
ar
X

iv
:0

71
2.

42
53

v2
  [

m
at

h.
C

A
] 

 2
0 

M
ar

 2
00

9

DETERMINANTS OF ELLIPTIC

HYPERGEOMETRIC INTEGRALS

E. M. RAINS AND V. P. SPIRIDONOV

Abstract. We start from an interpretation of the BC2-symmetric “Type I”
(elliptic Dixon) elliptic hypergeometric integral evaluation as a formula for a
Casoratian of the elliptic hypergeometric equation, and give an extension to
higher-dimensional integrals and higher-order hypergeometric functions. This
allows us to prove the corresponding elliptic beta integral and transformation
formula in a new way, by proving both sides satisfy the same difference equa-
tions, and that the difference equations satisfy a Galois-theoretical condition
ensuring uniqueness of simultaneous solution.

1. Introduction

Plain hypergeometric functions and their q-analogues are widely used in math-
ematics and mathematical physics. They can be defined either as infinite series or
contour integrals, more or less on an equal footing [2]. As to the recently discov-
ered elliptic hypergeometric functions, the situation with them is different—their
general instances are defined only via integral representations. The general concept
of elliptic hypergeometric integrals was introduced in [14]. Elliptic beta integrals
[4, 10, 13, 14, 17] are the simplest representatives of integrals of such type. In the
univariate setting there is only one elliptic beta integral [13], presently the top level
known generalization of the Euler beta integral. In the multivariable case such
integrals are grouped in three classes.

The n-dimensional type I elliptic beta integrals contain 2n+ 3 free parameters,
and there are two known general methods of proving them [10, 16]. The type II inte-
grals have a smaller number of parameters, and admit a straightforward derivation
from the type I integrals [4, 14]. Both types of these exactly computable integrals
admit higher-order extensions with more parameters, with associated transforma-
tion laws [10]. For the BCn root system, these are elliptic analogues of an integral
due to Dixon [5] (type I) and of Selberg’s famous integral [2] (type II, with 5 + 1
parameters), respectively. Multiple elliptic beta integrals of the third class [14] can
be represented as determinants of univariate integrals, which, in turn, reduce to
computable theta function determinants.

In the present paper, we follow up on the observation implicit in [10] that the
elliptic Dixon integrals can be expressed as determinants of univariate elliptic hy-
pergeometric integrals, higher-order analogues of the elliptic beta integral. This
allows us to give a new proof of the corresponding evaluation formula and of the
related transformation formula established first in [10]. The evaluation result lifts
Varchenko’s determinant of univariate plain hypergeometric integrals [19] and the
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Aomoto-Ito determinant [3] to the elliptic level and enriches the list of known com-
putable determinants compiled in [7].

We use the following notation. The key infinite product is

(z; p)∞ :=

∞
∏

k=0

(1 − zpk),

where |p| < 1 and z ∈ C. The elliptic theta function has the form:

θp(z) := (z; p)∞(z−1; p)∞,

where z ∈ C∗. It obeys the properties

θp(pz) = θp(z
−1) = −z−1θp(z)

and θp(z) = 0 for z = pZ. We follow the standard useful convention that

θp(a1, . . . , am) :=
m
∏

k=1

θp(ak), θp(tz
±1) := θp(tz)θp(tz

−1),

and say that a meromorphic function f(z) is p-elliptic if f(pz) = f(z). The simplest
nonconstant p-elliptic function (of the second order) has the form θp(az, bz)/θp(cz, dz),
where ab = cd.

The standard elliptic gamma function, depending on two complex bases p and q
lying in the unit disc, |p|, |q| < 1, has the form:

Γp,q(z) =

∞
∏

j,k=0

1− z−1pj+1qk+1

1− zpjqk
,

where z ∈ C∗. It obeys the properties Γp,q(z) = Γq,p(z),

Γp,q(qz) = θp(z)Γp,q(z), Γp,q(pz) = θq(z)Γp,q(z),

and has zeros at z = pZ>0qZ>0 and poles at z = pZ≤0qZ≤0 . The reflection formula
has the form Γp,q(a)Γp,q(b) = 1, ab = pq; we set also

Γp,q(a1, . . . , am) :=

m
∏

k=1

Γp,q(ak), Γp,q(tz
±1) := Γp,q(tz)Γp,q(tz

−1),

Γp,q(tz
±1
1 z±1

2 ) = Γp,q(tz1z2)Γp,q(tz1z
−1
2 )Γp,q(tz

−1
1 z2)Γp,q(tz

−1
1 z−1

2 ).

2. The elliptic hypergeometric equation

The following elliptic analogue of the Gauss hypergeometric function was intro-
duced in [14, 15]

(1) V (t; p, q) = κ

∫

T

∏8
j=1 Γp,q(tjz

±1)

Γp,q(z±2)

dz

2π
√
−1z

,

where κ = (p; p)∞(q; q)∞/2 and T is the positively oriented unit circle. The pa-

rameters tj are restricted by the balancing condition
∏8

j=1 tj = (pq)2 and the

inequalities |tj | < 1, j = 1, . . . , 8. The V -function can be meromorphically contin-
ued to all tj ∈ C∗ preserving the balancing condition. For t7t8 = pq (and other
similar restrictions), it reduces to the elliptic beta integral [13]

(2) κ

∫

T

∏6
j=1 Γp,q(tjz

±1)

Γp,q(z±2)

dz

2π
√
−1z

=
∏

1≤j<k≤6

Γp,q(tjtk).
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The addition formula for elliptic theta functions written in the form

t3θp(t2t
±1
3 , t1z

±1) + t1θp(t3t
±1
1 , t2z

±1) + t2θp(t1t
±1
2 , t3z

±1) = 0

yields the following contiguity relation, via a corresponding relation for the inte-
grands:

(3)
t1V (qt1)

θp(t1t
±1
2 , t1t

±1
3 )

+
t2V (qt2)

θp(t2t
±1
1 , t2t

±1
3 )

+
t3V (qt3)

θp(t3t
±1
1 , t3t

±1
2 )

