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Abstract

An operator form of asymptotic expansions for Markov chains is estab-
lished. Coefficients are given explicitly. Such expansions require a certain
modification of the classical spectral method. They prove to be extremely
useful within the context of large deviations.
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1 Introduction

Let {ξk}k∈Z+ be a homogeneous Markov chain defined on a probability space
(Ω,F ,P). Denote by S and S, respectively, the phase-space and its σ−algebra
of measurable subsets. Further, denote by P (x,A), x ∈ S, A ∈ S the transition
probability kernel of the chain. It means that for each A ∈ S, P (x,A) is a non-
negative measurable function on S while for each x ∈ S, P (x,A) is a probability
measure on S. In what follows we assume that the chain is uniformly ergodic.
So, there exists a stationary distribution denoted by π.

Consider the sequence of random variables X0 = f(ξ0), . . . ,Xn = f(ξn)
determined by a measurable function f: S → R. In what follows we assume that

σ2 = Eπ[X
2
0 ] + 2

∞∑

n=1

Eπ[X0Xn] > 0. (1.1)

There exists a huge literature concerning the limit theorems for successive
sums Sn =

∑n
i=1Xi, n = 1, 2, . . .. For our purposes, it is enough to keep in

mind only the works of S. Nagaev (1957) and (1961) and the monograph by
Sirazhdinov and Formanov (1979). Despite the theory of limit theorems is well
developed, some settings seem to be set aside. For example, in Szewczak (2005)
it was shown that the Cramér method of conjugate distributions assumes a
special form of the local limit theorem that was not considered before. The
case studied in Szewczak (2005) concerns Markov chains with a finite number
of states. It worth noting that the large deviation theorems, established there,
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proved to be very useful in statistics of Markov chains (see A. Nagaev (2001)
and (2002)). The mentioned form of the local limit theorem means the weak
convergence of the measures

Q(n)
x (A×B) = σ

√
2πnP(n)

x [X1 + . . .+Xn ∈ A, ξn ∈ B ] , (1.2)

where

P(n)
x (ξ1 ∈ A1, . . . , ξn ∈ An) =

∫

A1

P (x,dx1)

∫

A2

P (x1,dx2) . . .

∫

An

P (xn−1,dxn),

Ak ∈ S, k = 1, . . . , n, B ∈ S, A ∈ B(R) and x ∈ S.

Define the linear operators

(Kng)(x) =

∫
P (x,dx1) · · ·

∫
P (xn−1,dxn)g(xn)Kn(x1, . . . , xn); g ∈ L∞(µ),

(1.3)
where Kn, n = 1, 2, . . . , are measurable kernels, and L∞(µ) is the Banach space
of measurable functions equipped with the essential supremum norm

g
= ess sup

x
|g(x)| = inf{a; µ{x; |g(x)| > a} = 0},

µ is the initial distribution, i.e. µ(A) = P[ ξ0 ∈ A ], A ∈ S.
Various probability measures of interest can be represented as a set indexed

family of the operators (1.3). If one puts

Kn,A(x1, . . . , xn) = σ
√
2πnIA(f(x1)+· · ·+f(xn)), g(xn) = IB(xn), A ∈ B(R),

then (1.2) takes the form

Q(n)
x (A×B) = (Kn,AIB)(x). (1.4)

Similarly,

Px[
X1 + · · ·+Xn

σ
√
n

∈ A, ξn ∈ B ] = (Kn,Ag)(x) (1.5)

provided

Kn,A(x1, . . . , xn) = IA

(
f(x1) + · · ·+ f(xn)

σ
√
n

)
, g(xn) = IB(xn).

When x is fixed the weak convergence of the measures (1.4) (or (1.5)) means
a form of the classical local limit (or central limit theorem). Naturally, we expect
that the measures (1.4) weakly converge to λ× π while (1.5) converge to ν × π

where λ is the Lebesgue measure on B(R) and

ν(A) =
1√
2π

∫

A
e−

u2

2 du.

