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7 When Do Random Subsets Decompose a Finite Group?

Ariel Yadin ∗

Abstract

Let A,B be two random subsets of a finite group G. We consider the event that the

products of elements from A and B span the whole group; i.e. {AB ∪BA = G}. The

study of this event gives rise to a group invariant we call Θ(G). Θ(G) is between 1/2 and

1, and is 1 if and only if the group is abelian. We show that a phase transition occurs as

the size of A and B passes
p

Θ(G)|G| log |G|; i.e. for any ε > 0, if the size of A and B is

less than (1− ε)
p

Θ(G)|G| log |G|, then with high probability AB ∪BA 6= G. If A and

B are larger than (1 + ε)
p

Θ(G)|G| log |G| then AB ∪ BA = G with high probability.

1 Introduction

Let G be a finite group. Two subsets A,B ⊂ G are said to be a decomposition for G if

AB ∪BA = G, where

AB
def
=
{

ab
∣

∣ a ∈ A, b ∈ B
}

.

In [3], Kozma and Lev proved that for any finite group G, there always exists a decomposition

A,B for G, such that |A| ≤ c
√

|G|, |B| ≤ c
√

|G| (where c > 0 is some explicit constant, see

[3] for details). We consider a similar question, but where the sets A,B are randomly chosen.

Let G be a finite group of size n ≥ 3. Let a1, a2, . . . , ak, b1, b2, . . . , bk be 2k random elements

(perhaps with repetitions) chosen independently from G, and let A = {a1, . . . , ak} and B =

{b1, . . . , bk}. We investigate the event that A and B are a decomposition for G. Denote the

probability of this event by

P (G, k) = P [AB ∪BA = G] .
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Since P (G, k) is monotone in k, it seems natural to ask whether a phase transition occurs,

and if so, then what is the critical value. It turns out that there exists a group invariant

Θ(G) ∈ (1/2, 1] (defined in Section 2 below), such that the critical value exists and is equal

to
√

Θ(G)n logn, as stated in our main result:

Theorem 1. Let Gn be a family of groups such that

lim
n→∞

|Gn| = ∞.

For all n, let Cn =
√

Θ(Gn)|Gn| log |Gn|. Then for any ε > 0,

lim
n→∞

P (Gn, ⌈(1 + ε)Cn⌉) = 1,

and

lim
n→∞

P (Gn, ⌊(1− ε)Cn⌋) = 0.

The proof of Theorem 1 follows from Lemmas 14 and 15. Actually, it can be seen from these

lemmas that the window of the transition is smaller than stated by Theorem 1. Before we

move to the proofs of these lemmas, we define the group invariant Θ(G), and elaborate on

some of its properties.

2 A Group Invariant

For group theory background see [6].

Say we are interested in measuring how close a group is to being abelian. It seems reasonable

to try and associate a number, say ρ(G), to each group G, such that ρ(G) has the following

properties:

• ρ(G) ∈ [0, 1].

• ρ(G) = ρ(G′), if G and G′ are isomorphic as groups.

• ρ(G) = 1 if and only if G is abelian.

Perhaps the first “probabilistic” quantity that comes to mind is the probability that two

randomly chosen elements commute. If a, b are two random independent uniformly chosen

elements from a finite group G, then

P [ab = ba] =
∑

x∈G

|C(x)|
|G|2 , (2.1)
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where C(x) = {g ∈ G : gx = xg} denotes the centralizer of x in G. If we view G as acting

on itself by conjugation, then C(x) is the set of all elements that fix x. Also, the number of

different orbits is just the number of conjugacy classes of G. Thus, by Burnside’s counting

lemma (see [6] Chapter 3, page 58), P [ab = ba] = R(G)/|G|, where R(G) is the number of

conjugacy classes in G. (An alternative proof can be given through character theory, using

the Schur orthogonality relations.)

In this note, we define a different group invariant, Θ(G). As it turns out, Θ(G) ∈ (1/2, 1], and

Θ(G) = 1 if and only if G is abelian. Θ(G) arises naturally when considering the question

that two random sets form a decomposition of a group G, as seen in Theorem 1.

We use the notation C(x) =
{

g ∈ G
∣

∣ gx = xg
}

to denote the centralizer of x ∈ G. Note

that C(x) is a subgroup of G.