= 0,

where V (qtj) denotes the V (t; p, q)-function with the parameter tj replaced by

qtj (with the balancing condition being
∏8

j=1 tj = p2q). Bailey-type symmetry

transformations for the V -function [10, 14] give to (3) different forms, including in
particular:
(4)
∏8

j=4 θp (t1tj/q)V (t1/q)

t1θp(t2/t1, t3/t1)
+

∏8
j=4 θp (t2tj/q)V (t2/q)

t2θp(t1/t2, t3/t2)
+

∏8
j=4 θp (t3tj/q)V (t3/q)

t3θp(t1/t3, t2/t3)
= 0,

where
∏8

j=1 tj = p2q3. In combination with (3), this yields the elliptic hypergeo-

metric equation [15]:

A(t1, t2, . . . , t8, q; p)
(

U(qt1, q
−1t2; q, p)− U(t; q, p)

)

(5)

+A(t2, t1, . . . , t8, q; p)
(

U(q−1t1, qt2, ; q, p)− U(t; q, p)
)

+ U(t; q, p) = 0,

where we have denoted

(6) A(t1, . . . , t8, q; p) :=
θp(t1/qt3, t3t1, t3/t1)

θp(t1/t2, t2/qt1, t1t2/q)

8
∏

k=4

θp(t2tk/q)

θp(t3tk)

and

U(t; q, p) :=
V (t; q, p)

∏2
k=1 Γp,q(tkt

±1
3 )

.

The potential A(t1, . . . , t8, q; p) is a p-elliptic function of parameters t1, . . . , t8, one
of which should be counted as a dependent variable through the balancing condition.

We set t1 = (pq)2/t2 · · · t8 and perform the shift t2 → pt2 (so that t1 → t1/p).
Since the function A is p-elliptic in all parameters, we have A(p−1t1, pt2, . . .) =
A(t1, t2, . . .). The function U(p−1t1, pt2) defines therefore an independent solution
of the elliptic hypergeometric equation. Let us compute the Casoratian of these
two solutions (i.e., a discrete version of the Wronskian). For this, we multiply the
above equation by U(p−1t1, pt2), the equation

A(t1, t2, . . . t8, q; p)
(

U(p−1qt1, pq
−1t2)− U(p−1t1, pt2)

)

+A(t2, t1, t3, . . . , q; p)
(

U(p−1q−1t1, pqt2)− U(p−1t1, pt2)
)

+ U(p−1t1, pt2) = 0

by U(t1, t2), subtract them and obtain

(7) A(t1, t2, . . . t8, q; p)D(p−1t1, q
−1t2) = A(t2, t1, t3, . . . , q; p)D(p−1q−1t1, t2),

where

D(t1, t2) = U(qpt1, t2)U(t1, pqt2)− U(qt1, pt2)U(pt1, qt2)



4 E. M. RAINS AND V. P. SPIRIDONOV

is the needed Casoratian. It is symmetric in p and q, which is an important property.
The expression

D(t1, t2) =
V (pqt1, t2)V (t1, pqt2)− t−2

1 t−2
2 V (qt1, pt2)V (pt1, qt2)

∏2
k=1 Γp,q(tkt

±1
3 , pqtkt

±1
3 )

can obviously be interpreted as the determinant of a particular 2× 2 matrix whose
elements are expressed via the V -function.

Since t1 is a dependent variable, this is actually a first order difference equation
in t2. After scaling t1 → pt1, t2 → qt2 (so that t1 = pq/

∏8
j=2 tj), we obtain the

following equation for f(t2) := D(t1, t2):

f(qt2) =
A(pt1, qt2, t3, . . . , q; p)

A(qt2, pt1, t3, . . . , q; p)
f(t2)

= − t1
qt2

θp(t1/q
2t2, t1/qt3, t

−1
1 t±1

3 )

θp(t2/t1, t2/t3, q−1t−1
2 t±1

3 )

8
∏

k=4

θp(t2tk)

θp(t1tk/q)
f(t2),

which yields

D(t1, t2) = C(t2)

∏8
k=3 Γp,q(t1tk, t2tk)

Γp,q(t1/t2, t2/t1)

2
∏

k=1

Γp,q(t
−1
k t±1

3 )

Γp,q(tkt
±1
3 )

,

where C(qt2) = C(t2). We can repeat the whole consideration with permuted p
and q and obtain C(pt2) = C(t2). This means (for incommensurate p and q) that
C does not depend on t2, but it may depend on other parameters t3, . . . , t8. To
compute C, we apply the residue calculus. For this we take the parameter t3 from
inside the unit circle to its outside and impose the constraints |t3| > 1 > |qt3|, |pt3|.
Then we deform the contour of integration T entering the definition of V (t) to the
contour Tdef deformed in such a way that no poles are crossed during such a change
of t3. The Cauchy theorem leads to

V (t) := VTdef
(t) = VT(t) +

∏8
j=1, 6=3 Γp,q(tjt

±1
3 )

Γp,q(t
−2
3 )

.

We take then the limit t2 → 1/t3 and find the value of C through the limit for
ratios of the left and right-hand sides of the above equality

C = lim
t2t3→1

V (pqt1, t2)V (t1, pqt2)− t−2
1 t−2

2 V (qt1, pt2)V (pt1, qt2)
∏8

k=3 Γp,q(t1tk, t2tk)
Γp,q(t1/t2, t2/t1).

For t2 → 1/t3, the function V (t1, pqt2) reduces to the elliptic beta integral, the
residues of V (pqt1, t2) blow up with VT(pqt1, t2) remaining finite, the residues of
V (pt1, qt2) and V (qt1, pt2) remain finite as well as the functions VT(pt1, qt2) and
VT(qt1, pt2). As a result, only the first term of our Casoratian survives and yields

C =

∏

3≤j<k≤8 Γp,q(tjtk)

Γp,q(t
−1
1 t−1

2 )
.

We obtain thus the formula

(8) V (pqt1, t2)V (t1, pqt2)− t−2
1 t−2

2 V (qt1, pt2)V (pt1, qt2) =

∏

1≤j<k≤8 Γp,q(tjtk)

Γp,q(t
±1
1 t±1

2 )
.
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The described solution of the elliptic hypergeometric equation is defined for
|q| < 1, although equation (5) itself does not demand such a condition. It can be
verified that

A
(

p1/2

t1
, . . . ,

p1/2

t8
, q; p

)

= A
(

t1, . . . , t8, q
−1; p

)

.

