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Abstract

We derive weighted log-Sobolev inequalities from a class of super Poincaré in-
equalities. As an application, the Talagrand inequality with larger distances are
obtained. In particular, on a complete connected Riemannian manifold, we prove
that the logδ-Sobolev inequality with δ ∈ (1, 2) implies the L2/(2−δ)-transportation
cost inequality

W
ρ
2/(2−δ)(fµ, µ)

2/(2−δ) ≤ Cµ(f log f), µ(f) = 1, f ≥ 0

for some constant C > 0, and they are equivalent if the curvature of the correspond-
ing generator is bounded below. Weighted log-Sobolev and entropy-cost inequalities
are also derived for a large class of probability measures on R

d.

AMS subject Classification: 60J60, 58G32.
Keywords: Entropy-cost inequality, super Poincaré inequality, weighted log-Sobolev in-
equality.

1 Introduction

Let (E, ρ) be a Polish space and µ a probability measure on E. For p ≥ 1 we define the
Lp-Wasserstein distance (or the Lp-transportation cost) by

W ρ
p (µ1, µ2) :=

{

inf
π∈C (µ1,µ2)

∫

E×E

ρ(x, y)pπ(dx, dy)

}1/p

∗Supported in part by NNSFC(10121101) and the 973-Project in China.
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for probability measures µ1, µ2 on E, where C (µ1, µ2) is the class of probability measures
on E ×E with marginal distributions µ1 and µ2.

According to [4, Corollary 4],

W ρ
p (fµ, µ)

2p ≤ Cµ(f log f), f ≥ 0, µ(f) = 1

holds for some C > 0 provided µ(eλρ(o,·)
2p
) < ∞ for some λ > 0, where o ∈ E is a fixed

point. See also [8] for p = 1. Furthermore, it is easy to derive from [14, Theorem 1.15]
that for any q ∈ [1, 2p), there exists C > 0 such that

(1.1) W ρ
q (fµ, µ)

2p ≤ Cµ(f log f), f ≥ 0, µ(f) = 1

if and only if µ(eλρ(o,·)
2p
) < ∞ for some λ > 0. In general, however, this concentration

of µ does not imply (1.1) for q = 2p. Indeed, there exist a plentiful examples where
µ(eλρ(o,·)

2

) < ∞ for some λ > 0 but there is no any constant C > 0 such that the
Talagrand inequality

(1.2) W ρ
2 (fµ, µ)

2 ≤ Cµ(f log f), f ≥ 0, µ(f) = 1

holds, see e.g. [1] for examples with µ(eλρ(o,·)
2

) < ∞ for some λ > 0 but the Poincaré
inequality does not hold, which is weaker than (1.2) (see [17, Section 7] or [2, Section
4.1]).

Therefore, to derive (1.1) with q = 2p, one needs something stronger than the cor-
responding concentration of µ. In fact, it is now well known in the literature that, the
Talagrand inequality follows from the log-Sobolev inequality for a class of local Dirichlet
forms, see [21, 17, 2, 25, 20] and references within.

In this paper, we aim to derive (1.1) with q = 2p, i.e.

(1.3) W ρ
2p(fµ, µ)

2p ≤ Cµ(f log f), f ≥ 0, µ(f) = 1,

by using functional inequalities stronger than the log-Sobolev one.
To this end, in Section 2 we study the weighted log-Sobolev inequality

µ(f 2 log f 2) ≤ Cµ(α ◦ ρ(o, ·)Γ(f, f)), µ(f 2) = 1

for a positive function α(r) → 0 as r → ∞ and a nice square field Γ. Combining this
with known results on log-Sobolev and the Talagrand inequality, we derive (1.2) with the
original distance ρ replaced by a larger one, which is induced by the weighted square field
α ◦ ρ(o, ·)Γ. In particular, we have the following result on a Riemannian manifold.

Let M be a connected complete Riemannian manifold, and µ(dx) = eV (x)dx a prob-
ability measure on M for some V ∈ C(M). We shall use the following super Poincaré
inequality (see [23])
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(1.4) µ(f 2) ≤ rµ(|∇f |2) + β(r)µ(|f |)2, r > 0

to establish the corresponding weighted log-Sobolev inequality

(1.5) µ(f 2 log f 2) ≤ Cµ(α ◦ ρ(o, ·)|∇f |2), µ(f 2) = 1.

By [25, Theorem 1.1], (1.5) implies

(1.6) W ρα
2 (fµ, µ)2 ≤ Cµ(f log f), f ≥ 0, µ(f 2) = 1,

where ρα is the Riemannian distance induced by the metric

(1.7) 〈X, Y 〉′ :=
1

α ◦ ρ(o, x)
〈X, Y 〉, X, Y ∈ TxM, x ∈M.

The main result of the paper is the following.

Theorem 1.1. Assume that (1.4) holds for some positive decreasing β ∈ C((0,∞)) such
that

η(s) :=
(

log(2s)
)(

1 ∧ β−1(s/2)
)

, s ≥ 1

is bounded, where β−1(s) := inf{t ≥ 0 : β(t) ≤ s}. Then (1.5) holds for some C > 0 and

α(s) := sup
t≥µ(ρ(o,·)≥s−2)−1

η(t), s ≥ 0.

Consequently, (1.6) holds.

The following consequences show that the above result is sharp in specific situations.

Corollary 1.2. Let δ ∈ (1, 2).
(a) (1.4) with β(r) = exp[c(1 + r−1/δ)] implies (1.5) with

α(s) := (1 + ρ(o, ·))−2(δ−1)/(2−δ)

and (1.6) with ρα(x, y) replaced by

ρ(x, y)(1 + ρ(o, x) ∨ ρ(o, y))(δ−1)/(2−δ).