Such statement can be embedded into the following scheme of convergence.
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Define
‖K‖+ = sup

{g≥0; g∈L∞(µ),
g
≤1}

Kg
. (1.6)

Consider a family of sequences {Kn,A}, A ∈ A ⊂ B(R). We say that a sequence
Kn,A is L∞

A (µ)-strongly convergent to KA if

sup
A∈A

‖Kn,A −KA‖+ → 0 as n→ ∞. (1.7)

Let A = {z ∈ R | (−∞, zσ)}. If the sequence of operators is defined as in (1.5)
then the limit operator in (1.7) has the form

(KAg)(x) = ψ(x)ν(A)

∫

S

g(s)µ(ds)

where ψ(x) ≡ 1. This fact is formally more general than e.g. Th. 2.2 in Nagaev
(1957) though its proof does not require serious efforts. It is of much greater
interest to establish the operator form of the asymptotic expansions for the
sequence {Kn,z} determined by the kernels

Kn,z(x1, . . . , xn) = I(−∞,z)

(
f(x1) + · · ·+ f(xn)

σ
√
n

)
, z ∈ R.

Such asymptotic expansions is basic goal of the present paper. The paper
is organized as follows. In Section 2 the main results are stated. In Section 3
a new estimate for the so-called characteristic operator in the neighborhood of
zero is established (Cf. Lemma 1.6 in Nagaev (1961)). The proofs are given in
Section 4.

2 The main results

In order to state the main results of the paper we have to introduce the
indispensable notation. We are going to establish an asymptotic expansion of
the form

‖Kn,z −
k−2∑

m=0

n−
m
2 Am,z‖+ = o(n−

k−2
2 ), (2.8)

where Am,z are linear operators defined on L∞(µ), m = 0, 1, . . . , z ∈ R. The
operators Am,z are expressed through the Hermite polynomials Hk and certain
derivatives of the so-called characteristic operator

P̂(θ)(g)(x) =

∫
eiθf(y)g(y)P (x,dy),

where g ∈ L∞(µ). More precisely, let λ(θ) be the principal eigenvalue of P̂(θ)
and P̂1(θ) be the projection on the eigenspace corresponding to λ(θ). Assume
that P̂(θ) is k-times strongly differentiable at θ = 0 and P = P̂(0) is L∞-regular
(or primitive), i.e. there exist C > 0 and γ, 0 ≤ |γ| < 1, such that

Png −Πg
≤ C|γ|n

g
, g ∈ L∞(µ), (2.9)
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where

(Πg)(x) = ψ(x)

∫

S

g(s)µ(ds) = ψ(x)Eπ[g]

(Cf. Gudynas (2000)). Then P̂1(θ) and lnλ(θ) admit the following MacLaurin
expansions:

P̂1(θ) =

k∑

m=0

(iθ)m

m!
P̂

(m)
1 +o(|θ|k), and lnλ(θ) =

k∑

m=0

(iθ)m

m!
γm+o(|θ|k).

Here, the operators P̂
(m)
1 can be explicitly expressed in terms of P and Π

(see Lemma 3). The coefficients γm, m = 0, 1, . . . are called cumulants. In
what follows we assume γ1 = Eπ[f ] = 0 thus γ2 = σ2, where σ2 is defined
by (1.1) and γ3 = µ3 is defined in Lemma 1.2 in Nagaev (1961). Let N and
n denote the distribution function and the density function of the standard
normal law. Introduce the operators defined on L∞(µ) : A0,z = N(z)Π, Aν,z =∑ν

j=0 aj(z)P̂
(j)
1 , where

aj(z) = −n(z)
∑

(k1,k2,...,kν−j)∈Kν−j

aj,ν−jH
ν−1+2

ν−j
P

i=1
ki

(z), aν = −n(z)Hν−1,

aj,ν−j =
1

j!σj

ν−j∏

m=1

1

km!

( γm+2

(m+ 2)!σm+2

)km
,

and Km = {(k1, . . . , km) ;
∑m

i=1 iki = m, ki ≥ 0, i = 1, . . . ,m}. Thus, the

operators Aν,z are well-defined provided P̂(θ) is k-times strongly differentiable
at θ = 0 and σ > 0.

Let r(θ) be the spectral radius of P̂(θ). It is well known that r(θ) inherits
many principal properties of the characteristic functions. In order to establish
asymptotic expansions (2.8) we have to assume that

r(θ) < 1, θ 6= 0, and lim sup
|θ|→∞

r(θ) < 1. (2.10)

The second inequality in (2.10) is analogous to the well-known Cramér con-
dition (C). As to the first one it guarantees that the distributions of

∑n
i=1Xi

for all sufficiently large n is non-lattice.
The operator form of asymptotic expansions implies such properties of the

considered Markov chain as strong differentiability of P̂(θ), primitiveness and
(2.10). Of course, one could simply assume that these properties take place.
Another way is to give a simply verified condition that guarantees these prop-
erties. As such we take the following

Condition (Ψ):
there exist α > 0 and β < ∞ such that for every Borel set A of a positive
measure µ we have αµ(A) ≤ P (x,A) ≤ βµ(A) for µ-a.a. x ∈ S.