LetG be a group of order n. Since for any x ∈ G, 2 ≤ |C(x)| ≤ n, the function f : [1/2, 1] → R

f(ξ) = 2ξ logn− log
∑

x∈G

exp

(

ξ logn · |C(x)|
n

)

is negative at 1/2, non-negative at 1, and continuous monotone increasing on [1/2, 1]. Indeed,

f(1/2) = logn− log
∑

x∈G

exp

(

logn

2
· |C(x)|

n

)

≤ logn− log
(

n · elogn/n
)

= − logn

n
.

f(1) = 2 logn− log
∑

x∈G

exp

(

logn · |C(x)|
n

)

≥ 2 logn− log
(

n · elogn
)

= 0.

f ′(ξ) = 2 logn−
∑

x∈G exp
(

ξ logn · |C(x)|
n

)

· logn|C(x)|
n

∑

x∈G exp
(

ξ logn · |C(x)|
n

) ≥ 2 logn− logn > 0.

Thus, the following is well defined:

Definition 2. Let G be a finite group of order n. Define Θ = Θ(G) to be the unique number

in [1/2, 1] satisfying:

2Θ logn = log
∑

x∈G

exp

(

Θ logn · |C(x)|
n

)

. (2.2)

Remark. Θ(G) is the solution of equation (2.2) If x1, x2, . . . , xR are representatives of the

conjugacy classes of G, the sum in the logarithm of the right hand side of (2.2) can be written

as
R
∑

i=1

|[xi]| exp
(

ξ logn · 1

|[xi]|

)

,
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where [xi] is the conjugacy class of xi. This sum may remind some readers of the “zeta

function” studied by Liebeck and Shalev, see e.g. [4, 5]. Their zeta function is also used

in the context of probabilistic group theory. We use the main result from [5] regarding this

“zeta function” in Proposition 3 below.

The following proposition provides some properties of Θ(G). The proposition roughly shows

that Θ(G) measures, in some sense, how “abelian” a group is. The properties of Θ are not

essential to the proof of Theorem 1, and so some readers may wish to skip to Section 3.

Proposition 3. Let G be a group of order n.

(i). Let Z(G) be the center of G; i.e. Z(G) =
{

g ∈ G
∣

∣ ∀ x ∈ G : gx = xg
}

. Then,

Θ(G) ≥ log |Z(G)|
logn

,

and

Θ(G) ≤ max

{

2

3

(

1 +
log 2

logn

)

,
log |Z(G)|+ log 2

log n

}

.

(ii). G is abelian if and only if Θ(G) = 1 (so the lower bound in (i) is tight).

(iii). Let R = R(G) be the number of conjugacy classes of G (this is also the number of

irreducible representations of G). Then,

Θ(G) ≥ 1

2−R/n
> 1/2.

(iv). Let G = D2m, the dihedral group of order n = 2m. Then,

2

3
·
(

1− log 2

log n

)

≤ Θ(D2m) ≤ 2

3
·
(

1 +
log 2

logn

)

.

(This implies that the upper bound in (i) is tight.)

(v). Let G = Sm, the group of all permutations on m letters. So n = m!. Then,

Θ(Sm) =
1

2
+ o(1).

(vi). Let 1/2 ≤ α < 1. Then, there exists a sequence of groups {Gn}, such that

lim
n→∞

Θ(Gn) = α.

(vii). Let G be a simple non-abelian group. Then,

Θ(G) =
1

2
+ o(1).
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Proof. Let Θ = Θ(G).

(i). For any x ∈ Z(G), we have that |C(x)| = n. Thus,

2Θ logn ≥ log(|Z(G)| eΘ log n) = log |Z(G)|+Θ logn.

This proves the lower bound.

Note that since C(x) is a subgroup, |C(x)| must divide |G|. Thus, for any x 6∈ Z(G),

we have that |C(x)| ≤ n/2. Thus,

n2Θ ≤ |Z(G)| · nΘ + (n− |Z(G)|) · nΘ/2 ≤ nΘ/2 · 2max
{

|Z(G)|nΘ/2, n
}

.

This proves the upper bound.