Consequently, it implies

(1.8) W ρ
2/(2−δ)(fµ, µ)

2/(2−δ) ≤ Cµ(f log f), µ(f) = 1, f ≥ 0

for some constant C > 0.
(b) If V ∈ C2(M) with Ric − HessV bounded below, then the following are equivalent

to each other:
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(1) (1.4) with β(r) = exp[c(1 + r−1/δ)] for some constant c > 0;

(2) (1.5) with α(s) := (1 + ρ(o, ·))−2(δ−1)/(2−δ) for some C > 0;

(3) (1.6) for some C > 0 and ρα(x, y) replaced by ρ(x, y)(1+ ρ(o, x)∨ ρ(o, y))(δ−1)/(2−δ);

(4) (1.8) for some C > 0;

(5) µ(exp[λρ(o, ·)2/(2−δ)]) <∞ for some λ > 0.

We remark that (1.4) with β(r) = exp[c(1+ r−1/δ)] for some c > 0 is equivalent to the
following logδ-Sobolev inequality mentioned in the abstract (see [23, 24, 13, 26] for more
general results on (1.4) and the F -Sobolev inequality)

µ(f 2 logδ(1 + f 2)) ≤ C1µ(|∇f |
2) + C2, µ(f 2) = 1.

Since due to [24, Corollary 5.3] if (1.4) holds with β(r) = exp[c(1+ r−1/δ)] for some δ > 2
then M has to be compact, as a complement to Corollary 1.2 we consider the critical case
δ = 2 in the next Corollary.

Corollary 1.3. (1.4) with β(r) = exp[c(1 + r−1/2)] for some c > 0 implies (1.5) with
α(s) := e−c1s for some c1 > 0 and (1.6) with ρα(x, y) replaced by

ρ(x, y)ec2[ρ(o,x)∨ρ(o,y)] ≥ ec3ρ(x,y) − 1

for some c2, c3 > 0. If Ric − HessV is bounded below, they are all equivalent to the con-
centration µ(exp[eλρ(o,·)]) <∞ for some λ > 0.

Example 1.1. Let Ric be bounded below. Let V ∈ C(M) be such that V + aρ(o, ·)θ

is bounded for some a > 0 and θ ≥ 2. By [23, Corollaries 2.5 and 3.3], (1.4) holds for
δ = 2(θ − 1)/θ. Then Corollary 1.2 implies

W ρ
θ (fµ, µ)

θ ≤ Cµ(f log f), f ≥ 0, µ(f) = 1

for some constant C > 0.
In this inequality θ could not be replaced by any larger number, since W ρ

θ ≥ W ρ
1 and

by Proposition 3.1 below for any p ≥ 1 the inequality

W ρ
1 (fµ, µ)

p ≤ Cµ(f log f), f ≥ 0, µ(f) = 1

implies µ(eλρ(o,·)
p
) <∞ for some λ > 0, which fails when p > θ for µ specified above.
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Example 1.2. In the situation of Example 1.1 but let V + exp[σρ(o, ·)] be bounded for
some σ > 0. Then by [23, Corollaries 2.5 and 3.3], (1.4) holds with β(r) = exp[c(1+r−1/2)]
for some c > 0. Hence, by Corollary 1.3,

(1.9) inf
π∈C (µ,fµ)

∫

M×M

ρ(x, y)2ec1ρ(x,y)π(dx, dy) ≤ Cµ(f log f), f ≥ 0, µ(f) = 1

holds for some c1, C > 0.
On the other hand, it is easy to see from Jensen’s inequality that the left hand side is

larger than

(exp[c2W
ρ
1 (µ, fµ)]− 1)2

for some c2 > 0. So, by Proposition 3.1 below (1.9) implies µ(exp[exp(λρ(o, ·))]) < ∞
holds for any λ > 0, which is the exact concentration property of the given measure µ.

In the next section we study the super Poincaré and the weighted log-Sobolev in-
equality in an abstract framework, and complete proofs of the above results are presented
in Section 3. Finally, weighted log-Sobolev and transportation cost inequalities are also
studied for probability measures on R

d by using concentrations.

2 From super Poincaré to weighted log-Sobolev in-

equalities

We shall work with a diffusion framework as in [1]. Let (E,F , µ) be a separable complete
probability space, and let (E ,D(E )) be a conservative symmetric local Dirichlet form on
L2(µ) with domain D(E ) in the following sense. Let A be a dense subspace of D(E ) under

the E
1/2
1 -norm (E1(f, f) = ‖f‖22+E (f, f)) which is composed of bounded functions, stable

under products and composition with Lipschitz functions on R. Let Γ : A ×A → Mb be
a bilinear mapping, where Mb is the set of all bounded measurable functions on E, such
that

(1) Γ(f, f) ≥ 0 and E (f, g) = µ(Γ(f, g)) for f, g ∈ A ;
(2) Γ(φ ◦ f, g) = φ′(f)Γ(f, g) for f, g ∈ A and φ ∈ C∞

b (R);
(3) Γ(fg, h) = gΓ(f, h) + fΓ(g, h) for f, g, h ∈ A with fg ∈ A .

It is easy to see that the positivity and the bilinear property imply Γ(f, g)2 ≤ Γ(f, f)Γ(g, g)
for all f, g ∈ A . For simplicity we set below Γ(f, f) = Γ(f) and E (f, f) = E (f).

We shall denote by Aloc the set of functions f such that for any integer n, the trun-
cated function fn = min(n,max(f,−n)) is in A . For such functions, the bilinear map Γ
automatically extends and shares the same properties than for functions in A .

Next, let ̺ ∈ Aloc be positive such that Γ(̺, ̺) ≤ 1. We shall start from the super
Poincaré inequality
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(2.1) µ(f 2) ≤ rE (f, f) + β(r)µ(|f |)2, r > 0.

To derive the desired weighted log-Sobolev inequality

(2.2) µ(f 2 log f 2) ≤ Cµ(Γ(f, f)α ◦ ̺), µ(f 2) = 1,

we shall also need the following Poincaré inequality

(2.3) µ(f 2) ≤ C0E (f, f) + µ(f)2

for some C0 > 0. Here and in what follows, the reference function f is taken from A .

Theorem 2.1. Assume (2.3) holds for some C0 > 0. Then (2.1) implies (2.2) for some
constant C > 0 and α given in Theorem 1.1.

