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ON THE RATE OF CONVERGENCE AND

BERRY-ESSEEN TYPE THEOREMS FOR A

MULTIVARIATE FREE CENTRAL LIMIT THEOREM

ROLAND SPEICHER (†)

Abstract. We address the question of a Berry Esseen type the-
orem for the speed of convergence in a multivariate free central
limit theorem. For this, we estimate the difference between the
operator-valued Cauchy transforms of the normalized partial sums
in an operator-valued free central limit theorem and the Cauchy
transform of the limiting operator-valued semicircular element.

1. Introduction

The free central limit theorem (due to Voiculescu [12] in the one-
dimensional case, and to Speicher [10] in the multivariate case) is one of
the basic results in free probability theory. Investigations on the speed
of convergence to the limiting semicircular distribution, however, were
taken up only recently. In the classical context, the analogous question
is answered by the famous Berry-Esseen theorem, which states, in its
simplest version, the following: If Xi are i.i.d. random variables, with
mean zero and variance 1, then the distance between Sn := (X1+ · · ·+
Xn)/

√
n and a normal variable γ of mean zero and variance 1 can be

estimated in terms of the Kolmogorov distance ∆ by

∆(Sn, γ) ≤ C
1√
n
ρ,

where C is a constant and ρ is the absolute third moment of the vari-
ables xi.
The question for a free analogue of the Berry-Esseen estimate in the

case of one random variable was answered by Chistyakov and Götze [3]:
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If xi are free identically distributed random variables with mean zero
and variance 1, then the distance between Sn := (X1 + · · ·+Xn)/

√
n

and a semicircular variable s of mean zero and variance 1 can, under
the assumption of finite fourth moment, be estimated as

∆(Sn, s) ≤ c
|m3|+

√
m4√

n
,

where c > 0 is an absolute constant, and m3 and m4 are the third and
fourth moment, respectively, of the xi. (Independently, the same kind
of question was considered, under the more restrictive assumption of
compact support for the xi, by Kargin [8].)
In this paper we want to address the multivariate version of a free

Berry-Esseen theorem. In contrast to the classical situation, the multi-
variate situation is of a quite different nature than the one-dimensional
case, because we have to deal with non-commuting operators and all the
analytical tools, which are available in the one-dimensional case, break
down. However, we are able to deal with this situation by invoking re-
cent ideas of Haagerup and Thorbjornsen [6, 5], in particular, their lin-
earization trick which allows to reduce the multivariate (scalar-valued)
to an analogous one-dimensional operator-valued problem. Estimates
for the operator-valued Cauchy transform of this operator-valued oper-
ator are quite similar to estimates in the scalar-valued case. Actually,
on the level of deriving equations for these Cauchy transforms we can
follow ideas which are used for dealing with speed of convergence ques-
tions for random matrices; here we are inspired in particular by the
work of Götze and Tikhomirov [4], but see also [1, 2]. Our main the-
orem on the speed of convergence in an operator-valued free central
limit theorem is the following.

Theorem 1. Let 1 ∈ B ⊂ A, E : A → B be an operator-valued

probability space. Consider selfadjoint X1, X2, · · · ∈ A which are free

with respect to E and have identical B-valued distribution. Assume that

the first moments vanish,

E[Xi] = 0

and let

η : B → B, η(b) = E[XibXi]

be their covariance. Denote

α2 := sup
b∈B

‖b‖=1

‖E[XibXi]‖ = ‖η‖

and

α4 := sup
b∈B

‖b‖=1

‖E[XibXiXib
∗Xi]‖.



BERRY ESSEEN FOR MULTIVARIATE FREE CLT 3

Consider now the normalized sums

Sn :=
X1 + · · ·+Xn√

n

and their B-valued Cauchy transforms

Gn(b) := E[
1

b− Sn

] (b ∈ B+)

on the “upper half plane” B+ in B,
B+ := {b ∈ B | Im b ≥ 0 and Im b invertible}.

By G we denote the operator-valued Cauchy transform of a B-valued
semicircular element with covariance η.
Then we have for all b ∈ B+ and all n ∈ N that

(1) ‖Gn(b)−G(b)‖ ≤ 4cn(b)

(

‖b‖ + α2 · ‖
1

Im b
‖
)

· ‖ 1

Im b
‖2,

where

cn(b) :=
1√
n

∥

∥

1

Im b

∥

∥

3√
α2 · (2α2 +

√

α4 + 2α2
2) +

1

n

∥

∥

1

Im b

∥

∥

4
α2
2.