(ii). Assume towards a contradiction that Θ = 1 and that G is not abelian. Then, there

exists x ∈ G such that |C(x)| < n. Since |C(x)| must divide n, we get that |C(x)| ≤ n/2.

Thus, by the definition of Θ,

n2 ≤ (n− 1)n+ n1/2 = n2 − n+ n1/2,

a contradiction.

The other direction follows by (i), since if G is abelian, |Z(G)| = n.

(iii). By Burnside’s Lemma, or by Schur’s orthogonality relations, one can show that

∑

x∈G

|C(x)| = n ·R.

Using Jensen’s inequality on the convex function exp
(

Θ logn
n · ξ

)

,

2Θ logn = log
∑

x∈G

exp

(

Θ logn

n
· |C(x)|

)

≥ logn exp

(

Θ logn

n
· R
)

= logn+Θ logn·R
n
.

The assertion follows.

(iv). The dihedral group of order n = 2m is

D2m =
〈

x, y : xm = y2 = 1 , yxy = x−1
〉

=
{

xi, yxi : i = 0, 1, . . . ,m− 1
}

.

One can check that the following holds:

i 6∈ {0,m/2} C(xi) =
{

1, x, . . . , xm−1
}

,

i ∈ {0,m/2} C(1) = C(xm/2) = D2m,

if m is even C(yxi) =
{

1, xm/2, yxi, yxi+m/2
}

,

if m is odd C(yxi) =
{

1, yxi
}

.
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Thus, Z(D2m) = {1} if m is odd, and Z(D2m) =
{

1, xm/2
}

, if m is even. So we get

the upper bound by (i).

On the other hand, considering the elements 1, x, . . . , xm−1, we have that

n2Θ ≥ m · nΘ/2 =
1

2
n1+Θ/2,

which implies the lower bound.

(v). We use the following notation: If c = (i1, i2, . . . , is) ∈ Sm is a cycle, and τ ∈ Sm is

any permutation, then denote cτ = (τ(i1), τ(i2), . . . , τ(is)) (note that c
τ = τcτ−1). For

a permutation σ ∈ Sm denote by supp(σ) = {j ∈ [m] : σ(j) 6= j} the support of σ.

|σ| = |supp(σ)| denotes the size of the support.

Let σ ∈ Sm, and write σ = c1c2 · · · cℓ, where ci are cycles, ordered by their size from

largest to smallest (i.e. |ci| ≥ |cj | for all i ≤ j). Let s = |c1| be the size of the largest

cycle in the decomposition. Let r ≥ 1 be the index such that |ci| = s for all 1 ≤ i ≤ r,

and |ci| < s for all i > r.

Set

S =
r
⋃

i=1

supp(ci).

If τ ∈ C(σ), then τστ−1 = σ. But it can easily be seen that

τστ−1 = cτ1c
τ
2 · · · cτℓ .

Since |ci| = |cτi |, we get that for any j ∈ S we must have that τ(j) ∈ S. Thus,

|C(σ)| ≤
∣

∣

{

τ ∈ Sm
∣

∣ τ(S) = S
}∣

∣ = |S|!(m− |S|)!.

If r < ℓ, then since |cℓ| ≥ 2, we have that |S| ≤ m− 2. Thus,

|C(σ)| ≤ m! · 2

m(m− 1)
< m! ·

( e

m

)2

. (2.3)

Assume that r = ℓ. Then either σ is a cycle of length m, or a cycle of length m− 1, or

σ is the product of cycles of equal length.

If σ is the identity, then |C(σ)| = m!. If σ is a cycle of length m then |C(σ)| = m. If σ

is a cycle of length m− 1 then |C(σ)| = m− 1.

So we are left with the case where σ = c1c2 · · · cr and |ci| = m/r for all 1 ≤ i ≤ r. Note

that in this case,

C(σ) ⊆
{

c′1c
′
2 · · · c′r

∣

∣ all c′i are cycles of length m/r
}

.
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Thus,

|C(σ)| = m!
(

m
r

)r
r!
< m! ·

( e

m

)2

. (2.4)

Combining (2.3) and (2.4) we get (for n = m!),

n2Θ ≤ nΘ + (m− 1)!nΘ/(m−1)! +m(m− 2)!nΘ/m(m−2)!