The transformation tj → p1/2/tj, j = 1, . . . , 8, maps therefore the elliptic hyperge-
ometric equation to itself with the base change q → q−1. Equivalently, the same
inversion q → 1/q occurs after the transformation tj → paj/tj with integer ai such

that
∑8

j=1 aj = 4. As a result, we obtain the following solution of the elliptic

hypergeometric equation in the regime |q| > 1

U(t; q, p) =
V (p1/2/t1, . . . , p

1/2/t8; q
−1, p)

∏2
k=1 Γp,q−1(p/tkt3, t3/tk)

.(9)

As to the unit circle case |q| = 1, the corresponding solution of equation (5) can
be obtained with the help of the modified elliptic gamma function or the modular
transformation [15].

3. A characterization theorem for the V -function

We would like now to present contiguous relations for the V -function (and, so,
equation (5)) in a 2× 2 matrix form. For that we introduce the function

W (t1, . . . , t8; z) :=
V (t1, . . . , t8; p, q)
∏8

j=1 Γp,q(tjz
±1)

,

where z is some auxiliary variable. Replacing parameters t1,2,3 by t4,7,8 and the
V -function by W in (3), we obtain after shifting t3 → qt3

(10) W (qt3, qt7) = α(t; z)W (qt3, qt4) + β(t; z)W (qt3, qt8),

where W (qtj , qtk) means the W (t; z)-function with respective parameters tj and tk
replaced by qtj and qtk, and

α(t; z) =
θp(t4z

±1, t7t
±1
8 )

θp(t7z±1, t4t
±1
8 )

, β(t; z) =
θp(t8z

±1, t7t
±1
4 )

θp(t7z±1, t8t
±1
4 )

are p-elliptic functions of all variables (including z).
Replacing now t1,2,3 by qt1,2,3 in (4), and then permuting t1 and t2 with t4 and

t8, we obtain

(11) W (qt3, qt4) = γ(t; z)W (qt3, qt8) + δ(t; z)W (qt4, qt8),

where

γ(t; z) =
θp(t8z

±1, t3t
−1
8 )

θp(t4z±1, t3t
−1
4 )

∏

j=1,2,5,6,7

θp(t4tj)

θp(t8tj)
,

δ(t; z) =
θp(t8z

±1, t4t
−1
8 )

θp(t3z±1, t4t
−1
3 )

∏

j=1,2,5,6,7

θp(t3tj)

θp(t8tj)
(12)

are, again, p-elliptic functions of the parameters. EliminatingW (qt3, qt4) from (10)
and (11), we obtain the relation

(13) W (qt3, qt7) = (α(t; z)γ(t; z) + β(t; z))W (qt3, qt8) + α(t; z)δ(t; z)W (qt4, qt8).



6 E. M. RAINS AND V. P. SPIRIDONOV

We define now the matrices

M(t1, t2; t3, t4; t5, t6, t7, t8) :=

(

W (pt1, qt3) W (pt2, qt3)
W (pt1, qt4) W (pt2, qt4)

)

,(14)

A(t1, t2; t3, t4; t5, t6, t7, t8) :=

(

A11 A12

A21 A22

)

,(15)

where

A11(t1, t2; t3, t4; t5, . . . , t8; z; p, q) = α(pt1, q
−1t8)γ(pt1, q

−1t8) + β(pt1, q
−1t8),

A12(t1, t2; t3, t4; t5, . . . , t8; z; p, q) = α(pt1, q
−1t8)δ(pt1, q

−1t8),

A21(t1, t2; t3, t4; t5, . . . , t8; z; p, q) = A12(t1, t2; t4, t3; t5, . . . , t8; z; p, q),

A22(t1, t2; t3, t4; t5, . . . , t8; z; p, q) = A11(t1, t2; t4, t3; t5, . . . , t8; z; p, q)

are p-elliptic functions. In particular,

Aij(p
−1t1, pt2; t3, t4; t5, . . . , t8; z; p, q) = Aij(t1, t2; t3, t4; t5, . . . , t8; z; p, q).

After replacements t7 → t7x, t8 → t8x
−1, equations (13) and its partner obtained

after permuting t3 with t4 are rewritten as a linear first order matrix q-difference
equation

(16) M(qx) = A(x)M(x),

where we indicate only x-dependence.
After the permutations p ↔ q, t1 ↔ t3, t2 ↔ t4, the matrix M is transformed to

its transpose MT . Equation (16) gets therefore transformed to

(17) M(px) =M(x)B(x),

where

(18) B(x) := B(t1, t2; t3, t4; t5, t6, t7x, t8x
−1) :=

(

B11 B12

B21 B22

)

,

B11 = A11(t3, t4; t1, t2; t5, t6, t7x, t8x
−1; z; q, p),

B12 = A21(t3, t4; t1, t2; t5, t6, t7x, t8x
−1; z; q, p),

B21 = A12(t3, t4; t1, t2; t5, t6, t7x, t8x
−1; z; q, p),

B22 = A22(t3, t4; t1, t2; t5, t6, t7x, t8x
−1; z; q, p).

In principle, from the existence of first equation (16), it follows that there exists
some p-difference equation of the form (17) with q-elliptic coefficients [6]. Indeed,
we can simply take B(x) :=M(x)−1M(px) and see that

B(qx) =M(x)−1A(x)−1A(px)M(px) =M(x)−1M(px) = B(x).

However, this B-matrix is not unique. We let g(x) denote a matrix satisfying
g(qx) = g(x). Equation (16) does not change after the replacement M → Mg, but
the B-matrix gets changed to B → g(x)−1B g(px) showing a functional freedom in
the definition of this matrix.

We suppose now, thatM ′ is another meromorphic solution of equations (16) and
(17). The matrix N =M ′M−1 satisfies then the difference equations

N(px) = N(x), N(qx) = A(x)N(x)A(x)−1 .