This condition enables us to verify the required properties by the initial
distribution µ. For example if Condition (Ψ) is fulfilled then (2.10) takes place
provided µf = µ◦f−1 is non-lattice and
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lim sup
|θ|→∞

|µ̂f (θ)| < 1, (2.11)

where µ̂f =
∫
eiθf(y)µ(dy). Moreover, if

∫
|f(y)|kµ(dy) < ∞ then P̂(θ) is k-

times strongly differentiable. It should be noted (see the proof of Lemma 3.1
in Jensen (1991)) that Condition (Ψ) implies σ2 = γ2 > 0.

Now we, are able to state the main results.

Theorem 1 Let Condition (Ψ) is fulfilled. If
∫
|f(x)|kµ(dx) < ∞, k > 3,

and µf satisfies (2.11) then (2.8) holds.

As in the case of asymptotic expansions for i.i.d. variables (see Gnedenko
and Kolmogorov, 1954, §42, Th. 2) the following statement does not require
the condition (2.11).

Theorem 2 Let Condition (Ψ) is fulfilled. If
∫
|f(x)|3µ(dx) < ∞ and µf

is non-lattice then (2.8) holds with k = 3.

In order to clarify the specificity of the limit theorems given in the operator
form consider two examples. First, let {ξk} be a finite state Markov chain,
i.e. S = {1, . . . , d}, d ≥ 3. Denote by P the transition matrix. The entries

of Pν , ν ≥ 0, we denote by p
(ν)
ij , i, j ∈ S, p

(0)
ij = δij . For a real function f on

S define the matrix P(1) with the elements f(j)pij , i, j ∈ S. The following
statement is of independent interest.

Corollary 1 Suppose that transition matrix P is strictly positive. If f(ξ0)
is non-lattice and

∑d
k=1 πkf(k) = 0 then uniformly in z ∈ R the matrix

(P[Sn < zσ
√
n ; ξn = j | ξ0 = i])i,j∈S

is approximated by the matrix

N(z)Π+ n−1/2n(z)(
µ3

6σ3
(1− z2)Π− 1

σ

∑

ν≥0

ΠP(1)(Pν −Π) + (Pν −Π)P(1)Π)

(2.12)
with an error o(n−1/2). Here,

Π =




π1 π2 . . . πd

. . . . . . . . . . . .

π1 π2 . . . πd



.

Another particular case of independent interest is covered by the following state-
ment.

Corollary 2 Let S = [0, 1]. Suppose that the transition density p(x, y) is
such that 0 < p− ≤ p(x, y) ≤ p+ <∞. If f(ξ0) is non-lattice and

∫
f(u)π(du) =

5



0 then the linear operator (2.12) L∞
A -strongly approximates the operator g 7→

Ex[I[Sn<zσ
√
n]g(ξn) ] with an error o(n−1/2). Here,

(Πg)(x) =

∫

S

g(s)µ(ds)ψ(x).

Note that the classical scalar form of the presented statement is:

Pπ[Sn < zσ
√
n ]−N(z) = n−1/2n(z)

µ3

6σ3
(1− z2) + o(n−1/2) (2.13)

(see e.g. Th. 2 in Nagaev (1961)). The corollaries show that the operator form
of asymptotic expansions is much more sensitive to the initial conditions than
the scalar one. It should be emphasized that the spectral method suggested
by S. Nagaev (see e.g. Nagaev, 1957) remains efficient under this new setting
though requires some modification. Furthermore, the cumbersome calculations,
that are typical for asymptotic expansions, can be implemented using the pack-
age Maple. This power software proved to be very efficient for such purposes.

3 Characteristic operator

Given m ∈ N let us define operator P(m)g = Pfmg. The following lemma
is an extension of the well-known result due to S. Nagaev (Cf. Nagaev, 1961,
pp. 71–75).

