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Abstract

The infrared behavior of the gluon and ghost propagators is studied in SU(2) Euclidean Yang-Mills theory
in the maximal Abelian gauge within the Gribov-Zwanziger framework. The nonperturbative effects associated
with the Gribov copies and with the dimension two condensates are simultaneously encoded into a local and
renormalizable Lagrangian. The resulting behavior turns out to be in good agreement with the lattice data.

1 Introduction

The study of the infrared behavior of the gluon and ghost propagators has been the object of intensive investi-
gations in recent years. Albeit not gauge invariant, these correlation functions enable us to probe the reliability
of the various approaches which give rise to our current understanding of the behavior of Yang-Mills theories in
the infrared, a task which is far from being achieved. This is due to the fact that propagators are the simplest
Green’s functions allowing us to evaluate in analytic form certain nonperturbative effects expected to be relevant in
the infrared. Moreover, the lattice community has been able to develop accurate algorithms for a nonperturbative
numerical study of the gluon and ghost propagators, which can be now analyzed on huge lattices, allowing therefore
for a comparison between analytical and numerical results. Evidently, a qualitative agreement might be very en-
couraging in pursuing further investigations of our theoretical frameworks. We also underline that this possibility is
not restricted to a particular gauge. Nowadays, the gluon and ghost propagators can be studied from both theoret-
ical and numerical viewpoints in several gauges as, for example, the Landau, Coulomb and maximal Abelian gauge.

In this paper we focus on the gluon and ghost propagators in the maximal Abelian gauge [1, 2, 3], which we
are investigating since several years [4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14]. In our previous works we have provided
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analytical evidence of nonperturbative effects which should be taken into account when facing the various features
displayed by this gauge, such as the dual superconductivity picture for color confinement [15] and the Abelian
dominance hypothesis [16, 17, 18, 19]. It turns out that these nonperturbative effects can be accounted for by a
set of dimension two operators which can be consistently introduced in the Yang-Mills action.

As other Lorentz covariant gauges, the maximal Abelian gauge is plagued by the existence of Gribov copies [20],
requiring that the domain of integration in the Feynman path integral has to be suitably restricted to the so called
Gribov region [21]. As discussed in [10, 13], this restriction can be implemented by introducing a dimension two
nonlocal operator, known as the horizon function, namely

Shor = ’}/492/d4$8ab14“ (M_l)ac ECbAH , (1)

where v is the Gribov parameter! and (./\/l_l)ab is the inverse of Faddeev-Popov operator

ab __ ac Mycb 2 ac_bd gAc Ad
M® = —Di*D? — g7e“e™ A} A}, (2)
with A, and A}, being the diagonal and off-diagonal components of the gauge field, respectively, i.e. A, = Az
and a = 1,2. Expression (1) generalizes to the maximal Abelian gauge the horizon function already obtained by
Zwanziger [22, 23] in the Landau gauge. The nonlocal operator (1) can be localized by means of the introduction

of a set of auxiliary fields (¢¢, ¢¢, 0, w), so that the resulting action enjoys renormalizability [10, 13].

In addition of the horizon function, other dimension two operators have been investigated. Our results have
given support to the fact that the preferred vacuum state is that in which those operators condense, i.e. they
develop a nonvanishing vacuum expectation value, lowering the vacuum energy of the theory. The first dimension
two operator which has been studied is the gluon operator A}, Af,. This operator turns out to be multiplicatively
renormalizable [24, 7] and its condensation, i.e. (Af Af) # 0, gives rise to a dynamical mass generation for off-
diagonal gluons [8], in agreement with the Abelian dominance hypothesis. As second example of dimension two
operator let us quote the ghost operator e¢%c?, where ¢, c® denote the off-diagonal Faddeev-Popov ghosts. This
operator is responsible for the spontaneous breaking of the global SL(2,R) symmetry present in the ghost sector
of the maximal Abelian gauge. It has been investigated by several authors [25, 26, 5, 27, see for instance ref.[14]
for a recent analysis of its renormalizability as well as of its condensation. The third dimension two operator which
we shall consider is given by (¢?¢? — @fw? — &%c?). It generalizes to the maximal Abelian gauge the operator
introduced recently in the case of the Landau gauge [28]. It reflects the nontrivial dynamics developed by the
interacting auxiliary fields (4%, ¢¢, 0%, w?) needed to localize the horizon term (1).