The first equation states that N has p-elliptic entries, and the second one is a q-
difference equation with the p-elliptic coefficients. The normalization chosen above
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works for q- and p-shifts of all parameters, not just those of t7 and t8, because of
the permutational symmetry.

Theorem 1. For incommensurate p and q, N is a constant multiple of the identity.

The proof of this Theorem is given in a more general context in the last section.
This statement simply means that the non-trivial p-elliptic functions (the matrix
elements of N) cannot satisfy this q-difference equation with p-elliptic coefficients.

With the help of three pairwise incommensurate quasiperiods ω1,2,3 and the
parametrization

q = e
2πi

ω1
ω2 , p = e

2πi
ω3
ω2 ,

we can convert q- and p-difference equations into linear finite difference equations.
For this it is sufficient to pass to parameters gj introduced as tj = e2πigj/ω2 , j =

1, . . . , 8, and x = e2πiu/ω2 . As a function of u, the V -function is thus characterized
as a unique (up to a constant independent of u) solution of 5 linear fininite difference
equations: two difference equation in (16) working with the shifts u→ u+ω1, their
partners in (17) working with the shifts u→ u+ω3, and the condition of periodicity
under the shifts u → u + ω2, equivalent to the analiticity condition in x ∈ C∗. In
order to characterize the proper function V (t; q, p) as a function of t1, . . . , t8 up to
a constant, we simply need to adjoin the permutational symmetry group S8.

4. Determinant representation of elliptic Dixon integrals

The elliptic Dixon integrals (a.k.a. Type I integrals with BCn symmetry) have
the form:

I(m)
n (t1, . . . , t2n+2m+4) = κn

∫

Tn

∏

1≤i<j≤n

1

Γp,q(z
±1
i z±1

j )

n
∏

j=1

∏2n+2m+4
i=1 Γp,q(tiz

±1
j )

Γp,q(z
±2
j )

dzj

2π
√
−1zj

,

where |tj | < 1,

2n+2m+4
∏

j=1

tj = (pq)m+1, κn =
(p; p)n∞(q; q)n∞

2nn!
.

By convention, when n = 0, I
(m)
0 := 1; when n = 1, the resulting univariate integral

is a higher-order version of the elliptic beta integral.
The following transformation identity has been proved in [10].

Theorem 2. The integrals I
(m)
n satisfy the relation

(19)

I(m)
n (t1, . . . , t2n+2m+4) =

∏

1≤r<s≤2n+2m+4

Γp,q(trts) I
(n)
m

(√
pq

t1
, . . . ,

√
pq

t2n+2m+4

)

.

In particular, when m = 0, the integral on the right-hand side is 0-dimensional,
and one obtains an explicit evaluation of the left-hand side.

One of the objectives of the present work is to give a more elementary proof of
this transformation, by showing that both sides satisfy the same family of difference
equations and initial conditions. We will also obtain a new proof of the special case
m = 0.



8 E. M. RAINS AND V. P. SPIRIDONOV

The key idea is that I
(m)
n can be written as a determinant of integrals of the

form I
(n+m−1)
1 ; we will thus be able to use difference equations for the univariate

integrals to deduce difference equations for I
(m)
n .

Due to the reflection identity Γp,q(z)Γp,q(pq/z) = 1, we can write the I
(m)
n inte-

grand’s cross factors as
∏

1≤i<j≤n

1

Γp,q(z
±1
i z±1

j )
=

∏

1≤i<j≤n

(

z−1
i θp(ziz

±1
j ) z−1

i θq(ziz
±1
j )
)

.

The point, then is that the antisymmetric factor
∏

1≤i<j≤n z
−1
i θp(ziz

±1
j ) can be

written as a determinant; more precisely, we have the following elliptic analogue of
the Cauchy determinant:

det
1≤i,j≤n

(

1

a−1
i θp(aiz

±1
j )

)

=

∏

1≤i<j≤n a
−1
i θp(aia

±1
j )

∏

1≤i<j≤n z
−1
i θp(ziz

±1
j )

(−1)n(n−1)/2
∏

1≤i,j≤n a
−1
i θp(aiz

±1
j )

(which, as observed in [9], can be obtained from the usual Cauchy determinant via
a suitable substitution), using which we can bring our integral to the form

I(m)
n (t1, . . . , t2n+2m+4) =

κn
∏

1≤i<j≤n a
−1
i θp(aia

±1
j )b−1

i θq(bib
±1
j )

×
∫

Tn

n
∏

j=1

(

∏2n+2m+4
r=1 Γp,q(trz

±1
j )

Γp,q(z
±2
j )

n
∏

k=1

b−1
k θp(bkz

±1
j ) b−1

k θq(bkz
±1
j )

dzj

2π
√
−1zj

)

× det
1≤i,j≤n

φi(zj) det
1≤i,j≤n

ψi(zj),

where φi(zj) = ai/θp(aiz
±1
j ), ψi(zj) = bi/θq(biz

±1
j ). But then, using the Heine

identity:

1

n!

∫

det
1≤i,j≤n

φi(zj) det
1≤i,j≤n

ψi(zj)
∏

1≤i≤n

dµ(zi) = det
1≤i,j≤n

∫

φi(z)ψj(z)dµ(z),

we can write

I(m)
n (t1, . . . , t2n+2m+4) =

∏

1≤i<j≤n

1

ajθp(aia
±1
j )bjθq(bib

±1
j )

× det
1≤i,j≤n



κ

∫

T

∏2n+2m+4
r=1 Γp,q(trz

±1)

Γp,q(z±2)

∏

k 6=i

θp(akz
±1)

∏

k 6=j

θq(bkz
±1)

dz

2π
√
−1z



 ,

where κ = (p; p)∞(q; q)∞/2. If we choose ai = ti, bi = tn+i, 1 ≤ i ≤ n, then the

entries of the above determinant are of the form I
(m+n−1)
1 . To be precise, the ij

entry is

Tq(ti)
−1Tp(tn+j)

−1I
(m+n−1)
1 (qt1, . . . , qtn, ptn+1, . . . , pt2n, t2n+1, . . . , t2n+2m+4),

where Tq(tk) represents the q-shift operator, Tq(tk)f(tk) = f(qtk). We can also let
the sequences a, b overlap, at the cost of some slight extra complication. For in-
stance, for n = 2,m = 0 and ai = bi = ti, i = 1, 2, we obtain on the right-hand side

the Casoratian of V -functions (8), which yields I
(0)
2 (t1, . . . , t8) =

∏

1≤j<k≤8 Γp,q(tjtk).