Lemma 1 Suppose that (2.9) holds and P(1) is a bounded endomorphism.
Then there exists ξ = ξ(C, |γ|, ‖P(1)‖) such that for |θ| < ξ,

P̂n(θ) = λn(θ)P̂1(θ) + Q̂n(θ) + (Pn −Π) (3.14)

and |λ(θ) − 1| < δ, where ‖P̂1(θ) − Π‖ = O(| θ |), ‖Q̂n(θ)‖ = O(κn | θ |),
κ = 1

3 + 2
3 |γ|, δ = 1

3 − 1
3 |γ|.

Proof of Lemma 1

Write Γ0 = {|ζ| = κ}, Γ1 = {|ζ − 1| = δ} and D = {|ζ| ≥ κ}∩ {|ζ − 1| ≥ δ},
where ζ ∈ C. Denote by R̂(ζ, θ) the resolvent of P̂(θ) and set R(ζ) = R̂(ζ, 0).

Let ξ = 1
2‖P(1)‖

(
1−|γ|
3(3+C)

)2
. Consequently for | θ |< ξ, ζ ∈ D (see §1 in Nagaev

(1961)) we may define the projections

P̂1(θ) =
1

2πi

∮

Γ1

R̂(ζ, θ)dζ, P̂2(θ) =
1

2πi

∮

Γ0

R̂(ζ, θ)dζ. (3.15)

Thus (3.14) holds with Q̂n(θ) = P̂n(θ)P̂2(θ)− (Pn −Π). We see at once that

P̂(θ)R̂(ζ, θ) = −I+ ζR̂(ζ, θ)

therefore,

P̂n(θ)R̂(ζ, θ) = −
n∑

k=1

(P̂(θ))n−kζk−1 + ζnR̂(ζ, θ).
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So it easily seen that

‖Q̂n(θ)‖ = ‖ 1

2πi

∮

Γ0

ζn(R̂(ζ, θ)−R(ζ))dζ‖

≤ 1

2π

∫ 2π

0
κn

2(3(3 + C))3‖P̂(θ)−P‖
(1− |γ|)2(6(3 + C)− 1 + |γ|)κdφ = O(κn | θ |).

Similarly we have ‖P̂1(θ)−Π‖ = O(| θ |). The proof is completed.
The following lemma deals with the existence of the “operator” moments.

Lemma 2 If

lim
L→∞


∫

|f(y)|>L
|f(y)|kP (x,dy)

= 0 (3.16)

then

P̂(θ) =
k∑

m=0

(iθ)m

m!
P(m) + o(|θ|k), (3.17)

where P(m) are bounded for 0 ≤ m ≤ k.

Proof of Lemma 2

Indeed, we have

h−1(i(k−1)P̂(k−1)(θ + h)g − i(k−1)P̂(k−1)(θ)g)− ik
∫
eiθyg(y)fk(y)P ( · ,dy)

= ik
∫
eiθf(y)g(y)fk(y)

∫ 1

0
(eihsf(y) − 1)dsP ( · ,dy).

Now, choose L be sufficiently large positive number. Since,

inf{K ; µ{x ; |
∫

(if(y))k
∫ 1

0
(eihsf(y) − 1)dsP (x,dy)| > K} = 0}

≤ inf{K ; µ{x ; |
∫

|f(y)|≤L
(if(y))k

∫ 1

0
(eihsf(y) − 1)dsP (x,dy)| > K} = 0}

+ inf{K ; µ{x ; |
∫

|f(y)|>L
(if(y))k

∫ 1

0
(eihsf(y) − 1)dsP (x,dy)| > K} = 0}

≤ 1

2
Lk+1|h|+ 2


∫

|f(y)|>L
|f(y)|kP (x,dy)



the lemma follows by the Taylor formula.
The next lemma presents a series expansion for characteristic projector.

Lemma 3 If a primitive operator P satisfies (3.17) then

P̂1(θ) =
k∑

m=0

(iθ)m

m!
P̂

(m)
1 + o(|θ|k).
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Proof of Lemma 3

Put, for short E(ζ) =
∑

n≥0(P
n − Π)ζ−n−1, and E = E(1). In view of

(1.10) in Nagaev (1957) and (3.17) we obtain for |θ| < ξ

R̂(ζ, θ) = R(ζ) +
∑

n≥1

R(ζ)(
k∑

m=1

P(m)R(ζ)
(iθ)m

m!
)n + o(|θ|k).