However, so far, these dimension two operators have not yet been analyzed simultaneously, a necessary step in
order to get a more precise idea of their relevance in the infrared. This was due to the nontrivial task of explicitly
constructing them, as in the case of the horizon function, eq.(1), as well as to the need of establishing their renor-
malizability properties. The aim of this paper is that of filling this gap, by presenting a detailed analysis of the
gluon and ghost propagators when all these dimension two operators are present in the starting action. In a sense,
the present work can be seen as a kind of summary of our efforts towards a better understanding of the infrared
behavior of the gluon and ghost propagators in the maximal Abelian gauge.

The output of our results can be summarized as follows:

e when all dimension two operators are simultaneously taken into account, the resulting local action remains
renormalizable. This nontrivial feature is due to the large set of Ward identities which can be established
when all operators are present.

e the resulting behavior of the gluon and ghost propagators turns out to be in remarkable agreement with
the available lattice data [29, 30, 31]. It is worth underlining that all dimension two operators affect the
propagators. In other words, such a behavior of the gluon and ghost propagators can be obtained only when
the dimension two operators are simultaneously taken into account.

1We remind that the Gribov parameter v is not a free parameter. It is determined by the gap equation g—g =0, where T is the 1PI

quantum effective action evaluated by taking as starting point the Yang-Mills action with the addition of the horizon term [22, 23]. As
such, the parameter v can be expressed in terms of the gauge coupling constant and of the invariant scale Agcp.



The work is organized as follows. In order to provide a more easy reading of the paper, in Sect.2 we give a general
overview of our results about the gluon and ghost propagators, providing a comparison with the recent lattice data.
In Sect.3 we present a detailed discussion of the inclusion in the starting action of the aforementioned dimension
two operators. In Sect.4 we derive the set of Ward identities fulfilled by the complete action. In Sect.5 we address
the issue of the renormalizability of the model. Sect.6 collects our conclusion.

2  Summary of the results

2.1 Notation

Let us start by briefly reminding the standard notation in the case of the maximal Abelian gauge. The gauge field
A,, is decomposed as
Ay =ANTA = AST* + A, T (3)

The generator T stands for the diagonal generator of the U(1) Cartan subalgebra of SU(2), while the index
a = 1,2 labels the remaining off-diagonal generators {T}.

Accordingly, the field strength decomposes as

a . ab Ab ab Ab
Fi, = DA, —DJ A,
F3, = Fu =0,A, —0,A, +ge AL AL
Eab = E3ab , (4)

where we have introduced the covariant derivative Dzb with respect to the diagonal components A, of the gauge
field, namely
Dzb =679, — ge™A,, . (5)

2.2 The tree level gluon and ghost propagators

We collect here our results for the gluon and ghost propagators.

e The off-diagonal gluon propagator:
the transverse off-diagonal gluon propagator turns out to be of the Yukawa type

AL RAL ) = gy (0 = 2257 07 ©)

where m is the dynamical mass originating from the condensation of the gluon operator [8]
Op2 = %AZAZ . (7)

This behavior has been reported in lattice simulations [29, 30, 31]. It supports the Abelian dominance hy-
pothesis, according to which the off-diagonal gluons should acquire a sufficiently large dynamical mass which
decouple them at low energies.

e The diagonal gluon propagator:
for the diagonal gluon propagator we have obtained an infrared suppressed propagator of the Gribov-Stingl
type, namely

K 4 2 ks
<AH(_k)AV(k)> T LA —I—/LQkQ _'_4,)/492 (6MV - ?) ’ (8)



where v is the Gribov parameter and p is a mass parameter related to the condensation of the operator [32]
O = (#7d] — @fw —cc”). (9)

We observe that expression (8) does not vanish at the origin, in full agreement with the recent numerical
data [31]. Tt gives rise to a positivity violating propagator in configuration space, a feature usually interpreted
as evidence for gluon confinement.

Moreover, it is worth to point out that the diagonal gluon propagator, (8), can be naturally rewritten in
terms of a power-law dynamical running mass of the type

(A (=) A, (k) = m (6,w - %) , (10)
where , 47492
M) = (11)

Expression (10) is in accordance with the definition firstly envisaged in references [33, 34] and subsequently
found in the operator product expansion (OPE) approach by [35], and later in Schwinger-Dyson equations
by [36].

e The symmetric off-diagonal ghost propagator:
for the symmetric off-diagonal ghost propagator we have found

k2 +/L2
_a_kbk symm — ab 12
<C ( )C ( )> Y k4+2ﬂ2k2+(u4+v4) ? ( )
where v is a mass parameter related to the condensation of the ghost operator [14]
Oghost = geecb | (13)

Notice that expression (12) is suppressed in the infrared and attains a nonvanishing finite value at k& = 0.
Again, this behavior agrees with that reported in [31].

e The antisymmetric off-diagonal ghost propagator:
finally, for the antisymmetric off-diagonal ghost propagator we have

2

v
c'(—k bk antisymm — ab. 14
<C( )C()> tisy k4+2u2k2+(u4+v4)5 ( )

As expected, this behavior is a consequence of the ghost condensate [14], (€%°¢%c?) ~ v2, being in agreement

with [31].

