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Abstract

The generalized non-extensive statistics proposed by Tsallis have been successfully utilized in

many systems where long range interactions are present. For high density quark matter an attrac-

tive long range interaction arising from single gluon exchange suggests the formation of a diquark

condensate. We study the effects on this color superconducting phase for two quark flavors due

to a change to Tsallis statistics. By numerically solving the gap equation we obtain a generaliza-

tion of the universality condition, 2φ0

TC
≈ 3.52 and determine the temperature dependence of the

gap. For the Tsallis parameter q ≈ 1 the specific heat is exponential becoming more linear as q

increases. This suggests that for larger values of q s-wave color superconductors behave like high

Tc superconductors rather than weak superconductors.
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INTRODUCTION

Nonextensive thermostatistics [1, 2, 3, 4] have been utilized with success in connection

with a number of problems both in the classical [5, 6, 7, 8, 9, 10, 11] and the quantum regimes

[12, 13, 14, 15, 16, 17]. They are thought to be relevant for the study (among others) of:

systems described by non linear Fokker-Planck equations [5]; systems with a scale-invariant

occupancy of phase space [6]; non equilibrium scenarios involving temperature fluctuations

[7, 8]; systems exhibiting weak chaos [9, 10]; and systems with interactions of long range

relative to the system’s size [11].

Recently Hagedorn[18] statistical theory of the momentum spectra produced in heavy ion

collisions has been generalized using Tsallis statistics to provide a good description of e+e−

annihilation experiments[19, 20]. Furthermore, Walton and Rafelski[21] studied a Fokker-

Planck equation describing charmed quarks in a thermal quark-gluon plasma and showed

that Tsallis statistics were relevant. These results suggest that perhaps Boltzmann-Gibbs

statistics may not necessarily be adequate in the quark-gluon phase.

The existence in QCD of single gluon exchange between quarks of different color generates

an attractive interaction in the color-antitriplet channel[22] which leads unavoidably to the

occurrence of a particle-particle condensate[23, 24] or color superconductivity in dense quark

matter at low temperatures. Color superconductivity differs from normal superconductivity

which is described by BCS-like theories which usually assumes an interaction which is heavily

screened. For a point-like four fermion coupling there is no correlation between the initial and

outgoing momenta of the interacting fermions. Hence the BCS gap is constant with respect

to the momentum as long as the momenta are near the Fermi surface. In QCD, however,

scattering of quarks through single gluon exchange exhibits a logarithmic divergence for

forward scattering. As a result the gap is not an exponential in 1
g2
, where g is the coupling

constant for QCD, as in BCS but only in 1
g
[25, 26, 27, 28]. Hence the gap is no longer

constant as function of the momentum, even around the Fermi surface. The logarithmic

divergence arises because the static magnetic interactions are not screened in dense quark

matter at low temperatures.

The absence of a fully screened interaction in color superconductivity suggests that per-

haps it might be useful to examine the role that the choice of statistics plays in this phe-

nomenon. We therefore have solved the gap equations using the generalized thermostatistics
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of Tsallis[3] rather than that of Boltzmann Gibbs. In the limit where Tsallis parameter goes

to one we recover the Boltzmann Gibbs results. We show that the universality condition,

which characterizes BCS-like superconductivity, is easily generalized if Tsallis statistics are

used. Furthermore, calculation of the specific heat as a function of the Tsallis parameter

suggest that as the parameter increases s-wave color superconductors may behave more like

high Tc superconductors than weak superconductors.

FORMALISM

Rischke and Pisarski (RP)have developed a formalism for the study of color supercon-

ductors in the weak coupling regime. This formalism is valid for systems involving large

quark densities and low temperatures[28, 29]. One advantage of this formalism is that the

temperature dependence of the gap equation is completely transparent. As we will discuss,

it is the temperature dependence of the gap equation that is modified when one introduces

Tsallis statistics.

In general two fundamental color triplet states can pair up into a symmetric color sextet

and an antisymmetric color antitriplet. The antitriplet channel of quark scattering is attrac-

tive and leads to the color condensate. It is well known that these condensates can not form

a color singlet. Therefore, SU(3)C is broken in this phase. From a single quark flavor one

cannot form a color antitriplet. The simplest possibility then, and the one we will focus on,

is the case of two quark flavors forming a J=0 condensate. This is the so-called 2SC phase.