Hence taking in the above coefficient at iθ and using (3.15) we get for k = 1

P̂
(1)
1 =

1

2πi

∮

Γ1

(
Π

ζ − 1
+E(ζ))P(1)(

Π

ζ − 1
+E(ζ))dζ

= ΠP(1)Π
1

2πi

∮

Γ1

1

(ζ − 1)2
dζ +

1

2πi

∮

Γ1

ΠP(1) E(ζ)

ζ − 1
dζ

+
1

2πi

∮

Γ1

E(ζ)

ζ − 1
P(1)Πdζ = ΠP(1)E+EP(1)Π

by Cauchy’s integral formula. For 1 < m ≤ k arguments are similar. We have
to replace every R(ζ) by Π

ζ−1 +E(ζ) in

P̂
(m)
1 =

m!

2πi

∮

Γ1

∑

ν1+ν2+...+νl=m

R(ζ)
P(ν1)

ν1!
R(ζ)

P(ν2)

ν2!
· · ·R(ζ)

P(νl)

νl!
R(ζ)dζ, νk ≥ 1.

Now, we are in a position to represent the principal eigenvalue of the char-
acteristic operator in a power series.

Lemma 4 If a primitive operator P satisfies (3.17) then

λ(θ) = 1 +
(iθ)

1!
µ1 +

(iθ)2

2!
µ2 +

(iθ)3

3!
µ3 + · · ·+ (iθ)k

k!
µk + o(|θ|k).

Proof of Lemma 4

It follows from (3.14) that

πP̂(θ)P̂1(θ)ψ = λ(θ)πP̂1(θ)ψ. (3.18)

Denote λ̂(k) = πP̂
(k)
1 ψ. By virtue of (3.17) and Lemma 3

λ(θ)

k∑

ν=0

λ̂(ν)
(iθ)ν

ν!
=

k∑

m=0

( m∑

ν=0

(
m

ν

)
πP(ν)P̂

(m−ν)
1 ψ

(iθ)m

m!

)
+o(|θ|k).

Since λ(0) = λ̂(0) = 1, λ(1) = λ̂(1) = 0, and λ(k) exists so by the Leibniz formula

λ(m) = µm =
m∑

ν=1

(
m

ν

)
πP(ν)P̂

(m−ν)
1 ψ −

m−2∑

ν=2

(
m

ν

)
λ(ν)λ̂(m−ν). (3.19)

By (3.19) γ2 = λ(2), for m > 2 also use the equation (1.13) in Petrov (1996).
The following theorem is the main result of the present Section.
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Theorem 3 If a primitive operator P satisfies (3.17), k ≥ 3 and σ2 > 0
then there exists ηk > 0 such that for Tn = ηkσ

√
n and | θ |≤ Tn we have

‖P̂n(
θ

σ
√
n
)− e−

θ2

2

( k−2∑

m=0

m∑

j=0

(iθ)j

n
m
2 j!σj

Pm−j(iθ)P̂
(j)
1

)
−(Pn −Π)‖ (3.20)

≤ o(1)

n
k−2
2

(|θ|k−2 + |θ|k−1 + |θ|k + |θ|3(k−2))e−
θ2

4 +O(
|θ|√
n
κn),

where

Pν(iθ) =
∑

(k1,k2,...,kν)∈Kν

ν∏

m=1

1

km!

(
γm+2(iθ)

m+2

(m+ 2)!σm+2

)km

.

Proof of Theorem 3

Let 0 < η3 ≤ ξ be such that sup|θ|≤η3 |λ(3)(θ) − µ3| ≤ σ3. Put, for short

Tn = min{ σ2

5( 3
2
|µ3|+σ3)

, η3}σ
√
n. By Taylor’s formula for | θ |≤ Tn we have

|λ( θ

σ
√
n
)| ≥ 1− θ2

2n
− |θ|3(|µ3|+ σ3 + 1

2 |µ3|)
6n

3
2σ3

≥ 1− T 2
n

2n
− T 3

n(
3
2 |µ3|+ σ3)

6n
3
2σ3

≥ 1− σ6

50(32 |µ3|+ σ3)2
− σ6

6 · 125(32 |µ3|+ σ3)2
> 1− 2

50
=

24

25
·

Hence for | θ |≤ Tn by Taylor’s formula and Lemma 4

n lnλ(
θ

σ
√
n
) = −θ

2

2
+

(iθ)3µ3
6
√
nσ3

+
(iθ)4µ4
24nσ4

− (iθ)4

8n
+ · · · (3.21)