Proof. (a) Let Φ(s) = µ(̺ ≥ s) which decreases to zero as s → ∞. We may take r0 > 0
such that

(2.4) r0(1 + sup
s≥1

η(s)) ≤
1

32

and

(2.5) β−1(er
−1

0 /4) ≤ 1.

For a fixed number r ∈ (0, r0] we define

hn =
(

(̺− Φ−1(2e−r
−1

)− n)+ ∧ 1
)(

(n + 2 + Φ−1(2e−r
−1

)− ̺)+ ∧ 1
)

,

δn =
(

log
2

Φ(n + Φ−1(2e−r−1))

)

β−1
( 1

2Φ(n + Φ−1(2e−r−1))

)

,

Bn = {n ≤ ̺− Φ−1(2e−r
−1

) ≤ n+ 2}, n ≥ 0.

Then

(2.6)
∞
∑

n=0

h2n ≥
1

2
1{ρ≥1+Φ−1(2e−r−1)}.

By (2.1) and noting that
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µ(|f |hn)
2 ≤ µ(f 2h2n)µ(̺ > n + Φ−1(2e−r

−1

)) ≤ µ(f 2h2n)Φ(n + Φ−1(2e−r
−1

)),

we have

∞
∑

n=0

µ(f 2h2n) ≤
∞
∑

n=0

{

rnµ
(

Γ(fhn, fhn)
)

+ β(rn)µ(|f |hn)
2
}

≤
∞
∑

n=0

{2rn
δn
µ(Γ(f, f)δn1Bn) + 2rnµ(f

21Bn) + β(rn)Φ(n + Φ−1(2e−r
−1

))µ(f 2h2n)
}

for rn > 0. Since by (2.5) and the definition of α

α(s) ≥ δn for s ≥ n + 2 + Φ−1(2e−r
−1

),

letting rn = δnr we obtain

∞
∑

n=0

µ(f 2h2n) ≤

∞
∑

n=0

{

2rµ(Γ(f, f)α ◦ ̺1Bn) + 2rδnµ(f
21Bn)

+ β(rδn)Φ(n + Φ−1(2e−r
−1

))µ(f 2h2n)
}

.

(2.7)

Noting that

A := r log
2

Φ(n + Φ−1(2e−r−1))
≥ r log

2

Φ(Φ−1(2e−r−1))
= 1,

we have

β(δnr) = β
(

Aβ−1
( 1

2Φ(n+ Φ−1(2e−r−1))

))

≤
1

2Φ(n + Φ−1(2e−r−1))
.

Thus, by (2.7) and (2.4) and the fact that δn ≤ sup η, we arrive at

∞
∑

n=0

µ(f 2h2n) ≤
∞
∑

n=0

{

2rµ(Γ(f, f)α ◦ ̺1Bn) +
1

8
µ(f 2) +

1

2

∞
∑

n=0

µ(f 2h2n).

It follows from this and (2.6) that

(2.8) µ(f 21{̺≥1+Φ−1(2e−r−1)}) ≤ 8rµ(Γ(f, f)α ◦ ̺) +
1

2
µ(f 2).

(b) On the other hand, since α is decreasing
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µ(f 21{̺≤1+Φ−1(2e−r−1)}) ≤ µ(f 2{(2 + Φ−1(2e−r
−1

)− ̺)2+ ∧ 1})

≤ 2sµ(Γ(f, f)1{̺≤2+Φ−1(2e−r−1)}) + 2sµ(f 2) + β(s)µ(|f |)2

≤
2s

α(2 + Φ−1(2e−r−1))
µ(Γ(f, f)α ◦ ̺) + 2sµ(f 2) + β(s)µ(|f |)2, s > 0.

Taking

s = rα(2 + Φ−1(2e−r
−1

)) ≤
1

32

due to (2.4), we obtain

µ(f 21{̺≤1+Φ−1(2e−r−1 )}) ≤ 2rµ(Γ(f, f)α ◦ ̺) +
1

16
µ(f 2) + β

(

rα(2 + Φ−1(2e−r
−1

))
)

µ(|f |)2.

Since by (2.5) and the definition of α

rα
(

2 + Φ−1(2e−r
−1

)
)

≥
(

r log
2

Φ(Φ−1(2e−r−1))

)

β−1
( 1

2Φ(Φ−1(2e−r−1))

)

= β−1
(er

−1

4

)

,

we obtain

µ(f 21{̺≤1+Φ−1(2e−r−1)}) ≤ 2rµ(Γ(f, f)α ◦ ̺) +
1

16
µ(f 2) +

er
−1

4
µ(|f |)2.

Combining this with (2.8) we conclude that

µ(f 2) ≤ 40rµ(Γ(f, f)α ◦ ̺) + er
−1

µ(|f |)2, r ∈ (0, r0].

Therefore, there exists a constant c > 0 such that

(2.9) µ(f 2) ≤ rµ(Γ(f, f)α ◦ ̺) + ec(1+r
−1)µ(|f |)2, r > 0.

According to e.g. [24, Corollary 1.3], this is equivalent to the defective weighted log-
Sobolev inequality

(2.10) µ(f 2 log f 2) ≤ C1µ(Γ(f, f)α ◦ ̺) + C2, µ(f 2) = 1.

(c) Finally, for any f with µ(f) = 0, it follows from (2.3) that
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µ(f 2) ≤ µ(f 2{(1 +R− ̺)2+ ∧ 1}) + ‖f‖2∞µ(̺ ≥ R)

≤ 2C0µ(Γ(f, f)1{̺≤1+R}) + (2C0 + 1)‖f‖2∞µ(̺ ≥ R) + µ(f{(̺− R)+ ∧ 1})2

≤
2C0

α(1 +R)
µ(Γ(f, f)α ◦ ̺) + 2(C0 + 1)‖f‖2∞µ(̺ ≥ R), R > 0.