In the one-dimensional scalar case one can derive from such estimates
corresponding estimates for the Kolmogorov distance between the dis-
tribution of Sn and the limiting semicircle s. This relies on the fact
that the Kolmogorov metric measures how close the distribution func-
tions of two measures are, and the Stieltjes inversion formula allows to
relate the distribution function with Cauchy transforms. (In the proof
of the classical Berry-Esseen theorem one follows a similar route, using
Fourier transforms instead of Cauchy transforms.) For the multivariate
case, say of d variables, where we would like to say something about the

speed of convergence of the d-tuple of partial sums (S
(1)
n , . . . , S

(d)
n ) to the

limiting semicircular family (s1, . . . , sd), there is no nice replacement
for the distribution function, and we also do not know of a canonical
metric on joint distributions of several non-commuting variables which
relates directly with the above estimates for operator-valued Cauchy
transforms.
However, there is a kind of replacement for this; namely, follow-

ing again [5], estimates for Cauchy transforms of linear combinations

with operator-valued coefficients of the variables (S
(1)
n , . . . , S

(d)
n ) should

imply corresponding estimates for any non-commutative scalar polyno-
mial in those variables and from those one should be able to estimate,
for any selfadjoint non-commutative polynomial p, the Levy distance

between p(S
(1)
n , . . . , S

(d)
n ) and p(s1, . . . , sd). However, one has to deal
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with the following problem in such an approach: as is shown in [5]
one can get the Cauchy transform of a polynomial p(s1, . . . , sd) as a
corner of an operator-valued Cauchy transform of a linear combina-
tion P , with matrix-valued coefficients, of s1, . . . , sd; but, even if p is
a selfadjoint polynomial, the corresponding matrix-valued operator P
is not selfadjoint, and thus our operator-valued estimates, which were
only shown for selfadjoint X , cannot be used directly for P ; one would
have to reprove most of our statements also for P . It is conceivable
that this can be done in a similar manner as in [5]; as this approach
is getting quite technical, we will pursue the details in a forthcoming
investigation.
Note that for proving such a kind of Berry-Esseen theorem for poly-

nomials p(s1, . . . , sd) one also has to face another kind of question: esti-
mates for the difference of Cauchy transforms translate directly only in
estimates for the Levy distance between the corresponding measures; in
order to get also estimates for the more intuitive Kolmogorov distance
one needs to know that the distribution of p(s1, . . . , sd) has a contin-
uous density, in particular, has no atoms. We conjecture that this is
true for all non-commutative selfadjoint polynomials p in a semicircu-
lar family, but this seems to be a non-trivial problem. Note that the
question of absence of atoms can be seen as an analogue of the Zero-
Divisor Theorem for the free group. We hope to address this question
in some future work.
The paper is organized as follows. In the next section we will first

relate a multivariate free central limit theorem with a one-dimensional
operator-valued free central limit theorem. The proof of Theorem 1
will be given in Section 3.

2. Multivariate free central limit theorem

2.1. Setting. Let
(

x
(k)
1

)d

k=1
,
(

x
(k)
2

)d

k=1
, . . . be free and identically dis-

tributed sets of k selfadjoint random variables in some non-commutative
probability space (C, ϕ), such that the first moments vanish and the
second moments are given by a covariance matrix Σ = (σkl)

d
k,l=1. We

put

S(k)
n =

x
(k)
1 + · · ·+ x

(k)
n√

n
.

We know [10] that (S
(1)
n , . . . , S

(d)
n ) converges in distribution for n →

∞ to a semicircular family (s1, . . . , sd) of covariance Σ. We want to
analyze the rate of this convergence. We would like to get an estimate
which involves only small moments of the given variables. As we will
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see, the second and fourth moments of our variables will show up in
the estimates and we will use the upper bound

β2 := max
k,l

|σk,l| = max
k,l

ϕ(x
(k)
i x

(l)
i )

for the second and the upper bound

β4 := max
r,p,k,l

|ϕ(x(r)
i x

(p)
i x

(k)
i x

(l)
i )|

for the fourth moments.