+
(iθ)k

k!n
k−2
2 σk

γk +
(iθ)k

(k − 1)!n
k−2
2 σk

∫ 1

0
(1− x)k−1Wk(

xθ

σ
√
n
)dx,

where Wk(x) = ∂k

∂yk
lnλ(y)|y=x − γk. Further, it is evident that we can insert

ηk ≤ η3 in Tn = min{ σ2

5( 3
2
|µ3|+σ3)

, ηk}σ
√
n, such that for |θ| ≤ Tn we have

6σ2(
|θ|2

24nσ4
|γ4|+ · · ·+ |θ|k−2

k!n
k−2
2 σk

(|γk|+ ck)) < 7,

where ck = supx∈[0,1] |Wk(x)|. Since Wk(
xθ

σ
√
n
) →n 0, so by the Lebesgue dom-

inated convergence theorem we get
∫ 1
0 (1 − x)k−1Wk(

xθ
σ
√
n
)dx = o(1). By virtue

of (3.14), Lemma 1 and (3.21) we obtain

‖P̂n(
θ

σ
√
n
)− e

− θ2

2
+

(iθ)3µ3
6
√

nσ3 +
(iθ)4µ4
24nσ4 − (iθ)4

8n
+···+ (iθ)k

k!n
k−2
2 σk

γk
P̂1(

θ

σ
√
n
)− (Pn −Π)‖

≤ e
− θ2

2
+···+ (iθ)k

k!n
k−2
2 σk

γk

∣∣∣∣∣∣
exp{

(iθ)k
∫ 1
0 (1− x)k−1Wk(

xθ
σ
√
n
)dx

(k − 1)!n
k−2
2 σk

} − 1

∣∣∣∣∣∣
O(1)

+O(
|θ|
σ
√
n
κn).
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By (3.21) and the inequality |ex−1| ≤ |x|e|x|, we find that for | θ |≤ Tn we have

| exp{ (iθ)k

(k − 1)!n
k−2
2 σk

∫ 1

0
(1−x)k−1Wk(

xθ

σ
√
n
)dx}−1| ≤ o(1)|θ|k

n
k−2
2

exp{ ck|θ|k

k!n
k−2
2 σk

}·

Hence,

‖P̂n(
θ

σ
√
n
)− e

− θ2

2
+

(iθ)3µ3
6
√

nσ3 +
(iθ)4µ4
24nσ4 − (iθ)4

8n
+···+ (iθ)k

k!n
k−2
2 σk

γk
P̂1(

θ

σ
√
n
)− (Pn −Π)‖

≤ exp{−θ
2

2
+ · · ·+ (iθ)k

k!n
k−2
2 σk

(|γk|+ ck)}
|θ|k

n
k−2
2

o(1) +O(
|θ|
σ
√
n
κn)

≤ exp{−θ
2

2
+
θ2

2
(
1

15

3
2 |µ3|

3
2 |µ3|+ σ3

+
7

15

σ3

3
2 |µ3|+ σ3

)} |θ|k

n
k−2
2

o(1) +O(
|θ|
σ
√
n
κn)

≤ o(1)
|θ|k

n
k−2
2

exp{−θ
2

4
}+O(

|θ|
σ
√
n
κn).

Thus expanding exp{ (iθ)3µ3

6
√
nσ3 +· · ·+ (iθ)k

k!n
k−2
2 σk

γk} and using Lemma 3 and Taylor’s

formula for P̂1(
θ

σ
√
n
) we obtain (3.20).

The following lemma provides an estimate for the iterates of characteristic
operator (for the proof see Lemma 1.5 in Nagaev (1961)).

Lemma 5 Let Condition (Ψ) is fulfilled. Then for n ≥ 1 and
g
≤ 1

P̂n(θ)g
≤

(√
1− α4

2β
(1− |µ̂f (θ)|2)

)n−1

.