Since µ(̺ ≥ R) → 0 as R→ ∞, the weighted weak Poincaré inequality

µ(f 2) ≤ β̃(r)µ(Γ(f, f)α ◦ ̺) + r‖f‖2∞, r > 0, µ(f) = 0

holds for some positive function β̃ on (0,∞). By [19, Propsosition 1.3], this and (2.9)
implies the weighted Poincaré inequality

µ(f 2) ≤ C ′µ(Γ(f, f)α ◦ ̺) + µ(f)2

for some constant C ′ > 0. Combining this with (2.10) we obtain the desired weighted
log-Sobolev inequality (2.2).

3 Proofs of Theorem 1.1 and Corollaries

Proof of Theorem 1.1. Since α is bounded, the completeness of the original metric implies
that of the weighted one given by (1.7). So, (1.6) follows from (1.5) due to [25, Theorem
1.1] with p → 2. Thus, by Theorem 2.1 with E = M and Γ(f, f) = |∇f |2, it suffices
to prove that (1.4) implies the Poincaré inequality (2.3) for some C0 > 0. Due to [23]
the super Poincaré inequality (1.4) implies that the spectrum of L is discrete. Moreover,
since M is connected, the corresponding Dirichlet form is irreducible so that 0 is a simple
eigenvalue. Therefore, L possesses a spectral gap, which is equivalent to the desired
Poincaré inequality.

To complete the proof of Corollary 1.2, in the spirit of [16, 3] we introduce below a
deviation inequality induced by the L1-transportation cost inequality.

Proposition 3.1. Let ρ̃ :M ×M → [0,∞) be measurable. For any r > 0 and measurable
set A ⊂M with µ(A) > 0, let

Ar = {x ∈M : ρ̃(x, y) ≥ r for some y ∈ A}, r > 0.

If

(3.1) W ρ̃
1 (fµ, µ) ≤ Φ ◦ µ(f log f), f ≥ 0, µ(f) = 1

holds for some positive increasing Φ ∈ C([0,∞)), then
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(3.2) µ(Ar) ≤ exp
[

− Φ−1(r − Φ ◦ log µ(A)−1)
]

, r > Φ ◦ logµ(A)−1,

where Φ−1(r) := inf{s ≥ 0 : Φ(s) ≥ r}, r ≥ 0.

Proof. It suffices to prove for µ(Ar) > 0. In this case, letting µA = µ(· ∩ A)/µ(A) and
µAr = µ(· ∩ Ar)/µ(Ar), we obtain from (3.1) that

r ≤W ρ̃
1 (µA, µAr) ≤W ρ̃

1 (µA, µ) +W ρ̃
1 (µAr , µ) ≤ Φ ◦ log µ(A)−1 + Φ ◦ logµ(Ar)

−1.

This completes the proof.

Proof of Corollary 1.2. (a) Let β(r) = ec(1+r
−1/δ) for some c > 0 and δ > 1. It is easy to

see that

1 ∧ β−1(s/2) ≤ c1 log
−δ(2s), s ≥ 1

holds for some constant c1 > 0. Next, by [24, Corollary 5.3], (1.4) with this specific
function β implies

µ(ρ(o, ·) ≥ s− 2) ≤ c2 exp[−c3s
2/(2−δ)], s ≥ 0

for some constants c2, c3 > 0. Therefore,

(3.3) α(s) ≤ c4(1 + s)−2(δ−1)/(2−δ), s ≥ 0

holds for some constant c4 > 0.
On the other hand, for any x1, x2 ∈ M let i ∈ {1, 2} such that ρ(o, xi) = ρ(o, x1) ∨

ρ(o, x2). Define

f(x) =
(

ρ(x, xi) ∧
ρ(o, xi)

2

)

(1 + ρ(o, xi))
(δ−1)/(2−δ), x ∈ R

d.

Then

α ◦ ρ(o, ·)|∇f |2 ≤ c4(1 + ρ(o, ·))−2(δ−1)/(2−δ)|∇f |2

≤ c41{ρ(o,xi)/2≤ρ(o,·)≤3ρ(o,xi)/2}(1 + ρ(o, ·))−2(δ−1)/(2−δ)(1 + ρ(o, xi))
2(δ−1)/(2−δ) ≤ c5

for some constant c5 > 0. Since by the triangle inequality ρ(o, xi) ≥
1
2
ρ(x1, x2), this implies

that the intrinsic distance ρα satisfies

ρα(x1, x2)
2 ≥

|f(x1)− f(x2)|
2

c5
≥ c6ρ(x1, x2)

2(1 + ρ(o, x1) ∨ ρ(o, x2))
2(δ−1)/(2−δ) ≥ c7ρ(x1, x2)

2/(2−δ)

10



for some constant c6, c7 > 0. Hence the proof of (a) is completed by Theorem 1.1.
(b) Now, assume that

Ric−HessV ≥ −K

for some K ≥ 0. By (a) and Proposition 3.1, which ensures the implication from (4) to
(5), it suffices to deduce (1) from (5). Let

h(r) = µ(erρ(o,·)
2

), r > 0.

By [24, Theorem 5.7], the super Poincaré inequality (1.4) holds with

(3.4) β(r) := c0 inf
0<r1<r

r1 inf
s>0

1

s
h(2K + 12s−1)es/r1−1, r > 0

for some constant c0 > 0. Since for any λ > 0 there exists c(λ) > 0 such that

rt2 ≤ λt2/(2−δ) + c(λ)r1/(δ−1), r > 0,

it follows from (5) that

h(r) ≤ c1 exp[c1r
1/(δ−1)], r > 0

for some constants c1 > 0. Therefore,

β(r) ≤ c2 inf
0<r1<r

r1 inf
s>0

1

s
exp[c2s

−1/(δ−1) + s/r1], r > 0

for some c2 > 0. Taking s = r(δ−1)/δ and r1 = r, we conclude that

β(r) ≤ ec(1+r
−1/δ), r > 0

for some c > 0. Thus, (1) holds.

Proof of Corollary 1.3. The proof is similar to that of Corollary 1.2 by noting that (1.4)
with β(r) = exp[c(1+ r−1/2)] implies µ(ρ(o, ·) ≥ s) ≤ exp[−cec1s] for some c1 > 0, see [24,
Corollary 5.3].