2.2. Transition to operator-valued frame. We will analyze the
rate of convergence of the multivariate problem,

(S(1)
n , . . . , S(d)

n ) → (s1, . . . , sn)

by replacing this by an one-dimensional operator-valued problem. The
underlying idea for that is the linearization trick [6, 5] that one can
understand the joint distribution of several scalar random variables by
understanding the distribution of each operator-valued linear combina-
tion of those random variables.
Let B = MN (C) and put A := MN(C) ⊗ C = MN (C). Then B ∼=

B ⊗ 1 ⊂ A is an operator-valued probability space with respect to the
conditional expectation

E = id⊗ ϕ : B ⊗ C → B, b⊗ c 7→ ϕ(c)b.

For some fixed b1, . . . , bk ∈ MN (C) we put

Xi :=

d
∑

k=1

bk ⊗ x
(k)
i

and

Sn :=

d
∑

k=1

bk ⊗ S(k)
n

Note that X1, X2, · · · are free with respect to E and that we have

Sn =
X1 + · · ·+Xn√

n
.

The limit of Sn is

s :=
d
∑

k=1

bk ⊗ sk,
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which is an B = MN(C)-valued semicircular element with covariance
mapping η : B → B given by

η(b) = E[sb⊗ 1s] =

d
∑

k,l=1

E[bk ⊗ sk · b⊗ 1 · bl ⊗ sl]

=
d
∑

k,l=1

bkbblϕ(sksl) =
d
∑

k,l=1

bkbblσkl.

We want to determine the rate of convergence for Sn to s. We will
do this in the next section in the context of a general operator-valued
free central limit theorem.

3. Rate of convergence for operator-valued free

central limit theorem

3.1. Setting. Let 1 ∈ B ⊂ A, E : A → B be an operator-valued
probability space. This means that A is a von Neumann algebra, B is
a sub von Neumann algebra, which contains the identity of A, and E
is a conditional expectation from A onto B, i.e., a linear map which
satisfies the property

E[b1ab2] = b1E[a]b2

for all a ∈ A and b1, b2 ∈ B.
Consider selfadjoint X1, X2, · · · ∈ A which are free with respect to

E and have identical B-valued distribution. Assume that the first mo-
ments vanish,

E[Xi] = 0

and let
η : B → B, η(b) = E[XibXi]

be their covariance. We will need

α2 := sup
b∈B

‖b‖=1

‖E[XibXi]‖ = ‖η‖

and
α4 := sup

b∈B
‖b‖=1

‖E[XibXiXib
∗Xi]‖.

Consider now the normalized sums

Sn :=
X1 + · · ·+Xn√

n
.

We know that Sn converges in distribution to an operator-valued semi-
circular element s with covariance η, see [11]
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We want to estimate the rate of this convergence. Let us denote by
B+ the “upper half plane” in B, i.e.,

B+ := {b ∈ B | Im b ≥ 0 and Im b invertible}.
We consider, for b ∈ B+, the resolvents

Rn(b) :=
1

b− Sn

, R(b) :=
1

b− s

and the Cauchy transforms

Gn(b) := E[Rn(b)], G(b) := E[R(b)].

Gn and G are analytic functions in B+.

3.2. The main estimates. We will show that Gn(b) converges to
G(b), where we have good control over the difference in terms of n
and b. The idea for showing this is the same as in [6]. First we show
that Gn satisfies an approximate version of an equation satisfied by G
and then we show that this actually implies that Gn and G must be
close to each other.
Let us start with deriving the equations for G and Gn.
Since s is an operator-valued semicircular element with covariance η

we know [13, 11] that its Cauchy transform satisfies the equation

(2) bG(b)− 1 = η (G(b)) ·G(b).

We want to derive an approximate version of this equation for Gn.
For this, we will look at E[SnRn(b)].

Let us denote by S
[i]
n the version of Sn where the i-th variable Xi is

absent, i.e.,

S [i]
n := Sn −

1√
n
Xi,

and by R
[i]
n and G

[i]
n the corresponding resolvent and Cauchy transform,

respectively, i.e.,

R[i]
n (b) =

1

b− S
[i]
n

and

G[i]
n (b) := E[R[i]

n (b)].