In the RP formalism the gap equation is derived in momentum space using the Hard

Dense Loop (HDL) approximation. In the HDL approximation the gluon propagator re-

ceives a mass m ≈ gµ where g is the QCD coupling and µ is the quark chemical potential.

This approximation generates a hierarchy of scales µ ≫ mg ≫ φ0 where φ0 is the gap at

temperature T=0. In this approximation the gap equation is

φk ≈
g2

18π2

∫ δ

0

d(q − µ)

ǫq
tanh(

ǫq
2T

)
1

2
ln(

b2µ2

| ǫ2q − ǫ2k |
)φq (0.1)

where b = 256π4( 2
g2Nf

)5/2, δ is a cutoff scale, and ǫq =
√

(q − µ)2+ | φ(q) |2 is the quasi-

particle excitation energy. This integral equation can be turned into a soft integral by the
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approximation
1

2
ln(

b2µ2

| ǫ2q − ǫ2k |
≈ ln(

bµ

ǫq
)θ(q − k) + ln(

bµ

ǫk
)θ(q − k). (0.2)

Note that the resulting energy gap is a function of momentum k. This is different from

BCS superconductors and is due to the long range nature of the color magnetic interaction.

Following RP we introduce ḡ = g

3
√
2π

and change variables to y = ln( 2bµ
q−µ+ǫq

), x = ln( 2bµ
k−µ+ǫk

)

and x∗ = ln(2bµ
φ
). This yields the following form for the soft integral equation:

φ(k) ≈ ḡ2[x

∫ x∗

x

dy tanh(
ǫ(y)

2T
)φ(y) +

∫ x

ln(bµ/δ

dyy tanh(
ǫ(y)

2T φ
(y)]. (0.3)

For T=0 this equation can be solved algebraically to give

φ(x) = 2bµ exp(−
π

2ḡ
) sin(ḡx) (0.4)

at lowest order in ḡ[28].

At nonzero temperature the gap equation must be solved numerically. Numerical solu-

tions of Eqs.(0.1) and (0.3) for the 2SC model have been studied extensively by Zakout et.

al.[30]. Zakout et. al. obtained numerical solutions for the full gap equation (for a large

coupling, g ≥ 2.0) as well as the approximate (Eq.(0.1)) and soft integral (Eq.(0.3)) forms

for the gap for small values of g. Comparing to the the full gap equation, it was shown that

the approximations were valid to leading order. The gap equation has a sharp peak at the

Fermi surface, i.e. at k = µ in the weak coupling regime. Zakout et. al. found that it was

essential to use the soft integral form of the gap, Eq.(0.3), in order to properly secure the

singularity. For the gap equation obtained using Tsallis statistics, our numerical calculations

lead us to the same conclusion.

To determine the critical temperature, TC , one assumes φ(x, T ) ≈ φ(T )φ(x,0)
φ0

where φ0 is

the gap at T=0. With this assumption the gap equation at the Fermi surface becomes

1 ≈ ḡ2
∫ x∗

ln(bµ/δ)

dyy tanh(
ǫ(y)

2T
)
φ(y, 0)

φ0
. (0.5)

RS have shown that this yields the standard BCS universality result[23]

2φ0

TC
≈ 3.52. (0.6)

One important issue that we address in the following section is whether universality can be

maintained using Tsallis statistics.
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COLOR SUPERCONDUCTIVITY WITH TSALLIS STATISTICS

We now investigate the effect on the gap equation from introducing generalized Tsallis

statistics. The starting point is the non-extensive entropy proposed by Tsallis:

Sq = k

∑w
i=1{pi − pqi}

q − 1
(0.7)

where w is the total number of microstates, p is the associated probabilities, and q is a real

number. By taking q → 1 one recovers the usual Boltzmann-Gibbs (BG) expression for

entropy. This results in a modification of the usual Fermi-Dirac distribution. Working in

units where k=c=~=1 the generalized Fermi distribution becomes

fq =
1

[1 + (q − 1)ǫ/T ]
1

q−1 + 1
. (0.8)