+(m!− (m− 1)!−m(m− 2)!− 1) · nΘe2/m2

≤ (n− 1) · (1 + o(1)) + nΘ

which shows that Θ ≤ 1
2 + o(1) (as m tends to infinity).

(vi). Let α ∈ [1/2, 1). For all integers m, let nm = m! and km = ⌊nα/(1−α)m ⌋. So,

nα/(1−α)m · (1− 1/nm) ≤ km ≤ (kmnm)α.

Let Gm = Ckm ×Sm, where Ckm is the cyclic group of order km. Note that for c ∈ Ckm

and σ ∈ Sm the centralizer of (c, σ) in Gm is the set Ckm × C(σ). Thus, using the

calculations for Sm in the previous proof, for Θ = Θ(Gm),

|Gm|2Θ ≤ km ·
(

|Gm|Θ + (m− 1)!|Gm|Θ/(m−1)! +m(m− 2)!|Gm|Θ/m(m−2)!

+(nm − 1− (m− 1)!−m(m− 2)!)|Gm|Θe2/m2)

≤ km|Gm|Θ + (1 + o(1))kmnm.

Since α + Θ > 1, we get that |Gm|2Θ ≤ (2 + o(1))(kmnm)Θ+α, which implies that

Θ(Gm) ≤ α+ o(1).

On the other hand |Gm|2Θ ≥ km|Gm|Θ ≥ (1−1/nm) ·nα/(1−α)m |Gm|Θ. Hence Θ(Gm) ≥
α− o(1).

(vii). Let G be a finite simple non-abelian group. Let M be the set of all maximal subgroups

of G. Consider the following “zeta function” (defined in [2], and studied further in

[4, 5]):

ζG(s) =
∑

M∈M

[G :M ]−s.

Theorem 1.1 of [5] states that for any s > 1,

ζG(s) −→ 0 as |G| → ∞.

Since G is simple non-abelian, if x is not the identity in G, then C(x) is a proper

subgroup. Since any proper subgroup of G is contained in a maximal subgroup, we get

that
|C(x)|
|G| =

√

[G : C(x)]−2 ≤
√

ζG(2).
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So for all x 6= 1 in G we get that |C(x)|
|G| = o(1). Plugging this into the definition of

Θ = Θ(G) we get that

n2Θ ≤ nΘ + (n− 1) · nΘo(1) ≤ nΘ + n1+o(1),

which implies that Θ ≤ 1
2 + o(1). ⊓⊔

In the proof of Proposition 3, (vi), we use the product of a cyclic group with the symmetric

group to obtain different values of Θ. This idea raises the following

Open Problem. Show that for any abelian group H and any group G, Θ(H×G) ≥ Θ(G).

3 Suen’s inequality

One of the main tools we use to prove our results is a correlation inequality by Suen (see

Theorem 5 below).

Graph Notation. For a graph Γ = (V,E) write v ∼ u if {v, u} is an edge. For subsets

S, T ⊆ V , write S ∼ T if there exists an edge between S and T . Thus, S 6∼ T means that

there is no edge between S and T . v ∼ S means there is an edge between v and some element

of S.

Definition 4. Let {Xi}Ni=1 be a collection of random variables. A graph Γ = (V,E) is

a dependency graph of {Xi}Ni=1 if: Γ = (V,E) is an undirected graph on the vertex set

V = {1, . . . , N} such that for any two disjoint subsets S, T ⊂ V , if S 6∼ T then the two

families {Xi}i∈S and {Xi}i∈T are independent of each other. (In some texts Γ is called a

superdependency digraph.)

The following is a result of Suen, slightly improved by Janson (see [1, 7]).

Theorem 5 (Suen’s inequality). Let X1, . . . , XN be N Bernoulli random variables, and let

SN =
∑N

i=1Xi. Let Γ be a dependency graph of {Xi}Ni=1.

Define

∆ = ∆
(

Γ, {Xi}Ni=1

)

=
1

2

N
∑

i=1

∑

j∼i

E [XiXj ]
∏

k∼{i,j}

(1− E [Xk])
−1
,
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and

∆∗ = ∆∗
(

Γ, {Xi}Ni=1

)

=
1

2

N
∑

i=1

∑

j∼i

E [Xi]E [Xj ]
∏

k∼{i,j}

(1− E [Xk])
−1
.