For each i = 1, . . . , n we have the resolvent identity

Rn(b) = R[i]
n (b) +

1√
n
R[i]

n (b) ·Xi · R[i]
n (b)

+
1

n
Rn(b) ·Xi · R[i]

n (b) ·Xi · R[i]
n (b).
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Now we can write

E[SnRn(b)] =
n
∑

i=1

E
[ Xi√

n
· Rn(b)

]

=
n
∑

i=1

1√
n

{

E
[

Xi · R[i]
n (b)

]

+
1√
n
E
[

Xi · R[i]
n (b) ·Xi · R[i]

n (b)
]

+
1

n
E
[

Xi · Rn(b) ·Xi · R[i]
n (b) ·Xi · R[i]

n (b)
]

}

Now we use our assumption that X1, X2, . . . are free with respect to

E, which implies that Xi is free from R
[i]
n (b) with respect to E. This

implies that

E[Xi ·R[i]
n (b)] = E[Xi] · E[R[i]

n (b)] = 0

and

E
[

Xi · R[i]
n (b) ·Xi · R[i]

n (b)
]

= E
[

Xi ·E[R[i]
n (b)] ·Xi

]

· E
[

R[i]
n (b)

]

+ E[Xi] ·E
[

R[i]
n (b) ·E[Xi] · R[i]

n (b)
]

− E[Xi] · E[R[i]
n (b)] · E[Xi] ·E[R[i]

n (b)]

= E
[

Xi ·E[R[i]
n (b)] ·Xi

]

· E[R[i]
n (b)]

= η
(

G[i]
n (b)

)

·G[i]
n (b).

So we have got finally

(3) E[SnRn(b)] =
1

n

(

n
∑

i=1

η
(

G[i]
n (b)

)

·G[i]
n (b) + r

[i]
1

)

,

where

r
[i]
1 =

1√
n
E
[

Xi · Rn(b) ·Xi · R[i]
n (b) ·Xi ·R[i]

n (b)
]

We will now estimate the norm of r
[i]
1 . We could of course just esti-

mate against the operator norm of Xi; however, we prefer, in analogy
with the classical case, to do better without invoking the operator norm
and use only as small moments of Xi as possible.
Note that for our conditional expectation E we have the Cauchy-

Schwarz inequality

‖E[AB]‖2 ≤ ‖E[AA∗]‖ · ‖E[B∗B]‖,
and also

E[A]∗E[A] ≤ E[A∗A] and E[ABB∗A∗] ≤ ‖BB∗‖ · E[AA∗]
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and

‖E[A]‖ ≤ ‖A‖
for any A,B ∈ A. Thus, for any i = 1, . . . , n, we can estimate

‖E
[

Xi Rn(b)Xi R
[i]
n (b)Xi R

[i]
n (b)

]

‖2

≤ ‖E
[

Xi Rn(b)Rn(b)
∗ Xi

]

‖·
·
∥

∥E
[

R[i]
n (b)

∗Xi R
[i]
n (b)

∗Xi XiR
[i]
n (b)Xi R

[i]
n (b)

]
∥

∥

We estimate the first factor by

‖E
[

Xi Rn(b)Rn(b)
∗Xi

]

‖ ≤ ‖Rn(b)‖2 ·
∥

∥E
[

XiXi

]
∥

∥

= ‖Rn(b)‖2 · ‖η(1)‖
= α2‖Rn(b)‖2

For the second factor we use again the freeness between Xi and

R
[i]
n (b). Let us put

R := R[i]
n (b)

ThenXi andR are ∗-free with respect to E and thus, by also invoking
E[Xi] = 0, we have

E[R∗XiR
∗XiXiRXiR] = E

[

R∗ · E
[

XiE[R∗]XiXi E[R]Xi

]

· R
]

+ E
[

R∗ · η
(

E[R∗ η(1)R]
)

· R
]

− E
[

R∗ · η
(

E[R∗] η(1)E[R]
)

· R
]

,

and thus
∥

∥E
[

R∗XiR
∗XiXiRXiR

]
∥

∥ ≤
∥

∥

∥
E
[

R∗ · E
[

Xi E[R∗]XiXi E[R]Xi

]

· R
]
∥

∥

∥

+
∥

∥

∥
E
[

R∗ · η
(

E[R∗ η(1)R]
)

· R
]
∥

∥

∥

+
∥

∥

∥
E
[

R∗ · η
(

E[R∗] η(1)E[R]
)

· R
]
∥

∥

∥

We estimate
∥

∥

∥
E
[

R∗ · E
[

Xi E[R∗]XiXi E[R]Xi

]

·R
]
∥

∥

∥

≤ ‖R‖ · ‖R∗‖ ·
∥

∥E
[

Xi E[R∗]XiXi E[R]Xi

]
∥

∥

≤ ‖R‖2 · α4 · ‖E[R]‖ · ‖E[R∗]‖
≤ α4 · ‖R‖4

∥

∥

∥
E
[

R∗ η
(

E[R∗ η(1)R]
)