4 Weighted log-Sobolev and transportation cost in-

equalities on R
d

Our main purpose of this section is to establish the weighted log-Sobolev inequality for an
arbitrary probability measure using the concentration of this measure. We shall also prove
the HWI inequality introduced in [2] for the corresponding weighted Dirichlet form. The
main point is to find square fields (resp. cost functions) for a given probability measure
to satisfy the log-Sobolev inequality (resp. the Talagrand transportation cost inequality).
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So, the line of our study is exactly opposed to existed references in the literature, see e.g.
[9, 10, 11] and references within, which provided conditions on the reference measure such
that the log-Sobolev (resp. transportation cost) inequality holds for a given square field
(resp. the corresponding cost function).

The basic idea of the study comes from Caffarelli [5] which says that for any probability
measure µ(dx) := eV (x)dx on R

d, there exists a convex function ψ on R
d such that ∇ψ

pushes µ forward to the standard Gaussian measure γ; that is, letting

y(x) := ∇ψ(x), x ∈ R
d,

which is one-to-one, one has γ = µ ◦ y−1. Furthermore, ∇ψ is uniquely determined and
Hessψ is non-degenerate with

det(Hessψ) = (2π)d/2eV+|∇ψ|2/2.

Let

ρ(x1, x2) := |y(x1)− y(x2)|, x1, x2 ∈ R
d.

Let W2 be the L2-Wasserstein distance induced by the usual Euclidiean metric. Due to
Talagrand [21]

(4.1) W2(γ, f
2γ)2 ≤ 2γ(f 2 log f 2), γ(f 2) = 1.

Since π ∈ C (µ ◦ y−1, (f 2 ◦ y−1)µ ◦ y−1) if and only if π ◦ (y ⊗ y) ∈ C (µ, f 2µ), we obtain
from (4.1) and the change of variables theorem that

W ρ
2 (µ, f

2µ)2 = W2(γ, (f
2◦y−1)γ)2 ≤ 2γ(f 2◦y−1 log f 2◦y−1) = 2µ(f 2 log f 2), µ(f 2) = 1.

Similarly, since

∇(f ◦ y−1) = (Dy−1)(∇f) ◦ y−1 = [(Dy) ◦ y−1]−1(∇f) ◦ y−1 = [(Hessψ)
−1∇f ] ◦ y−1,

where Dy := (∂iyj)d×d, by Gross’ log-Sobolev inequality for γ (see [12]) we obtain

µ(f 2 log f 2) ≤ 2µ(|(Hessψ)
−1∇f |2), f ∈ C∞

0 (Rd), µ(f 2) = 1.

On the other hand, however, since the transportation ∇ψ is normally inexplicit, it is
hard to estimate the distance ρ and the matrix Hessψ. So, to derive transportation and
log-Sobolev inequalities with explicit distances and Dirichlet forms, we shall construct,
instead of ∇ψ, an explicit map using the concentration of µ, which transports the measure
into the standard Gaussian measure with a perturbation. In many cases this perturbation
is bounded and hence, does not make much trouble to derive the desired inequalities.
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4.1 Main results

In this subsection we provide an explicit positive function α and an explicit distance ρ on
R
d such that the log-Sobolev inequality

(4.2) µ(f 2 log f 2) ≤ 2µ(α|∇f |2), f ∈ C∞
0 (Rd), µ(f 2) = 1

and the transportation-cost inequality

(4.3) W ρ
2 (µ, f

2µ)2 ≤ 2µ(f 2 log f 2), µ(f 2) = 1

hold. In a special case, we are also able to present the HWI inequality stronger than (4.2).
Let us first consider a probability measure µ(dx) := eV (x)dx on [δ,∞) for some δ ∈

[−∞,∞), where [−∞,∞) is regarded as R. Let

Φδ(r) :=
1

cδ

∫ r

δ

e−s
2/2ds, ϕ(r) := µ([δ, r)) =

∫ r

δ

eV (x)dx, r ≥ δ,

where cδ :=
∫∞

δ
e−x

2/2dx is the normalization.

Theorem 4.1. Let µ(dx) := 1[δ,∞)(x)e
V (x)dx be a probability measure on [δ,∞). For the

above defined Φδ and ϕ, (4.2) and (4.3) hold with R
d replaced by [δ,∞) for

α :=
(Φ′

δ ◦ Φ
−1
δ ◦ ϕ

ϕ′

)2

,

ρ(x, y) := |Φ−1
δ ◦ ϕ(x)− Φ−1

δ ◦ ϕ(y)|, x, y ≥ δ.

Furthermore,

(4.4) µ(f 2 log f 2)+W ρ
2 (µ, f

2µ)2 ≤ 2

√

2µ(αf ′2)W ρ
2 (µ, f

2µ), f ∈ C∞
0 ([δ,∞)), µ(f 2) = 1.

The inequality (4.4), linking the Wasserstein distance, the relative entropy and the
energy, is called the HWI inequality in [2] and [18].

To extend this result to R
d for d ≥ 2, we consider the polar coordinate (r, θ) ∈

[0,∞)× S
d−1, where S

d−1 is the unit sphere in R
d with the induced metric. Then µ can

be represented as

dµ = c(d)rd−1eV (rθ)drdθ =: G(r, θ)drdθ,

where dθ is the normalized volume measure on S
d−1, and c(d)/d equals to the volume of

the unit ball in R
d. Let B(0, r) := {x ∈ R

d : |x| < r} and
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Φ0(r) :=

∫

B(0,r)

e−|x|2/2dx

(2π)d/2
, r ≥ 0,

h(θ) :=

∫ ∞

0

sd−1eV (sθ)ds, θ ∈ S
d−1,

ϕθ(r) :=
1

h(θ)

∫ r

0

sd−1eV (sθ)ds, θ ∈ S
d−1, r ≥ 0.

Since µ(Rd) = 1, we have h(θ) ∈ (0,∞) for a.e. θ ∈ S
d−1.