This results in a modification of the temperature dependence of Eq.(0.3). In Eq.(0.3) the

usual BG expression for the distribution function has already been assumed. Replacing

the usual Fermi distribution with Eq.(0.8) leads to the following modification in the gap

equation:

tanh(
ǫq
2T

) →
(1 + 1/T (q − 1)ǫq)

1

q−1 − 1

(1 + 1/T (q − 1)ǫq)
1

q−1 + 1
(0.9)

As discussed earlier it is essential to use the soft integral approximation when numerically

solving the gap equation in the weak coupling regime. The generalized gap equation is

therefore

1 ≈ ḡ2
∫ x∗

ln(bµ/δ)

dyy
(1 + 1/T (q − 1)ǫq)

1

q−1 − 1

(1 + 1/T (q − 1)ǫq)
1

q−1 + 1

φ(y, 0)

φ0
. (0.10)

For g we use the running coupling relation

g2 =
8π2

β0

1

ln( µ2

Λ2

QCD

)
(0.11)

where β0 = (11NC − 2Nf)/3, NC and Nf are the numbers of quark colors and flavors

respectively, and Λ = 400MeV. For the integration cutoff we take δ ≈ mg where

m2
g = Nf

g2µ2

6π2
+ (NC +

Nf

2
)
g2T 2

9
(0.12)

In the regime we are considering the temperature dependence of Eq.(0.12) may be ignored.
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Clearly, the universality condition in its canonical form will not hold since TC is now a

function of q. However, as has already been noted in the case of high Tc BCS superconduc-

tors, there is a reasonable generalization of the universality condition[14]:

2φ0

qTC
≈ 3.52 (0.13)

Setting φ(q) = 0 in Eq.(0.10) and taking g ≈ 0.39 we numerically solve the gap equation

for TC for different values of q. FIG.1 shows both 2φ0/TC and 2φ0/qTC as a function of

q. For reasonable values of q the generalized universality condition shows no appreciable

deviation from 3.52. It is also possible that a better fit could be obtained by replacing q

with some function of q.

FIG. 1: 2φ0/TC (solid) and 2φ0/qTC (dotted) as a function of q

We next consider the temperature dependence of the gap equation Eq.(0.10). As men-

tioned earlier, the gap is a function of the quasiparticle momentum k. In order to get

quantitative results we evaluate the gap equation at the Fermi surface, k = µ. Although q

can in principle be any real number, applications of Tsallis statistics typically suggest a q
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value not significantly greater than 1. Fig. 2 shows the temperature dependence of the gap

with Tsallis statistics. In each case q is determined by fixing the ratio 2φ0/Tc.

FIG. 2: 2φ(T )/TC (solid) and 2φ(T )/qTC (dashed) as a function of q

For q=1.178, φ(T ) closely resembles the usual behavior of the gap, while increasing

q results in a flatter curve. By measuring the temperature dependence of the gap for

superconducting quark matter one would clearly be able to differentiate the cases of Tsallis

and Boltzmann-Gibbs statistics. However, it is likely easier to measure the specific heat of

the quark matter. This can be calculated using the usual thermodynamic relation

C = T
dS

dT
(0.14)

where the entropy is given by

Sq =
2

q − 1
[

∫ δ

0

d(q − µ)(f(ǫ)− f(ǫ)q) +

∫ δ

0

d(q − µ)((1− f(ǫ))− (1− f(ǫ))q)] (0.15)

FIG. 3 shows the resulting specific heats for the same values of q considered in FIG. 2.

For q ≈ 1, C displays a more exponential like behavior which is indicative of a weak

superconductor[23, 31]. A more linear dependence on temperature occurs for larger values
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FIG. 3: C/Cmax where Cmax is the maximum value of the specific heat

of q suggesting that for these values of the Tsallis parameter s-wave color superconductors

behave more like high Tc superconductors[14].

A generalization of s-wave color superconductivity to include non-Boltzmann Gibbs en-

tropic measures has been given. Introducing Tsallis statistics provides a simple means of

studying the behavior of color superconductors in the limit of weak and high temperature

BCS superconductors. Signatures are most easily identified by looking at the specific heat.
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