R
]
∥

∥

∥
≤ α2

2 · ‖R‖4,
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and
∥

∥

∥
E
[

R∗ · η
(

E[R∗] η(1)E[R]
)

· R
]
∥

∥

∥
≤ α2

2 · ‖R‖4

Putting this together yields
∥

∥E
[

R[i]
n (b)

∗Xi R
[i]
n (b)

∗Xi XiR
[i]
n (b)Xi R

[i]
n (b)

]∥

∥ ≤ (α4+2α2
2) · ‖R[i]

n (b)‖4,
and finally

‖r[i]1 ‖ ≤ 1√
n
·
√

α2(α4 + 2α2
2) · ‖Rn(b)‖ · ‖R[i]

n (b)‖2.

We still need to replace, in (3), G
[i]
n (b) = E[R

[i]
n (b)] by Gn(b) =

E[Rn(b)]. By using the resolvent identity

Rn(b) = R[i]
n (b) +

1√
n
R[i]

n (b) ·Xi · Rn(b)

we have
G[i]

n (b) = Gn(b) + r
[i]
2 ,

where

r
[i]
2 := − 1√

n
E[R[i]

n (b)Xi Rn(b)].

As before, we estimate

‖E[R[i]
n (b)Xi Rn(b)]‖2 ≤ ‖E[R[i]

n (b)Xi XiR
[i]
n (b)

∗]‖ · ‖E[Rn(b)
∗Rn(b)]‖

≤ α2 · ‖R[i]
n (b)‖2 · ‖Rn(b)‖2.

Let us summarize. We have

E[SnRn(b)] =
1

n

n
∑

i=1

(

η
(

G[i]
n (b)

)

·G[i]
n (b) + r

[i]
1

)

=
1

n

n
∑

i=1

(

η
(

Gn(b) + r
[i]
2

)

·
(

Gn(b) + r
[i]
2

)

+ r
[i]
1

)

,

and the estimates

‖r[i]1 ‖ ≤ 1√
n
·
√

α2(α4 + 2α2
2) · ‖Rn(b)‖ · ‖R[i]

n (b)‖2

and

‖r[i]2 ‖ ≤ 1√
n

√
α2 · ‖R[i]

n (b)‖ · ‖Rn(b)‖.

It remains to estimate ‖Rn(b)‖ and ‖R[i]
n (b)‖. For those we use the usual

estimate for Cauchy transforms (where Im b := (b − b∗)/(2i) denotes
the imaginary part of b),

‖Rn(b)‖ ≤ ‖ 1

Im b
‖, ‖R[i]

n (b)‖ ≤ ‖ 1

Im b
‖.
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For a formal proof of this estimate, see, e.g., Lemma 3.1 in [6].
We have now

E[SnRn(b)] = η (Gn(b)) ·Gn(b) + r3,

where

r3 =
1

n

n
∑

i=1

(

η(Gn(b)) · r[i]2 + η(r
[i]
2 ) ·Gn(b) + η(r

[i]
2 ) · r

[i]
2 + r

[i]
1

)

.

Hence

‖r3‖ ≤ 1

n

n
∑

i=1

(

2‖η‖ · ‖Gn(b)‖ · ‖r[i]2 ‖+ ‖η‖ · ‖r[i]2 ‖2 + ‖r[i]1 ‖
)

≤ cn,

where

cn := cn(b) :=
1√
n

∥

∥

1

Im b

∥

∥

3√
α2 · (2α2 +

√

α4 + 2α2
2) +

1

n

∥

∥

1

Im b

∥

∥

4
α2
2.

Note that SnRn(b) = −1 + bRn(b), hence

E[SnRn(b)] = bGn(b)− 1,

and so we finally have found

(4) η(Gn(b)) ·Gn(b)− bGn(b) + 1 = −r3,

or the inequality:

(5) ‖η(Gn(b)) ·Gn(b)− bGn(b) + 1‖ ≤ cn.

In order to get from this an estimate for the difference between Gn(b)
and G(b), we will now follow the ideas in Section 5 of [6], in the im-
proved version from [5].
By (2), we have for all b ∈ B+ the equation

(6) b =
1

G(b)
+ η
(

G(b)
)

for G(b), and, by (4), the corresponding approximate version for Gn(b):

(7) Λn(b) =
1

Gn(b)
+ η
(

Gn(b)
)

,

where

Λn(b) := b− r3 ·Gn(b)
−1.