Then,

P [SN = 0] ≤ e∆
N
∏

i=1

(1− E [Xi]) ,

P [SN = 0] ≥
(

1−∆∗e∆
)

N
∏

i=1

(1− E [Xi]) .

4 Preliminaries

Let G be a finite group of size n ≥ 3. Let a1, a2, . . . , ak, b1, b2, . . . , bk be 2k random elements

chosen independently from G, and let A = {a1, . . . , ak} and B = {b1, . . . , bk}.

We use the notation [k] = {1, 2, . . . , k}.

Let V = [k]× [k]. For (i, j) ∈ V , define

I(i,j)(x) = 1{x=ai·bj or x=bj ·ai}.

Definition 6. Define a graph Γ = (V,E) on the vertex set V , by the edge relation

(i, j) ∼ (ℓ,m) ⇐⇒ (i = ℓ and j 6= m) or (i 6= ℓ and j = m).

Proposition 7. For any x ∈ G, Γ is a dependency graph for {Iv(x)}v∈V .

Proof. Let S, T be disjoint subsets of V such that S 6∼ T . Note that the values of {Iv(x)}v∈S
are completely determined by

{

ai, bj
∣

∣ (i, j) ∈ S
}

, and the values of {Iv(x)}v∈T are com-

pletely determined by
{

ai, bj
∣

∣ (i, j) ∈ T
}

. Since S 6∼ T and S ∩ T = ∅, by definition, for

any (i, j) ∈ S and (ℓ,m) ∈ T , we have that i 6= j and j 6= m. Thus,
{

ai, bj
∣

∣ (i, j) ∈ S
}

and
{

aℓ, bm
∣

∣ (ℓ,m) ∈ T
}

are independent. So, the families {Iv(x)}v∈S and {Iv(x)}v∈T are

independent. ⊓⊔

Definition 8. Let x 6= y ∈ G. Define V (x, y) = V × {x, y}. Let Γx,y = (V (x, y), Ex,y) be

the graph defined by the edge relations

(v, z) ∼ (u, z′) ⇐⇒ {v, u} ∈ E,

for all v, u ∈ V and z, z′ ∈ {x, y}.
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For (v, z) ∈ V (x, y), define J(v, z) = Iv(z). The following is very similar to Proposition 7, so

we omit the proof.

Proposition 9. For any x 6= y ∈ G, Γx,y is a dependency graph for {Iv(x), Iv(y)}v∈V =

{J(v, z)}(v,z)∈V (x,y).

The following Propositions prove to be useful in calculating the moments of |AB ∪BA|.

Proposition 10. Let x ∈ G. Let v ∈ V . Then,

E [Iv(x)] =
2

n

(

1− 1

2
· |C(x)|

n

)

.

Proof. Let v = (i, j) ∈ V . Since ai and bj are independent, by the inclusion-exclusion

principle,

E [Iv(x)] = P
[

ai = xb−1
j

]

+ P
[

ai = b−1
j x

]

− P
[

ai = xb−1
j = b−1

j x
]

=
1

n
+

1

n
− 1

n
P
[

b−1
j ∈ C(x)

]

. ⊓⊔

Proposition 11. Let x, y ∈ G. Let v ∈ V and let u ∼ v. Then,

E [Iv(x)Iu(y)] =
4

n2

(

1− |C(x)| + |C(y)|
2n

+
|C(x) ∩C(y)|

4n

)

.

Proof. Assume that v = (i, j) and u = (i, ℓ) for ℓ 6= j. Conditioning on ai = g,

E [Iv(x)Iu(y)] = P [(x = ai · bj or x = bj · ai) and (y = ai · bℓ or y = bℓ · ai)]

=
1

n

∑

g∈G

P
[

bj = xg−1 or bj = g−1x
]

P
[

bℓ = yg−1 or bℓ = g−1y
]

.