We shall prove that the map

x 7→ Φ−1
0 ◦ ϕ x

|x|
(|x|)

x

|x|

transports µ into a Gaussian measure with density h ◦ θ. Thus, to derive the desired
inequalities for µ, we need a regularity property of this transportation specified in the
following result.

Theorem 4.2. Let r(x) := |x|, θ(x) := x
|x|
, x ∈ R

d. If C(h) := supθ1,θ2∈Sd−1

h(θ1)
h(θ2)

< ∞,

then (4.3) holds for

ρ(x1, x2) := C(h)−1/2|(Φ−1
0 ◦ ϕθ(r)θ)(x1)− (Φ−1

0 ◦ ϕθ(r)θ)(x2)|, x1, x2 ∈ R
d.

If moreover ϕθ(r) is differentiable in θ then (4.2) holds for

α := C(h) inf
ε>0

max
{ (1 + ε)r2

(Φ−1
0 ◦ ϕθ(r))2

,
(Φ′

0 ◦ Φ
−1
0 ◦ ϕθ(r))

2

(ϕθ ′(r))2
+

(1 + ε−1)|∇θϕθ(r)|
2

(ϕθ ′(r)Φ
−1
0 ◦ ϕθ(r))2

}

.

If, in particular, h is constant (it is the case if V (x) depends only on |x|), then the
following HWI inequality holds:

(4.5) µ(f 2 log f 2)+W ρ
2 (µ, f

2µ)2 ≤ 2
√

2µ(α|∇f |2)W ρ
2 (µ, f

2µ), f ∈ C∞
0 (Rd), µ(f 2) = 1,

for

α := max
{ r2

(Φ−1
0 ◦ ϕ(r))2

,
(Φ′

0 ◦ Φ
−1
0 ◦ ϕ(r))2

(ϕ′(r))2

}

and ϕ = ϕθ is independent of θ.

Note that if V is locally bounded and ζ(r) := sup|x|=r V (x) satisfies
∫∞

0
rd−1eζ(r)dr <

∞, then C(h) <∞. Thus, Theorem 4.2 applies to a large number of probability measures.
In particular, we have the following concrete result.
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Corollary 4.3. Let V be differentiable such that µ(dx) := eV (x) dx is a probability measure
and

(4.6) − c1|x|
δ−1 ≤ 〈∇V (x),∇|x|〉 ≤ −c2|x|

δ−1

holds for some constants δ, c1, c2 > 0 and large |x|. If there exists a constant c3 > 0 such
that

(4.7) |∇θV | ≤ c3,

where ∇θ is the gradient on S
d−1 at point θ, then there exists a constant c > 0 such that

(4.8) µ(f 2 log f 2) ≤ cµ((1 + | · |)2−δ|∇f |2), f ∈ C∞
0 (Rd), µ(f 2) = 1.

Consequently,

(4.9) W ρ̃
2 (µ, f

2µ)2 ≤ c′µ(f 2 log f 2), µ(f 2) = 1

holds for some constant c′ > 0 and

ρ̃(x, y) :=
|x− y|

(1 + |x| ∨ |y|)1−δ/2
, x, y ∈ R

d.

Remark. (a) The inequalities presented in Corollary 4.3 are sharp in the sense that
(4.9) (and hence also (4.8)) implies µ(eλr

δ
) < ∞ for some λ > 0, which is the exact

concentration of µ. This follows from [3, Corollary 3.2] and the fact that ρ̃(0, x) ≈ |x|δ/2

for large |x|.
(b) When V is strictly concave, the matrix

Λ[v1, v2] :=

∫ 1

0

s(−HessV )((1− s)v1 + sv2)ds

is strictly positive definite for any v1, v2 ∈ R
d. It is proved by Kolesnikov (see [15,

Corollary 3.1]) that

(4.10) µ(f 2 log f 2) ≤

∫

Rd

〈Λ[Tf , ·]
−1∇f,∇f〉dµ, f ∈ C∞

0 (Rd), µ(f 2) = 1,

where x 7→ Tf(x) is the optimal transport of f 2µ to µ. In particular, for V (x) := −|x|δ+c
with δ > 2 and a constant c, [15, Example 3.2] implies (4.8) for even smooth function f 2.
But Corollary 4.3 works for more general V and all smooth function f .
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(c) Recently, Gentil, Guillin and Miclo [9] (see [10, 11] for further study) established a
Talagrand type inequality for V (x) = −|x|δ+ c with δ ∈ [1, 2] and a constant c. Precisely,
there exist constants a,D > 0 such that

(4.11) inf
π∈C (µ,f2µ)

∫

Rd×Rd

La,D(x− y)π(dx, dy) ≤ Dµ(f 2 log f 2), µ(f 2) = 1,

where

La,D(x) :=

{

|x|2

2
, if |x| ≤ a,

a2−δ

δ
|x|δ + a2(δ−2)

2δ
, otherwise.

Since La,D(x − y) ≥ ερ̃(x, y)2 for some constant ε > 0, this inequality implies (4.9) for
δ ∈ [1, 2]. But (4.11) is yet unavailable for δ /∈ [1, 2] while (4.9) holds for more general
V . In particular, if δ > 2 then (4.9) with ρ̃(x, y) ≥ c(|x− y| ∨ |x− y|δ/2) for some c > 0,
which is new in the literature.

4.2 Proofs

We first briefly prove for the one-dimensional case (i.e. Theorem 4.1), then extend the
argument to high dimensions. It turns out, comparing with the one-dimensional case,
that the difficulty point of the proof for high dimensions comes from the angle part. So,
a restriction concerning the angle part was made in Theorem 4.2.

Proof of Theorem 4.1. Let y(x) := Φ−1
δ ◦ ϕ(x), x ≥ δ. We have

dµ

dy
=

dµ

dx
·
dx

dy
= eV (x)dϕ

−1 ◦ Φδ(y)

dy

=
eV (x)Φ′

δ(y)

ϕ′ ◦ ϕ−1 ◦ Φδ(y)
=

eV (x)Φ′
δ(y)

ϕ′(x)
= Φ′

δ(y).