4 Proofs

Proof of Theorems 1 and 2

By virtue of Condition (Ψ) and §1 in Nagaev (1957) P is primitive in L∞(µ)
(alternatively one can use Proposition 3.13 in Wu (2000)). Moreover, it follows
also that

lim
L→∞


∫

|f(y)|>L
|f(y)|kP (x,dy)

≤ β lim
L→∞

∫

|f(y)|>L
|f(y)|kµ(dy) = 0

so that (3.16) holds. Write Fgn(z) = Fg(·),n(z) = (Kn,zg)(·), and Ggn(z) =∑k−2
m=0 n

−m
2 Am,zg. Let Kgn(z) be the distribution function that assigns the

mass (Pn −Π)g(·) at 0. Put,

Hgn(z) = Ggn(z)+Kgn(z), Ĥgn(θ) =

∫
eiθxdHgn(x), F̂gn(θ) =

∫
eiθxdFgn(x).

Note that F̂gn(θ) = P̂n( θ
σ
√
n
)(g) and

Ĝgn(θ) =

∫
eiθxdGgn(x) = e−

θ2

2

( k−2∑

m=0

1

(
√
n)m

m∑

j=0

1

j!
(
iθ

σ
)jPm−j(iθ)P̂

(j)
1 g(·)

)
·
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Because of

Hgn(z + y)−Hgn(z)
≤

Ggn(z + y)−Ggn(z)
+

(Pn −Π)g
,

Ggn(z+ y)−Ggn(z) = y
∂

∂z
Ggn(z) + sgn(y)

y+|y|
2∫

y−|y|
2

(
∂

∂u
Ggn(z+ u)− ∂

∂z
Ggn(z))du

thus in view of Th. 5.3 on pp. 146–147 in Petrov (1996) and (2.9) we have

Fgn(z)−Ggn(z)
 ≤

Fgn(z)−Ggn(z) −Kgn(z)
+C|γ|n

g


≤ 1

π

∫

|θ|≤T

F̂gn(θ)− Ĥgn(θ)
dθ

|θ| (4.22)

+
3c2( 1π )

πT
sup
z

 ∂

∂z
Ggn(z)

+C|γ|n(1 + 2c( 1π )

π
)
g
.

Now, since supz
 ∂

∂zGgn(z)
 is bounded and |γ| < 1 whence by (4.22) for

T = nk, k ≥ 4, we get

Fgn(z)−Ggn(z)
≤ 1

π

∫

|θ|≤nk

F̂gn(θ)− Ĥgn(θ)
dθ

|θ| + o(

g


n
k−2
2

)· (4.23)

By virtue of Th. 3
∫

|θ|≤Tn

F̂gn(θ)− Ĥgn(θ)
dθ

|θ| (4.24)

≤ o(
g
)

n
k−2
2

∫

|θ|≤Tn

(|θ|k−3 + |θ|k−1 + |θ|k + |θ|3k−7)e−
θ2

4 dθ +
T 2
n√
n
O(κn)·

This established, we have to show that

∫

Tn<|θ|≤nk

F̂gn(θ)− Ĥgn(θ)


|θ| dθ ≤ o(

g


n
k−2
2

)· (4.25)

For this observe that

∫

Tn<|θ|≤nk

Ĝgn(θ)


|θ| dθ ≤ 2

∫ ∞

Tn

e−
θ2

2

∥∥∥∥∥∥

k−2∑

m=0

m∑

j=0

(iθ)j

n
m
2 j!σj

Pm−j(iθ)P̂
(j)
1

∥∥∥∥∥∥
g
dθ

|θ|

and that by (2.9)

∫

Tn<|θ|≤nk

Ĥgn(θ)− Ĝgn(θ)
dθ

|θ| ≤ 2Ck|γ|n
g
lnn = o(

g


n
k−2
2

)·

Further, by Lemma 5 and (2.11) there exists θ0 such that for any τ > θ0

n
k−2
2

∫

Tn<|θ|≤nk

F̂gn(θ)
dθ

|θ| ≤ n
k−2
2

∫

τ≤|θ|≤nk

(P̂(θ))ng
dθ

|θ| ≤ Ckn
k−2
2 e−cn

g
lnn
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which with the latter inequalities proves (4.25). Consequently, the substitution
of (4.24) and (4.25) into (4.23) yields (2.8). For the case k = 3 set T = Tnrn
and choose a sequence rn → ∞ such that we have

∫

Tn<|θ|≤Tnrn

F̂gn(θ)
dθ

|θ| =
∫

Tn<|θ|σ√n≤Tnrn

(P̂(θ))ng
dθ

|θ| =
g
o(n−1/2).

This completes the proof.
Acknowledgment. The author thanks A. Nagaev for his comments concerning
this exposition.
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