Considering the four cases: g−1 ∈ C(x) ∩ C(y), g−1 ∈ C(x) \ C(y), g−1 ∈ C(y) \ C(x),
g−1 6∈ C(x) ∪ C(y), we get that

E [Iv(x)Iu(y)] =
1

n3
· (|C(x) ∩C(y)|+ 4(n− |C(x) ∪ C(y)|) + 2 |C(x) \ C(y)|+ 2 |C(y) \ C(x)|)

=
1

n3
(4n− 2(|C(x)| + |C(y)|) + |C(x) ∩ C(y)|)

=
4

n2

(

1− |C(x)|+ |C(y)|
2n

+
|C(x) ∩ C(y)|

4n

)

.

The case u = (ℓ, j) for ℓ 6= i is very similar (condition on bj = g). ⊓⊔

10



Proposition 12. Let v ∈ V and let u ∼ v. Then,

|{w ∈ V : w ∼ v}| = 2(k − 1),

|{w ∈ V : w ∼ {v, u}}| = 3(k − 1) + 1.

Proof. Assume that v = (i, j). The first assertion follows from

{w ∈ V : w ∼ v} = {(i, ℓ) : ℓ 6= j} ∪ {(ℓ, j) : ℓ 6= i} ,

since the above union is disjoint.

For the second assertion, assume that u = (i, ℓ) for ℓ 6= j (the proof for u = (ℓ, j) for ℓ 6= i is

very similar).

|{w ∈ V : w ∼ {v, u}}| = |{w ∼ v}|+ |{w ∼ u}| − |{w ∼ u and w ∼ v}| .

Since

{w ∈ V : w ∼ u and w ∼ v} = {(i,m) : m 6= j and m 6= ℓ} ,

we get that

|{w ∈ V : w ∼ {v, u}}| = 4(k − 1)− (k − 2) = 3(k − 1) + 1. ⊓⊔

4.1 ∆ and ∆∗

In order to apply Suen’s inequality (Theorem 5), we need to calculate ∆ and ∆∗ as in

Theorem 5, for the families of indicators {Iv(x)}v∈V and {J(v, z)}(v,z)∈V (x,y).

Lemma 13. Let x 6= y ∈ G.

(i). Let ∆I(x) = ∆(Γ, {Iv(x)}v∈V ) and ∆∗
I(x) = ∆∗(Γ, {Iv(x)}v∈V ) as in the statement of

Theorem 5. Then, ∆I(x) and ∆∗
I(x) are both not larger than 4 · k3n2 · exp

(

6k
n−2

)

.

(ii). Let ∆J(x, y) = ∆(Γx,y, {J(v, z)}(v,z)∈V (x,y)) and ∆∗
J(x, y) = ∆∗(Γx,y, {J(v, z)}(v,z)∈V (x,y)).

Then, ∆J(x, y) and ∆∗
J (x, y) are both not larger than 16 · k3n2 · exp

(

12k
n−2

)

.

Proof. By Propositions 10 and 11, for any v ∼ u, the quantities E [Iv(x)Iu(x)] and E [Iv(x)]E [Iu(x)]

are bounded by 4
n2 . By Proposition 12,

∏

w∼{v,u}

(1− E [Iw(x)])
−1 ≤

(

1− 2

n

)−3k

≤ exp

(

6k

n− 2

)

,

11



where we have used the inequality (1− 1
ξ )

−1 ≤ exp
(

1
ξ−1

)

, valid for any ξ > 1.

Plugging this into the definitions of ∆I(x) and ∆∗
I(x) proves the first assertion.

Note that

∆J (x, y) =
1

2

∑

v∈V

∑

u∼v

∑

z,z′∈{x,y}

E [Iv(z)Iu(z
′)]

∏

w∼{v,u}

(1− E [Iw(x)])
−1

(1− E [Iw(y)])
−1
,

and

∆∗
J(x, y) =

1

2

∑

v∈V

∑

u∼v

∑

z,z′∈{x,y}

E [Iv(z)]E [Iu(z
′)]

∏

w∼{v,u}

(1− E [Iw(x)])
−1

(1− E [Iw(y)])
−1
.

So, as above, the second assertion follows from

∑

z,z′∈{x,y}

E [Iv(z)Iu(z
′)] ≤ 16

n2
and

∑

z,z′∈{x,y}

E [Iv(z)]E [Iu(z
′)] ≤ 16

n2
. ⊓⊔

5 Bounds on |AB ∪ BA|

In this section we provide bounds on the probability of the event that {AB ∪BA = G}, i.e.
that A and B are a decomposition of G. Let S = G \AB ∪BA. Thus, AB ∪BA = G if and

only if |S| = 0. To bound the required probabilities, we bound the first and second moments

of |S|.