In summary, the behavior shown above for the gluon and ghost propagators turns out to be in remarkable agreement
with the most recent lattice data, as reported in [31]. This can be taken as a useful indication of the fact that
the aforementioned dimension two operators play a relevant role in the infrared. Let also underline that all mass
parameters, (m,~, i, v), entering the gluon and ghost propagators are not free parameters, being determined in a
dynamical way as solutions of gap equations, obtained by minimizing the vacuum energy, see for instance refs.[14, 8]
for an estimate of the values of m and v at one-loop order. As such, all parameters will get proportional to the
unique scale of the theory, i.e. (m,v,u,v) x Agep.



3 Identification of the complete classical action

3.1 The Yang-Mills action and the gauge fixing term

In order to obtain the complete classical action, let us start by specifying the gauge fixing term, namely
So = Sym + Smac , (15)

where Sy is the Yang-Mills action in Euclidean spacetime
1 4 a a
Sva =7 [ d (FWFW n FWFW) , (16)

with Fg,, F,, and Dzb given in eqs.(4),(5). The term Syac in expression (15) stands for the gauge fixing term of

the maximal Abelian gauge, being given by
Smac = / d*x [ib“Dszﬁ — &M’ + ge®e (DI AS)e + ib Dy Ay + €0, (D + gs“bAZcb)} , (17)

where (b*,b) are the off-diagonal and diagonal Lagrange multipliers enforcing the gauge conditions, given by
DZbAZ = 0 and 9,4, = 0. The fields (¢*, &%, ¢,¢) are the off-diagonal and diagonal Faddeev-Popov ghosts,
respectively, and M2 denotes the Faddeev-Popov operator

ab __ ac ycb 2 _ac_bd gAc Ad
M = DD’ — g7e*e” AL A, . (18)

The action (15) is left invariant by the nilpotent BRST transformation

=0, (19)
sAL = —(Duc" 4 g Alc), sA, = —(Ouc+ge® AL,
a ab b — 9_ab.a.b
s = ge™c’c, sc = e,
: (20)
sct = b, sc = 1b,
sb® = 0, sb = 0.

Notice that the gauge fixing term (17) can be written as a pure BRST variation

Sniac = s / d'e (DI AL + 20,4, (21)

3.2 Introduction of the horizon function, localization, and softly broken BRST in-
variance

As already mentioned, the maximal Abelian gauge is affected by the existence of Gribov copies, which have to be
taken into account in order to properly quantize the theory. To deal with this problem it is necessary to restrict the
domain of integration in the Feynman path integrals to the so-called Gribov region 2. In the case of the maximal
Abelian gauge, this region is defined as [10, 13]

Q= {(45,A,), DiPA), =0, 9,A, =0, M®=—-DiD?— g*e*e" AT AT >0} . (22)

The restriction of the domain of integration is achieved through the introduction of the horizon function Sy,
eq.(1). Therefore, for the partition function we write [10, 13]

z- / [dA[db][dc][dc] e~ (Svm-Smac+Suer) | (23)



The nonlocal term Spo, can be localized by means of a pair of complex vector bosonic fields, ( Zb, qub) according
to

s — [Haaliag) @eran)* exp { = [ e (G0l 42200 (0~ 338) 4, )| | (24)
where the determinant, (det M)g, takes into account the Jacobian arising from the integration over the fields
( Zb, ¢Zb). This term can also be localized by means of a pair of complex vector anticommuting fields (wl‘jb, wgb),
namely

(det M)® = / 1] [dew] exp ( / dh wgwaewff> . (25)
Therefore, the horizon function gives place to a local term Sy,ca1, namely
e — [ 1dlldolfdad S
SLocal _ /d4I [Q/_)szacd)be _ u—jszacwab + 72g€ab (d)zb _ (Ezb) A,u} ) (26)
Following [22, 23], we introduce the BRST transformations of the localizing fields ( Zb, J)Zb) and (wgb,wgb) as
sqﬁzb = wzb , swzb = 0,
Su—}ab — Aab Sd_)ab =0 (27)
u woo w :