Therefore, µ is the standard Gaussian measure under the new coordinate y ∈ [δ,∞). In
other words, one has

γ(dx) := (µ ◦ y−1)(dx) = Z1[δ,∞)(x)e
−x2/2dx,

where Z is the normalization constant. By the HWI inequality proved in [2, 17, 18] and
the Gross log-Sobolev inequality which implies the Talagrand inequality, we have

γ(g2 log g2) +W2(γ, g
2γ)2 ≤ 2

√

2γ((g′)2)W2(γ, g
2γ),

W2(γ, g
2γ)2 ≤ 2γ(g2 log g2), γ(g2) = 1.

(4.12)
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We remark that although the HWI and Gross’s log-Sobolev inequalities are stated in the
above references for the global Gaussian measure, they are also true on a regular convex
domain Ω, since the stronger gradient estimate

|∇Ptf | ≤ e−tPt|∇f |, f ∈ C1
b (Ω)

holds for the Neumann heat semigroup on Ω (cf. [22] and references within).
For any f ∈ C1

0([δ,∞)) with µ(f 2) = 1, let g := f ◦ y−1. We have

dg

dx
= (f ′ ◦ y−1)

dy−1

dx
=
f ′ ◦ y−1

y′ ◦ y−1
= (f ′ ◦ y−1)

(Φ′
δ ◦ Φ

−1
δ ◦ ϕ

ϕ′

)

◦ y−1.

Since γ = µ ◦ y−1, this and (4.12) imply (4.3) and (4.4). Finally, (4.2) is implied by
(4.4).

Proof of Theorem 4.2. Let (r, θ) be the polar coordinate introduced in Section 2, and let
∇θ denote the gradient operator on S

d−1 for the standard metric induced by the Euclidean
metric on R

d. By the orthogonal decomposition of the gradient, we have

(4.13) ∇f = (∂rf)
∂

∂r
+ r−1∇θf, |∇f |2 = (∂rf)

2 + r−2|∇θf |
2.

Let us introduce a new polar coordinate (r̄, θ), where

r̄(r, θ) := Φ−1
0 ◦ ϕθ(r), r ≥ 0, θ ∈ S

d−1.

We have

dµ := G(r, θ)drdθ =
G(r, θ)

∂r r̄
dr̄dθ = c(d)h(θ)Φ′

0(r̄)dr̄dθ = c(d)h(θ)dµ0,

where dµ0 := Φ′
0(r̄)dr̄dθ is the standard Gaussian measure under the new polar coordinate

(r̄, θ). Thus, letting

y(x) := r̄(x)θ(x) = Φ−1
0 ◦ ϕ x

|x|
(|x|)θ(x), x ∈ R

d,

we have

(µ ◦ y−1)(dx) = c(d)h(x/|x|)(µ0 ◦ y
−1)(dx) = c(d)h(x/|x|)γ(dx),

where γ is the standard Gaussian measure on R
d. By Gross’ log-Sobolev inequality one

has

γ(g2 log g2) ≤ 2γ(|∇g|2), g ∈ C∞
0 (Rd), µ0(g

2) = 1.

Thus, by the perturbation of the log-Sobolev inequality (cf. [7]), we have
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(4.14) (µ ◦ y−1)(g2 log g2) ≤ 2C(h)(µ ◦ y−1)(|∇g|2), g ∈ W 2,1(γ), (µ ◦ y−1)(g2) = 1.

Moreover, by [2, Corollary 3.1], (4.14) implies

(4.15) W2(µ ◦ y−1, g2µ ◦ y−1)2 ≤ 2C(h)(µ ◦ y−1)(g2 log g2), (µ ◦ y−1)(g2) = 1.

This implies (4.3) for the desired distance ρ by using the change of variables theorem as
explained above.

Similarly, to prove (4.2) we intend apply (4.14) for g := f ◦ y−1, where f ∈ C∞
0 (Rd)

with µ(f 2) = 1. Since y−1 = (ϕ−1
θ ◦Φ0(r), θ) under the polar coordinate, by the chain rule

we have

∇θ(f ◦ y−1) = ∇θf(ϕ
−1
θ ◦ Φ0(r), θ) =

(

(∇θf) ◦ y
−1 + (∂rf) ◦ y

−1
)

∇θϕ
−1
θ ◦ Φ0(r).

But ϕθ ◦ ϕ
−1
θ ◦ Φ0 = Φ0 implies

(∇θϕθ)(ϕ
−1
θ ◦ Φ0(r)) + ϕθ

′ ◦ ϕ−1
θ ◦ Φ0(r) · ∇θ(ϕ

−1
θ ◦ Φ0(r)) = 0,

where (∇θϕθ)(ϕ
−1
θ ◦ Φ0(r)) := ∇θϕθ(s)|s=ϕ−1

θ ◦Φ0(r)
, we arrive at

|∇θ(f ◦ y−1)|2

≤ (1 + ε)(∂rf)
2 ◦ y−1

( |∇θϕθ(r)|(ϕ
−1
θ ◦ Φ0(r))

ϕθ ′ ◦ ϕ
−1
θ ◦ Φ0(r)

)2

+ (1 + ε−1)|∇θf |
2 ◦ y−1

= (1 + ε)(∂rf)
2 ◦ y−1

( |∇θϕθ(r)|

ϕθ′(r)

)2

◦ y−1 + (1 + ε−1)|∇θf |
2 ◦ y−1

(4.16)

for any ε > 0.
On the other hand,

∂r(f ◦ y−1) = (∂rf) ◦ y
−1 Φ′

0(r)

ϕθ ′ ◦ ϕ
−1
θ ◦ Φ0(r)

.

Since

(4.17) r = Φ−1
0 ◦ ϕθ(r(y

−1)) = Φ−1
0 ◦ ϕθ(r) ◦ y

−1,

we have

Φ′
0(r) =

(

Φ′
0 ◦ Φ

−1
0 ◦ ϕθ(r)

)

◦ y−1, ϕθ
′ ◦ ϕ−1

θ ◦ Φ0(r) = ϕθ
′(r) ◦ y−1.

