(R||N)
defined as follows. Let ρ be a relation in which a given arrow α appears and assume
(α, γ) ∈ (Q̃1||N)g, then denote by ρ′ a non-zero parallel path obtained from ρ by
replacing α by γ. Then we set Rg(α, γ) =

∑
ρ(ρ, ρ

′), the sum being taken over all

relations ρ in which α appears. In our case, (Q̃1||N)g consists of pairs of the form
(α,α) with α ∈ Q̃1. Therefore Rg = 0.
Now

|Q̃1||N | − |(Q̃1||N)e| = |(Q̃1||N)g ∪ (Q̃1||N)a|.

Hence there exists ǫ ≥ 0 such that

|Q̃1||N | − |(Q̃1||N)e| = |(Q̃1||N)g|+ ǫ = |Q̃1|+ ǫ.

On the other hand, since (Q̃1||N)e is a subset of Q̃1||N , we have that

|Q̃1||N | − |(Q̃1||N)e| = |Q̃1|+ ǫ ≤ |Q̃1||N | = |Q̃1|+ ǫ′.

Hence 0 ≤ ǫ ≤ ǫ′ ≤ 2 and we have

dimk HH
1(B) = 1− |Q̃0|+ |Q̃1|+ ǫ.

So, since C is tilted of type Ã, its quiver Q contains a unique non-oriented cycle without
double zeros and all arrows attached to the cycle either enter it or all leave it, and hence

dimkHH
1(B) = 1− |Q0|+ |Q1|+ |R|+ ǫ = 1 + |R|+ ǫ.

�
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EXAMPLE 5.2 We show that each of the three possible values of ǫ ∈ {0, 1, 2} may
occur.

(a) If C = C̃ is the Kronecker algebra, then HH1(C̃) = k3. Here ǫ = 2.

(b) If C = C̃ is given by the quiver

• //

��@
@@

@@
@@

•

•

??~~~~~~~

then HH1(C̃) = k2. Here ǫ = 1.

(c) If B = C̃ is schurian then, since it is monomial, we have

HH1(B) = HH1(C)⊕ k|R| ∼= k|R|+1.

Here ǫ = 0.
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[2] Assem, I.; Brüstle, T.; Schiffler, R. Cluster-tilted algebras and slices, to appear.
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