It should be noted, however, that expression Stoca does not exhibit BRST invariance, which turns out to be broken
by soft terms proportional to the Gribov parameter . In fact

s / d*z v2ge® (¢Zb - ézb) A, = Wzg/d4x [sabebAu — g (¢Zb - ézb) (Ouc+ gsm”Ach”)] . (28)

Nevertheless, as in the case of the Landau gauge [22, 23, 37], the soft breaking (28) does not spoil the renormaliz-
ability of the theory [10, 13]. This remarkable feature relies on the possibility of extending to the maximal Abelian
gauge the same procedure outlined by Zwanziger in the case of the Landau gauge [22, 23], amounting to embed

STLocal into a more general action, Sir:)"cal, which enjoys exact BRST invariance, namely

SLOC&] - Sirz)vcal ’ SSE:)‘i:al =0. (29)

Furthermore, as it will be shown below, the term Spocal can be easily recovered from S’i‘g’cal. The manifest BRST
invariant action S, is found to be [10, 13]

S = s / d' (gt MoG? — NabDyco? + M D!
= / d'x {(EﬁbM“Cgbf}’ — @MW + QR FOG) + M Dic o) + Ny Dy
+N [ Dicws? + ge““(Ouc + e AlLc) g ] + Myt [ Dt + ge(Oc + ge™ Al e )y ]} . (30)
where
F = 2ge"(uc+ ge®* AL ) DY + ge®0,(Ouc + ge“l Afe?) — gP (" e + ") AL (DL ¢ + ge“ Ase), (31)

b jab b pyab
and the external sources (M), My)), (N, Nj)) transform as

pv
M = N, sNE = 0. -
sNib = —Mg,  sMh = 0.
In order to reobtain Spocar by the BRST invariant action S}V, we first take the physical limits of the external
sources (M,‘jfi, M;jfj), (N;jfj, Nﬁfi), which are defined by [10, 13]
ab — _M\Jab — _6ab5 ,.Y2
4 h uv h 1224 ’
b phys - phys (33)
a — _NGa =0
wy phys wy phys ’




and then perform a shift in the variable wzb as [10, 13]

wzb N wzb + (M—l)ac [-FCd(bﬁb +72g€°b(auc+g€deAZce)] , (34)
so that _
SLocal = SLocal - (35)
hys

Thus, we consider the following action .
S1= S0 + Stocal » (36)

which enjoys the property of being BRST invariant,

$S1 =0 (37)

3.3 Inclusion of the quartic ghost term

Albeit BRST invariant, the action S; is not yet the most general classical action to start with. The nonlinearity
of the gauge condition, DszfL = 0, requires the introduction of a quartic term in the Faddeev-Popov ghost fields

g2
) eteded (38)

which is in fact needed for renormalization purposes. In our case, due to the presence of the localizing fields

( Zb, _Zb, wzb,w“b) the quartic ghost term is introduced in a BRST invariant way through the following invariant
action S,

Sa —%S/d%? [Eaiba gEabCaCbC—l—g wab¢ab (¢cd¢cd —cd cd) 2g2u—jzc¢zcébcb]

%/d417 [baba+2ig€abba6bc (¢ab¢ab —Zb Zb o a) (¢cd¢cd —cd cd ECCC)

_229 wac(bacbbcb+293wac¢acgbd6bcd6] , (39)

where « is a gauge parameter, which has to be set to zero after the renormalization procedure. In fact, introducing
the action Sy as

So =51+ Sa (40)
it follows that the equation of motion of the off-diagonal Lagrange multiplier b* gets modified according to
252 _ iD®AY + o (b® +ige®ele —i wbc(bbc “) (41)
sba [t g g ’

Therefore, one can see that the gauge condition of the maximal Abelian gauge, DZbAZ = 0, is attained in the limit
a — 0, which has to be taken after the removal of the ultraviolet divergences. We also remark that the whole
term S, vanishes in the limit v — 0, allowing us to integrate out the localizing fields ( ab, Zb, wzb, Ql‘jb), and thus
recovering the horizon function (1).