Lemma 14. Let 0 ≤ ψ < logn, and let k ≥
√

Θ(G)n(log n+ ψ). Then,

P [AB ∪BA 6= G] ≤ (1 + o(1)) · e−Θ(G)ψ.

Proof. Since, by Markov’s inequality,

P [AB ∪BA 6= G] = P [|S| ≥ 1] ≤ E [|S|] ,

it suffices to bound E [|S|].

Note that the event P [AB ∪BA = G] is monotone non-decreasing with k, so we can assume

that k = ⌈
√

Θn(logn+ ψ)⌉, where Θ = Θ(G).

Now, x ∈ S if and only if
∑

v∈V Iv(x) = 0. By Lemma 13,

∆I = ∆I(x) = O
(

k3/n2
)

= o(1).

12



Thus, using Suen’s inequality (Theorem 5), for any x ∈ G,

P [x ∈ S] ≤ e∆I ·
(

1− 2

n

(

1− 1

2
· |C(x)|

n

))|V |

≤ (1 + o(1)) · exp
(

−2k2

n
+
k2 |C(x)|

n2

)

.

Summing over all x ∈ G, we get

E [|S|] ≤ (1 + o(1)) exp

(

−2k2

n

)

·
∑

x∈G

exp

(

k2 |C(x)|
n2

)

≤ (1 + o(1) · exp (−2Θψ − 2Θ logn)
∑

x∈G

exp

(

Θ logn
|C(x)|
n

)

exp

(

Θψ
|C(x)|
n

)

≤ (1 + o(1)) · exp (−Θψ) .

⊓⊔

Lemma 15. Let 0 ≤ ψ < logn, and let k ≤
√

Θ(G)n(log n− ψ). Then,

P [AB ∪BA = G] ≤ e−Θ(G)ψ + o(1).

Proof. As in the proof of Lemma 14, we can assume that k = ⌊
√

Θn(logn− ψ)⌋, for Θ =

Θ(G).

We can bound the moments of |S| using Suen’s inequality, as in the proof of Lemma 14.

To simplify the notation we will use px = (1 − E [Iv(x)])
k2 (which does not depend on v,

by Proposition 10). By our choice of k, since ∆I(x) = o(1) and ∆∗
I(x) = o(1), P [x ∈ S] ≥

(1− o(1)) · px and P [x ∈ S] ≤ (1 + o(1)) · px. Thus,

E [|S|] ≥ (1− o(1)) ·
∑

x∈G

px.

Furthermore, note that for x 6= y ∈ G, since ∆J (x, y) = o(1),

P [x, y ∈ S] ≤ (1 + o(1)) ·
∏

(v,z)∈V (x,y)

(1− E [J(v, z)]) = (1 + o(1)) · pxpy.

Hence,

E
[

|S|2
]

=
∑

x 6=y∈G

P [x, y ∈ S] +
∑

x∈G

P [x ∈ S]

≤ (1 + o(1)) ·
∑

x 6=y∈G

pxpy + (1 + o(1)) ·
∑

x∈G

px.

13



Now we use the Paley-Zygmund inequality:

P [AB ∪BA 6= G] = P [|S| > 0] ≥ (E [|S|])2
E [|S|2]

≥ (1− o(1)) · (
∑

x px)
2

∑

x 6=y pxpy +
∑

x px
= (1− o(1)) ·

(

1−
∑

x px −
∑

x p
2
x

∑

x 6=y pxpy +
∑

x px

)

= (1− o(1)) ·
(

1−
∑

x px(1 − px)
∑

x px(1− px +
∑

y py)

)

So it suffices to show that for all x ∈ G,

1− px
1− px +

∑

y py
≤ (1 + o(1)) · e−Θψ.