This result hints that the integral I
(0)
n is computable in the closed form for arbitrary

n > 2.
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Note that when m = −1, the balancing condition reads t1 · · · t2n+4 = 1, and
thus at least one of the entries of the determinant cannot use the unit circle as its
contour. This is not, however, a serious issue, since there always exists some valid
choice of common contour, and the Heine identity works regardless.

Now, the fact that the integral vanishes for m = −1 (a fact visible from the
explicit formula for m = 0) implies that the rows of the above matrix must be
linearly dependent. Conversely, if we can find a linear dependence between integrals

Tq(ti)
−1Tp(tn+j)

−1I
(n−2)
1 (qt1, . . . , qtn, ptn+1, . . . , pt2n, t2n+1, t2n+2),

which is independent of j (i.e., is p-elliptic in tn+1, . . . , t2n), that will imply van-
ishing for m = −1, which as shown in [4] allows one to compute the integral for
m = 0. This leads us to examine recurrence relations for the univariate integrals.

In general, not only are the entries of the above matrix integrals of the form

I
(n+m−1)
1 , but in fact the k × k minors themselves are proportional to integrals of

the form I
(n+m−k)
k . The recurrence for univariate integrals implicit in the vanishing

of I
(−1)
n gives rise to recurrences for higher I

(m)
n in the following way.

Lemma 3. Let M be a n× k matrix, and suppose the vector v satisfies vM = 0.
Then the k × k minors of M satisfy the (n− k + 1)-term relation

∑

k≤i≤n

vi det
l∈{1,...,k−1,i},l′∈{1,...,k}

(Mll′) = 0.

Proof. This certainly holds, by linearity, if we were to extend the sum down to i = 1,
but the additional terms all have repeated rows in the minors, thus vanish. �

There are two main sources of recurrences for hypergeometric integrals. The
first is recurrences of the integrands themselves (so long as the contour conditions
can be satisfied by a common contour, that is).

Theorem 4. The integral I
(m)
n satisfies the (n+ 2)-term recurrence

(20)
∑

1≤i≤n+2

ti
∏n+2

j=1, j 6=i θp(tit
±1
j )

Tq(ti)I
(m)
n (t1, . . . , t2n+2m+4) = 0,

2n+2m+4
∏

j=1

tj = (pq)mp.

Proof. If we divide out by common factors of the integrand, this reduces to the
relation (see Lemma A.1 in [4] or Corollary 2.3 in [9]):

∑

1≤i≤n+2

ti
∏n+2

j=1, j 6=i θp(tit
±1
j )

∏

1≤j≤n

θp(tiz
±1
j ) = 0.

�

This approach alone is insufficient to get the full system of difference equations;
for one thing, it is completely independent of the balancing condition. As in [9],
the key is to multiply the integrand by functions related to the difference operators
of [10].

With this in mind, we consider the following function:

g(m)(z; t1, . . . , tm+2; v1, . . . , vm+4)

=

∏

1≤i≤m+4 θp(viz)

zθp(z2)
∏

1≤i≤m+2 θp((pq/ti)z)
+

∏

1≤i≤m+4 θp(vi/z)

z−1θp(z−2)
∏

1≤i≤m+2 θp((pq/ti)/z)
.
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By inspection, this is invariant under the change z 7→ 1/z. In addition, if
∏

1≤i≤m+2 ti
∏

1≤i≤m+4 vi = (pq)m+1q, then both terms are (meromorphic) p-theta functions
with the same multiplier, and thus

g(m)(pz; t1, . . . , tm+2; v1, . . . , vm+4) = pz2g(m)(z; t1, . . . , tm+2; v1, . . . , vm+4).

Moreover, the apparent poles at z = ±1,±√
p must by symmetry have even order,

and thus g(m) must in fact be holomorphic at those points. Thus g(m) has only
simple poles at the points (pq/ti)

±1pZ; it follows that

g(m)(z; t1, . . . , tm+2; v1, . . . , vm+4) =
∑

1≤i≤m+2

αi

θp(pqz±1/ti)

for suitable coefficients αi which can be computed in the usual way: clear the
denominator and set z = ti/q to find

αi =
q
∏

1≤j≤m+4 θp(vjti/q)

ti
∏m+2

j=1, 6=i θp(tj/ti)
.

The relevance of this function for our purposes is that it integrates to 0 against

the I
(m)
1 density. More precisely, we have

∫

|z|=1

g(m)(z; t1, . . . , tm+2; tm+3, . . . , t2m+6)

∏

1≤r≤2m+6 Γp,q(trz
±1)

Γp,q(z±2)

dz

2π
√
−1z

= 0,

so long as
∏

1≤i≤2m+6 ti = (pq)m+1q and |t1|/q, . . . , |tm+2|/q, |tm+3|, . . . , |t2m+6| <
1. Indeed, by symmetry, both terms of g(m) have the same integral; if we restrict
to the first term (thus gaining a factor of 2), perform the change of variables z 7→
q−1/2/z, and move the contour back to the unit circle (which crosses over no poles),
we obtain

2

∫

|z|=1

q1/2z

θp(z2)

∏

1≤i≤m+2 Γp,q(q
−1/2tiz

±1)
∏

1≤i≤m+4 Γp,q(q
1/2tm+2+iz

±1)

Γp,q(z±2)

dz

2π
√
−1z

.

But now the integrand is antisymmetric with respect to z 7→ z−1, and therefore the
integral vanishes.

Using the partial fraction decomposition of g(m), we thus obtain a new recur-
rence.