Thus,
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|∂r(f ◦ y−1)|2 =
{

(∂rf)
Φ′

0 ◦ Φ
−1
0 ◦ ϕθ(r)

ϕθ ′(r)

}2

◦ y−1.

Combining this with (4.13), (4.16) and (4.17), we obtain

|∇(f ◦ y−1)|2 = (∂r(f ◦ y−1))2 + r−2|∇θ(f ◦ y−1)|2

≤
{

(∂rf)
Φ′

0 ◦ Φ
−1
0 ◦ ϕθ(r)

ϕθ ′(r)

}2

◦ y−1

+ (Φ−1
0 ◦ ϕθ(r))

−2 ◦ y−1
{

(1 + ε)(∂rf)
2
( |∇θϕθ(r)|

ϕθ ′(r)

)2

+ (1 + ε−1)|∇θf |
2
}

◦ y−1

= (∂rf)
2 ◦ y−1

{(Φ′
0 ◦ Φ

−1
0 ◦ ϕθ(r))

2

(ϕθ ′(r))2
+

(1 + ε)|∇θϕθ(r)|
2

(ϕθ ′(r))2(Φ
−1
0 ◦ ϕθ(r))2

}

◦ y−1

+ (r ◦ y−1)−2|∇θf |
2 ◦ y−1

( (1 + ε−1)r2

(Φ−1
0 ◦ ϕθ(r))2

)

◦ y−1

≤ |∇f |2 ◦ y−1max
{ (1 + ε−1)r2

(Φ−1
0 ◦ ϕθ(r))2

,
(Φ′

0 ◦ Φ
−1
0 ◦ ϕθ(r))

2

(ϕθ ′(r))2
+

(1 + ε)|∇θϕθ(r)|
2

(ϕθ ′(r))2(Φ
−1
0 ◦ ϕθ(r))2

}

◦ y−1

for any ε > 0. Therefore,

(4.18) |∇(f ◦ y−1)|2 ≤ (α|∇f |2) ◦ y−1

and hence (4.2) follows from (4.14) by letting g = f ◦ y−1.
Finally, if h is constant then µ ◦ y−1 is the standard Gaussian measure. Hence, by [2,

Theorem 4.3] one has

W2(µ ◦ y−1, (f 2 ◦ y−1)µ ◦ y−1)2 + (µ ◦ y−1)(f 2 ◦ y−1 log f 2 ◦ y−1)

≤ 2
√

2(µ ◦ y−1)(|∇(f ◦ y−1)|2)W2(µ ◦ y−1, (f 2 ◦ y−1)µ ◦ y−1).

By combining this with (4.18) we prove (4.5).

Proof of Corollary 4.3. Since there exists a constant c0 > 0 such that

Φ′
0(r) = c0r

d−1e−r
2/2 =

{

Θ(rd−1) as r → 0,

Θ(r(1− Φ0(r))) as r → ∞,

where f = Θ(g) means that the two positive functions f and g are asymptotically bounded
by each other up to constants, there exists a constant c ≥ 1 such that

1

c
Φ′

0(r) ≤ min{r, rd−1}(1− Φ0(r)) ≤ cΦ′
0(r), r ≥ 0.

Equivalently,
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(4.19)
1

c
Φ′

0 ◦ Φ
−1
0 (r) ≤ min{Φ−1

0 (r), Φ−1
0 (r)d−1}(1− r) ≤ cΦ′

0 ◦ Φ
−1
0 (r), r ∈ [0, 1).

Next, it is easy to see from (4.6) that

(4.20) Φ−1
0 ◦ ϕθ(r) =

{

Θ(rδ/2) as r → ∞,

Θ(r) as r → 0,

and

(4.21)
1− ϕθ(r)

ϕθ ′(r)
=

∫∞

r
sd−1eV (sθ)ds

rd−1eV (rθ)
≤ cr1−δ

for some constant c > 0 and all r ≥ 1. Combining (4.19), (4.20) and (4.21) we obtain

(4.22) max
{ r2

(Φ−1
0 ◦ ϕθ(r))2

,
(Φ′

0 ◦ Φ
−1
0 ◦ ϕθ(r))

2

(ϕθ ′(r))2

}

≤ c(1 + r)2−δ

for some constant c > 0.
If (4.7) holds then

|∇θϕθ(r)| = |∇θ(1− ϕθ(r)| ≤ c4min
{

rd,

∫ ∞

r

sd−1eV (sθ)ds
}

,

so that due to (4.20) and (4.21)

|∇θϕθ(r)|
2

(ϕθ ′(r))2(Φ
−1
0 ◦ ϕθ(r))2

≤ c5

(

min{rd,
∫∞

r
sd−1eV (sθ)ds}

(r1{r<1} + rδ/21{r≥1})rd−1eV (rθ)

)2

≤ c6(1 + r)2−3δ

for some constants c5, c6 > 0. Combining this with (4.22) and Theorem 4.2, we prove
(4.8).

Finally, for any x1, x2 ∈ R
d let i ∈ {1, 2} such that |xi| = |x1| ∨ |x2|. Similarly to the

proof of Corollary 1.2, define

f(x) =
|x− xi| ∧

|xi|
2

(1 + |xi|)1−δ/2
, x ∈ R

d.

Then

Γ(f, f) := (1 + | · |)2−δ|∇f |2 ≤
1{|xi|/2≤|·|≤3|xi|/2}(1 + | · |)2−δ

(1 + |xi|)2−δ
≤ C(δ)

20



for some constant C(δ) > 0. Since |xi| ≥
1
2
|x1−x2|, this implies that the intrinsic distance

ρ induced by Γ satisfies

ρ(x1, x2)
2 ≥

|f(x1)− f(x2)|
2

C(δ)
≥ C1(δ)ρ̃(x1, x2)

2

for some constant C1(δ) > 0, and hence is complete. Thus, by [25, Theorem 1.1] or [26,
Theorem 6.3.3], (4.9) follows from (4.8).
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