But this follows immediately from

1− px
1− px +

∑

y py
≤
(

∑

y

py

)−1

,

and from the fact that

∑

y∈G

py ≥
∑

y∈G

exp

(

− 2k2

n− 2
·
(

1− |C(y)|
2n

))

=
∑

y∈G

exp

(

−2k2

n
·
(

1− |C(y)|
2n

)

− 4k2

n(n− 2)
·
(

1− |C(y)|
2n

))

≥ (1− o(1)) · exp (2Θψ − 2Θ logn) ·
∑

y∈G

exp

(

Θ logn
|C(y)|
n

)

exp

(

−Θψ
|C(y)|
n

)

≥ (1− o(1)) · exp (Θψ) ,

(where we have used the inequality 1− 1
ξ ≥ exp

(

− 1
ξ−1

)

, valid for any ξ > 1). ⊓⊔

6 Concluding Remarks and Open Problems

• One can ask whether a result similar to Theorem 1 holds if we only require that AB = G.

It can be shown that for any finite group G of order |G| = n, if k ≥ (1 + ε)
√
n logn

then P [AB = G] = 1− o(1), and if k ≤ (1 − ε)
√
n logn, then P [AB = G] = o(1). The

proof of this is almost identical to the proof of Theorem 1.

• Another variant is to take A and B of different sizes. That is, let a1, . . . , ak and

b1, . . . , bm be k + m random elements of G, and let A = {a1, . . . , ak} and B =

14



{b1, . . . , bm}. What can be said about the probability P [AB ∪BA = G]? It turns

out that if k and m are both not too large, then the threshold is identical to the

case m = k. That is, provided that max {k,m} = o
(

|G|
log |G|

)

, we can prove that

P [AB ∪BA = G] = 1−o(1) if k·m ≥ (1+ε)Θ(G)n logn and if k·m ≤ (1−ε)Θ(G)n logn,

then P [AB ∪BA = G] = o(1). Again, the proof is the same as that of Theorem 1.

• We can also ask what is the probability of the event AA = G. In this case, our method

breaks down for groups G such that Θ(G) is very small. That is, we can prove a phase

transition in k for the event {AA = G}, but only for families of groups {Gn}, such that

Θ(Gn) ≥ 1
2 + log log |Gn|

log |Gn|
. Note that in Section 2 it is shown that there are groups (e.g.

the symmetric group) that do not have this property. The main problem in dealing

with AA, is that one needs to control the size of the set
{

a2 : a ∈ A
}

. This means

controlling the probability P
[

a2i = x
]

for all x. Thus, we have the following

Open Problem. Prove or provide a counter-example:

Let Gn be a family of groups such that

lim
n→∞

|Gn| = ∞.

For all n, let a1, a2, . . . , ak be k randomly chosen elements ofGn, and let A = {a1, a2, . . . , ak}.
Let P ′(n, k) = P [AA = Gn].

For all n, let Cn =
√

2Θ(Gn)|Gn| log |Gn|. Then for any ε > 0,

lim
n→∞

P ′(n, ⌈(1 + ε)Cn⌉) = 1 , lim
n→∞

P ′(n, ⌊(1− ε)Cn⌋) = 0.

• Another interesting problem, is to determine what happens inside the transition win-

dow: As can be seen by Lemmas 14 and 15, if ψ(n) is any function tending to infinity

with n, then for k ≥
√

Θ(G)n logn +
√

nψ(n), with high probability AB ∪ BA = G.

For k ≤
√

Θ(G)n logn−
√

nψ(n), with high probability AB ∪BA 6= G.

The question is, what happens for
√

Θ(G)n logn − √
n < k <

√

Θ(G)n logn +
√
n?

What can be said about the size of AB ∪BA in this case?

• Here are some further open questions, proposed by Itai Benjamini:

Let G be a finite group. Consider the family of subsets

S =
{

B ⊂ G
∣

∣ ∃ A ⊂ G : AA = B
}

.

(i). Determine the size of S.

15



(ii). Sample B ∈ S from the uniform distribution.

(iii). Devise an (efficient) algorithm to decide whether a subset A ⊂ G is in S or not.

(iv). Devise an (efficient) algorithm to decide whether A ⊂ G is “almost” an element

of S; i.e. whether there exists B ∈ S such that |A△B| = o(|G|).

It will be interesting to solve some of these problems even with relaxed conditions, such

as assuming that G is abelian or even cyclic.
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