Lemma 5. If t1 · · · t2m+6 = (pq)m+1q, then we have the following (m + 2)-term

recurrence for I
(m)
1 :

(21)
∑

1≤k≤m+2

∏

m+3≤i≤2m+6 θp(titk/q)

tk
∏

1≤i≤m+2;i6=k θp(ti/tk)
Tq(tk)

−1I
(m)
1 (t1, . . . , t2m+6) = 0.

Applying the operator Tp(tm+2+l)
−1 to this equality, we obtain

∑

1≤k≤m+2

vkMkl = 0, vk =

∏

m+3≤i≤2m+6 θp(titk/q)
∏

1≤i≤m+2;i6=k θp(ti/tk)
,(22)

Mkl = Tq(tk)
−1Tp(tm+2+l)

−1I
(m)
1 (t1, . . . , t2m+6).

Corollary 6. If t1 · · · t2n+2 = 1, then I
(−1)
n = 0.
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Indeed, as shown above the integral I
(−1)
n is proportional to the determinant

of the matrix M in (22) with m = n − 2 and scaled parameters. However, the
vector v = (v1, . . . , vn) belongs to the kernel of M , vM = 0, and, so, detM = 0.
For n = 2, such a result follows also from (8) and the elliptic beta integral. This
statement proves the vanishing hypothesis of [4], which was needed there for a proof
of the evaluation formula for the elliptic Dixon integral.

Applying Lemma 3 to relation (22), we obtain equality
∑m+2

k=n vkdk = 0, where
dk = det(Mll′) with l ∈ {1, . . . , n − 1, k}, l′ ∈ {1, . . . , n}. The minors dk are pro-

portional to the integrals I
(m−n+1)
n (t1/q, . . . , tn−1/q, tn, . . . , tk/q, . . . , tm+2, tm+3/p,

. . . , tm+3+n/p, tm+4+n, . . . , t2m+6). Substituting corresponding explicit expressions,
multiplying parameters t1, . . . , tn−1 by q and tm+3, . . . , tm+3+n by p, changing
m → m+ n− 1, and permuting parameters appropriately, we obtain a recurrence

for general I
(m)
n -integrals.

Theorem 7. If t1 · · · t2m+2n+4 = (pq)m+1q, then we have the following (m + 2)-

term recurrence for I
(m)
n :

(23)
∑

1≤k≤m+2

∏

m+3≤i≤2n+2m+4 θp(titk/q)

tk
∏

1≤i≤m+2;i6=k θp(ti/tk)
Tq(tk)

−1I(m)
n (t1, . . . , t2n+2m+4) = 0.

Corollary 8. [10, 16] If t1 · · · t2n+4 = pq, then

I(0)n (t1, . . . , t2n+4) =
∏

1≤i<j≤2n+4

Γp,q(titj).

Proof. Indeed, both sides satisfy the same 2-term recurrence, and thus their ratio
is invariant under Tq(ti)

−1Tq(tj), and similarly for p-shifts. It follows that their
ratio is independent of t1, . . . , t2n+4. To determine the remaining factor, we may
consider the limit of the ratio as t2n+3t2n+4 → 1, and proceed by induction. �

Corollary 9. If t1 · · · t2n+2m+4 = pq, then we have the
(

n+m
m

)

-dimensional deter-
minant

det
R,S⊂{1,2,...,n+m};|R|=|S|=m

(

∏

r∈R

Tp(tr)
∏

s∈S

Tq(ts+n+m)I(m)
n (t1, . . . , t2n+2m+4)

)

=
[

∏

1≤i<j≤n+m

tjθp(tit
±1
j )tn+m+jθp(tn+m+it

±1
n+m+j)

](n+m−2

m−1 )

×
∏

1≤i<j≤2n+2m+4

Γp,q(titj)(
n+m−1

m ).

Proof. Using the determinantal representation of I
(m)
n , we can express the (R,S)

entry of the above determinant as

(

∏

i,j∈Rc

i<j

tjθp(tit
±1
j )

∏

i,j∈Sc

i<j

tn+m+jθp(tn+m+it
±1
n+m+j)

)−1

× det
i∈Rc

j∈Sc

(

∏

1≤r≤n+m
r 6=i

Tp(tr)
∏

1≤s≤n+m
s6=j

Tq(tn+m+s)I
(m+n−1)
1 (t1, . . . , t2n+2m+4)

)

,
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where Rc = {1, 2, . . . , n +m} \ R. The first two factors can be pulled out of the
determinant, as they are independent of the column or row as appropriate; this
gives an overall factor

∏

R⊂{1,2,...,n+m}
|R|=m

∏

i,j∈Rc

i<j

(tjθp(tit
±1
j ))−1 =

∏

1≤i<j≤n+m

∏

R⊂{1,2,...,n+m}
|R|=m; i,j /∈R

(tjθp(tit
±1
j ))−1

=
∏

1≤i<j≤n+m

(tjθp(tit
±1
j ))−(

n+m−2

m ).

We are thus left with computing a determinant of determinants. These are all
minors of a fixed matrix, and thus our

(

n+m
m

)

×
(

n+m
m

)

matrix is the n-th exterior
power of the n+m× n+m matrix with ij entry

Tp(ti)
−1Tq(tn+m+j)

−1
∏

1≤r≤n+m

Tp(tr)Tq(tn+m+r)I
(m+n−1)
1 (t1, . . . , t2n+2m+4),

i.e., the matrix giving the action of the original matrix on the n-th exterior power
of its natural module. In general, the n-th exterior power of the n +m × n + m
matrix M has determinant

det(M)(
n+m−1

n−1 ),

which can be seen easily by reduction to the diagonal case (the naturality of the
construction implies invariance under conjugation). In our case, the n+m×n+m
matrix has determinant





∏

1≤i<j≤n+m

tjθp(tit
±1
j )tn+m+jθp(tn+m+it

±1
n+m+j)



 I
(0)
m+n(t1, . . . , t2n+2m+4),

which implies the desired result. �

Remark 1. When m = 1, this is essentially an elliptic version of Varchenko’s
determinant of univariate hypergeometric integrals [19, 12]. Indeed, Varchenko’s

determinant is equivalent to Dixon’s integral evaluation, which is a limit of the I
(0)
n

evaluation formula [11, Thm. 7.2]. Convergence of the matrix itself is somewhat
more subtle, as the domain of integration tends to pass through algebraic singular-
ities of the integrand in the limit, thus giving rise to somewhat tricky phase issues.
One does find, however, that

lim
q→1−

Γp,q(q
α1+α2)