A crucial point is now to show that for a sufficiently large set Õn ⊂ B+

the quantity ImΛn(b) is still positive, so that we can also use equation
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(6) for Λn(b). Let us try

Õn :=
{

b ∈ B+ | cn(b) < 1/2 and

cn(b) ·
(

‖b‖ + α2 ·
∥

∥

1

Im b

∥

∥

)

·
∥

∥

1

Im b

∥

∥ < 1/2
}

.

The relevance of the condition cn(b) < 1/2 is the following: Let us
denote

Bn(b) := b− η(Gn(b)),

then inequality (5) takes, for b ∈ Õn, the form

‖1− Bn(b)Gn(b)‖ ≤ cn(b) < 1/2.

This, however, implies that Bn(b)Gn(b) is invertible with

‖Gn(b)
−1Bn(b)

−1‖ = ‖(Bn(b)Gn(b))
−1‖ ≤ 2,

and thus

‖Gn(b)
−1‖ = ‖Gn(b)

−1Bn(b)
−1Bn(b)‖

≤ 2‖Bn(b)‖
= 2‖b− η(Gn(b))‖
≤ 2 (‖b‖+ α2 · ‖Gn(b)‖)

≤ 2

(

‖b‖ + α2 · ‖
1

Im b
‖
)

.

But then the other condition in the definition of Õn implies that for
b ∈ Õn we have

‖r3 ·Gn(b)
−1‖ ≤ ‖r3‖ · ‖Gn(b)

−1‖(8)

≤ cn · 2
(

‖b‖ + α2 · ‖
1

Im b
‖
)

< ‖ 1

Im b
‖−1.

Since

Im b ≥ ‖ 1

Im b
‖−1 · 1,

it follows that, for b ∈ Õn, Λn(b) = b− r3 ·Gn(b)
−1 is still in B+ and so

we can use the equation (6) with Λn(b) as argument, i.e.,

(9) Λn(b) =
1

G(Λn(b))
+ η
(

G(Λn(b))
)

.

The point of having both equation (9) and equation (7) is that this
implies that

G(Λn(b)) = Gn(b).
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In [6, 5] this was shown by analytic continuation arguments. We can
simplify that argument by using the fact from [7] that the equation

(10) w =
1

G
+ η(G)

has, for any w with Imw > 0, exactly one solution G ∈ B such that
ImG is negative. Since both Gn(b) and G(Λn(b)) have negative imagi-
nary parts (as Cauchy transforms at some arguments) and both satisfy
the same equation (10) (for w = Λn(b)), they must agree.

Then we can, still in the case b ∈ Õn, estimate in the usual way, by
invoking the resolvent identity:

‖Gn(b)−G(b)‖ = ‖G(Λn(b))−G(b)‖
= ‖G(Λn(b)) · (Λn(b)− b) ·G(b)‖
≤ ‖(Λn(b)− b)‖ · ‖Gn(b)‖ · ‖G(b)‖.

Both ‖G(b)‖ and ‖Gn(b)‖ can be estimated by ‖1/Im b‖ and for the
first factor we have, by the second inequality in (8), that

‖(Λn(b)− b)‖ = ‖r3Gn(b)
−1‖ ≤ cn · 2

(

‖b‖+ α2 · ‖
1

Im b
‖
)

Thus, for b ∈ Õn, we have shown that

(11) ‖Gn(b)−G(b)‖ ≤ cn · 2
(

‖b‖+ α2 · ‖
1

Im b
‖
)

· ‖ 1

Im b
‖2

For b ∈ B+\Õn, on the other hand, we just use the trivial estimate

‖Gn(b)−G(b)‖ ≤ 2 · ‖ 1

Im b

∥

∥

together with

• if we have cn(b) ≥ 1/2, then

‖ 1

Im b
‖ ≤ 2cn · ‖

1

Im b
‖

≤ 2cn · ‖
1

Im b
‖ · ‖b‖ · ‖ 1

Im b
‖

≤ 2cn · ‖
1

Im b
‖2 ·

(

‖b‖ + α2 · ‖
1

Im b
‖
)

• if we have cn(b) ·
(

‖b‖ + α2 ·
∥

∥

1
Im b

∥

∥

)

·
∥

∥

1
Im b

∥

∥ ≥ 1/2, then we have
again

‖ 1

Im b
‖ ≤ 2cn ·

(

‖b‖ + α2 · ‖
1

Im b
‖
)

· ‖ 1

Im b
‖2

Thus we have proved the Theorem.
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