Γp,q(qα1 , qα2 , qα
+

1
+α+

2 a1a2, qα
+

1
+α−

2 a1/a2, qα
−
1
+α+

2 a2/a1, qα
−
1
+α−

2 /a1a2)

I
(n−1)
1 (pq1−β+

1 /b1, . . . , pq
1−β+

n /bn, q
−β−

1 b1, . . . , q
−β−

n bn,

qα
+

1 a1, q
α−

1 /a1, q
α+

2 a2, q
α−

2 /a2; p, q)

= |θp(a1a±1
2 )|1−α1−α2

Γ(α1 + α2)

Γ(α1)Γ(α2)
(2π(p; p)2∞)

∫

z∈[a1,a2]

|θp(a1z±1)|α1−1|θp(a2z±1)|α2−1
∏

1≤r≤n

θp(brz
±1)βr

|θp(z2)|dz
2π

√
−1z

,(24)

where a1, a2, b1,. . . ,bn are on the unit circle with positive imaginary part and
ℜ(a1) > ℜ(a2), the exponents satisfy the convergence conditions ℜ(α±

i ) > 0 >
ℜ(β−

i ), and one has the balancing condition α1 +α2 =
∑

i βi, with αi := α+
i +α−

i ,
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βi := β+
i + β−

i . The domain of integration is the counterclockwise arc from a1 to
a2. The proof is as in Theorem 7.2 of [11]; note also that by Lemma 7.1, op. cit.,
one has

θp(brz
±1)βr = exp

(

−βr(log(−brz) + log(−br/z))/2
)

|θp(brz±1)|βr .

The resulting factor is in particular locally constant in z on the upper semicircle,
changing only when z passes over one of the singularities bi. Also, as noted in [11],
the change of variables x = −θp(z)2/θp(−z)2 turns this into a higher-order ordinary
beta integral, precisely as appears in Varchenko’s determinant identity. Our result
can also be viewed as a generalization of the main result of the work of Aomoto and
Ito [3], which corresponds to a further degeneration of the trigonometric integral
of [11, Thm. 5.6]; the Jackson integral is obtained as the sum of residues obtained
upon shrinking the contour to 0.

The integrals I
(m)
n thus provide solutions of the system of recurrence relations

(20) and (23) and their partners obtained after permutations of parameters. How-
ever, these recurrence relations do not imply the constraint |q| < 1 which is needed

for the definition of I
(m)
n . The construction of solutions of the elliptic hypergeo-

metric equation with |q| > 1 (9) extends to arbitrary values of n and m. Modulo
some ellipticity factor, the q-shift equations satisfied by

I(m)
n (t1, . . . , t2n+2m+4)

∏

1≤i≤2n+2m+4

Γp,q(tiz
±1)−1

are invariant under the transformation ti 7→ pai/ti, q 7→ 1/q,where a1, . . . , a2n+2m+4

is any sequence of integers or half-integers (but not mixed) such that
∑2n+2m+4

i=1 ai =
2m+2. That is, for both recurrence relations, the rescaled coefficient of each term
gets multiplied by the same quantity under such a transformation. This observa-
tion provides us with the solutions of those recurrences for |q| > 1. Solutions with
|q| = 1 are obtained (as in the n = m = 1 case) by using the modified elliptic
gamma-function which we do not consider for brevity.

5. A proof of the transformation formula

The two recurrences we have given for I
(m)
n are also recurrences for the right-hand

side of relation (19): the transformation simply swaps the two kinds of recurrence.
The proof of Theorem 2 using these difference equations boils down to showing that

I
(m)
n is the unique meromorphic solution of the full system of p- and q-difference
equations, up to an overall constant (which is then easy to obtain via a limit). As a
subcase, this proves Theorem 1 as well. It is not particularly elementary; it involves
some difference/differential Galois theory [8]. We start by giving the key auxiliary
statement needed for us.

One technical issue that arises in our application of difference Galois theory is
that the literature, and many of the main statements, require that the constant
field be algebraically closed. Since we are dealing in our case with a family of
difference equations, this constraint is too strict. However, we can evade this issue
via a suitable base change, as follows. Let (k, τ) be a difference field (i.e., τ is an
automorphism of the field k) of characteristic 0 such that the field kτ of constants
is algebraically closed in k. (In other words, the only finite orbits of τ on k are of

length 1.) There is then a canonical extension of τ to the field l := k ⊗kτ kτ , such
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that the algebraic closure kτ is the new constant field. We thus obtain a well-defined
notion of Galois group over l.

Lemma 10. Let A ∈ GLn(k), and let W be the space of vectors w ∈ kn such that
τ(w) = Aw. Let G be the Galois group of this difference equation (viewed as an
equation with coefficients in l), with associated representation V . Then

dimkτ (W ) = diml(V
G).

Proof. The absolute (ordinary) Galois group Gal(kτ ) acts naturally on l, and
commutes with the action of τ ; in particular, we have a natural isomorphism
Gal(kτ ) = Gal (l/k), and the latter is well-defined. In particular, if we extend
coefficients of the difference equation to l, the resulting vector space is stable under
Gal(l/k), and thus admits a basis of k-rational vectors. In other words, the dimen-
sion dimkτ (W ) is unchanged under this coefficient extension, and we may therefore
assume k = l, or in other words that the field of constants in k is algebraically
closed.

Now, let the k-algebra R be a Picard-Vessiot ring of the difference equation.
Then, by definition, the set of solutions w ∈ Rn of the difference equation is an
n-dimensional vector space over kτ with a G action equivalent to the representation
V . A solution has coefficients in k iff it is invariant under the action of G, and thus
the result follows. �

Remark 2. A similar lemma holds for the differential case (replacing GLn by its
Lie algebra); note that in that case, the constant field is automatically algebraically
closed in the coefficient field.

Remark 3. More generally, if ρ is any rational representation of GLn(k), one can
apply the lemma to the difference equation τ(w) = ρ(A)w, using the fact that the
new Galois group is simply ρ(G).

Applying remark 3 to the adjoint representation gives the following:

Corollary 11. Let A,G be as above, and let W be the space of matrices M ∈
End(kn) such that τ(M) = AMA−1. Then

dimkτ (W ) = diml(EndG(V )).

In particular, if G is irreducible, then W is 1-dimensional, and (since I ∈ W ) W
consists of scalar matrices.

That EndG(V ) = l when V is irreducible is a standard fact (Schur’s lemma) of
representation theory. Any endomorphism which is not a multiple of the identity has
at least one proper eigenspace (since l is algebraically closed), and each eigenspace
is invariant, making the representation reducible.

We can pass now to the proof of our transformation formula itself. In this case
the field k coincides with the field of p-elliptic functions in one of the parameters
x (actually, in all parameters), and τ is the q-shift operator, τ(f(x)) = f(qx).
Therefore kτ is a field of constants independent on x (the only simultaneously p-
and q-elliptic set of x-functions). In order to apply the above theory, we need
to show three things: first, that our two recurrences can be combined to give a
difference equation in matrix form as above, second, that the coefficients of this
difference equation can be made elliptic upon suitable renormalization, and third,
that the resulting elliptic difference equation has irreducible Galois group.
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Proof. To see that the recurrences combine to give a matrix difference equation of
order

(

n+m
m

)

, we need to show that one can use the recurrences to express

I(m)
n (qt1, . . . , qtm, tm+1, . . . , qt2m+2n+3, t2m+2n+4/q; p, q)

as a linear combination of
∏

i∈S

Tq(ti)I
(m)
n (t1, . . . , t2m+2n+4; p, q),

where S ranges over m-element subsets of {1, 2, . . . , n+m}. Using the n+ 2-term
recurrence, we obtain a linear dependence between the original integral, the integral

I(m)
n (qt1, . . . , qtm, tm+1, . . . , t2m+2n+3, t2m+2n+4; p, q),

and the n integrals

Tq(ti)I
(m)
n (qt1, . . . , qtm, tm+1, . . . , t2m+2n+3, t2m+2n+4/q; p, q)

form+1 ≤ i ≤ m+n. By symmetry, it suffices to consider the term with i = m+1.
But then the m+ 2 term recurrence gives a linear dependence between the m+ 2
integrals

Tq(ti)
−1I(m)

n (qt1, . . . , qtm+1, . . . , t2m+2n+3, t2m+2n+4; p, q)

for i ∈ {1, . . . ,m+1, 2m+2n+4}. We thus obtain a matrix difference equation of
the form required. (One also notes that the corresponding matrix A is quite sparse;
the entry corresponding to a pair S, T of m-subsets of {1, 2, . . . , n+m} is 0 unless
S ∩ T ≥ m− 1.)

Next, for ellipticity, we consider the renormalization
(

Γp,q(v
±2)

∏

1≤r≤2m+2n+4 Γp,q(trv
±1)

)n

I(m)
n (t1, . . . , t2m+2n+4; p, q).

This differs from the corresponding minor of the matrix for I
(m+n−1)
1 by multipli-

cation by a pair of factors, one of which is p-elliptic in all variables other than v,
and the other of which is similarly q-elliptic. We thus find that the matrix A is

essentially just the n-th exterior power of the corresponding matrix for I
(m+n−1)
1 ,

up to a pair of diagonal matrices that combined have no effect on ellipticity. It will
thus suffice to show that the difference equation is elliptic when n = 1.

Consider the m+ 1×m+ 1 matrix

M(x)ij := Tp(ti)
−1Tq(tj)

−1
Γp,q(v

±2)
∏

1≤r≤m+1 Γp,q(v
±1/tr)

Γp,q(xv±1, v±1/Tx)
∏

m+2≤r≤2m+4 Γp,q(trv
±1)

× I
(m)
1 (pqt1, . . . , pqtm+1, tm+2, . . . , t2m+4, x, 1/Tx; p, q),

where T =
∏

1≤r≤2m+4 tr. This is symmetrical between p and q (being replaced

by its transpose when p and q are swapped), so it suffices to consider its behavior
under a q shift. One finds, in fact (using the two recurrences as described above),
that

M(qx) = A(x)M(x),
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where

A(x)ij = δij
θp(xt

±1
i , T xv±1)

θp(xv±1, T xt±1
i )

+
θp(tiv

±1, T xv±1)

θp(ti(Tx)±1, xv±1))

×
θp(Tx

2)
∏

1≤l≤m+1 θp(tlTx)
∏

m+2≤l≤2m+4 θp(Tx/tl)

θp(tjx)
∏

m+2≤l≤2m+4 θp(1/tltj)

θp(tjTx, v±1/tj)
∏

1≤l≤m+1;l 6=j θp(tl/tj)

These coefficients are readily verified to be elliptic as required.
It remains only to prove that the Galois group is (generically) irreducible for all

m, n. Now, the Galois group for n > 1 is the n-th exterior power of the group for
n = 1, so it will suffice to show that the generic group for n = 1 contains SLm+1

(all nonzero exterior powers of which are irreducible). We can proceed as in the
proof of Theorem 3.3.3.1 in [1]. The point is that, by André’s theory, the Galois
group can only become smaller under specialization, including degeneration to a

differential equation. We have already discussed the fact that the integral I
(m)
1 can

be degenerated to a higher-order classical beta integral, and indeed one can obtain
a basis of the corresponding differential equation in that way. It thus follows that
the elliptic hypergeometric difference equation degenerates under that limit to the
Jordan-Pochhammer differential equation. But this is known [18] to have generic
Galois group containing SLm+1. �

Remark 4. Note, in particular, that the given formula for A indeed converges
to the identity matrix in the Jordan-Pochhammer limit, as in particular T →
1, making the diagonal contribution converge to 1; the off-diagonal contribution
vanishes since tjtj+m+1 → 1. One can moreover directly compute the limiting
differential equation, and use the rigidity of the Jordan-Pochhammer equation to
verify that the two equations are equivalent.
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