3.4 The global U(8) symmetry

In addition to the BRST invariance the action Sy displays a global U(8) [10, 13] symmetry expressed by
Qi Sy =0, (42)

with

1) 1) 1) 1) 0 0 0 . 0
ab _ d4 ~cb e ca _ ~cb MEe Mcb Nca _ Ncb - .
Q#V / # 6¢cb v 5¢za + wl‘ &Ugb Wy &Dﬁa + oK 6Mcb ov 6Mca + ap 5Ngib/ ov 5N(¢T:Z




A b ¢ ¢ ¢ ¢ w @ M M N N
dim 1 2 2 0 1 1 1 1 2 2 2 2
gh. number 0 0 -1 1 0 0 1 -1 0 0 1 -1
Qg-charge 0 0 0 o 1 -1 1 -1 1 -1 1 -1

Table 1: Quantum numbers of the fields and sources

The presence of the global invariance U(8) means that one can make use [10, 13] of the composite index i = (a, u),

1 =1,...,8. Therefore, setting - -
( Zb’ Zbawzbvwzb) = ( ;’l’ ;lvw;lvw;l) ) (44)

and B
(Mab Mab Nab

B uv? y72 78

nraby a ra a
NM,)—(M M2 N

pis P pds o

st) ’ (45)
we can write Sy as
Sy = Sym+ Suac + /d4~’€ {QB?MG%? — Of MW} + OF FUG] + My Dyt ¢y + Nyj Db}
+ NI DRl + ge (D + g A5 )00 ] + M D6l + g (Opc + 9= Ag, )il ]}
o ara - _abpa— Ja g a —a, .a —a .a n — —

+§/d4:17 [b b + 2igetbictc — g (gbl @; — wjw; —c"c ) (gb?d)? —w?w? —cbcb)

—2ig’wf ¢blc + 2g°wple e cc] . (46)
For the symmetry generator we have

1) — 0 0 1) 1) _ 0 0 — 0
QZJ = /d4'r <¢;l a i Ta +w;l a w0} —a +Mai a My, \ Ta +Nai a N N ) : (47)
597 Togr iwr  “isea mgare ~ Mwigpge T kiGN T e g

By means of the trace of the operator Q;;, i.e., Q;; = Qg, the i-valued fields turn out to possess an additional
quantum number, displayed in the Table 1, together with the mass dimension and the ghost number.

3.5 Introduction of external sources

In order to establish the set of Ward identities, we have first to properly define the nonlinear transformations of
the fields, as given in (20). To this purpose, we notice that the BRST transformation of the gauge field AZ can be
written as the sum of two composite operators, namely

A% = 01 + O, (48)

where,
O = —Dzbcb7 Oy = —gaabAZc . (49)

Thanks to the fact that the BRST operator is nilpotent, i.e. s? = 0, it follows that
801 = —802 . (50)
These two operators can be defined by means of a suitable set of external sources, (Qﬁ, K7, SZ), as
1 a a a al a a
Séxz = /d4x [Qu (_Dubcb) + K, (_95 bAuC) +&, 5(_9E bA#C)} . (51)
To guarantee the BRST invariance of Sc()lcz we require that

s§ =—(Q, — K}), sQ, =sK,; =0. (52)



The nonlinear BRST transformations of the fields A,,, ¢, ¢ can be accounted for by the external sources Q,,, L%, L,
according to

s® = / d'z [—QMAM + Lo +Lc]
= /d4:1: {—Q#([Lc + gs“bAZcb) + ge® Lo + gsachacb , (53)
where we require that
sQ, =0, sL* =0, sL=0. (54)

Moreover, adding Sc()lcz to Sy we obtain an action that is left invariant by the following transformations:

The J; symmetry: The §; symmetry:

sict = ¢f, st = @,

507 = bijc”, Siw§ = —bijc?, (55)
5:b% = —ige®elc, 5:b* = —ige®abe,

500 = M, 5:Q% = —Ng;.

As transformations (55) contain composite field operators, i.e., ge*’¢?c and ge®@’c, we define them by means of

additional external sources (Y;%, X2) and (X2, Y;%), giving rise to two sets of BRST doublets
sV = X7, sX¢ = 0,

K2

s)_(f = -Y°, sYe = 0,

3 3

(56)

so that

SO = s [dtege (Xeohe - vrale)

2
= /d43: [gs“in“qﬁfc - X7 (gs“bwfc + %a“bac‘iqﬁgc‘:cd)

2
+ge™ X fbe — YV (gs“bqﬁfc - %sabs‘“l@fcccdﬂ . (67)
Therefore, for the most general invariant external source term which can be added to Sz, we obtain
Sex = S+ SR+ 88+ x [ die (Mg + NN (58)

where the last term, which can be written as an exact BRST variation

x/d4x (MﬁlMﬁl—i—]\_f;leﬁz) = —Xs/d‘lxj\_f:fiM“

pi

(59)

is allowed by power counting and has to be added for renormalization purposes. Also, the parameter x stands for
a free coefficient.

3.6 Introduction of dimension two operators

The last step towards the construction of the complete starting classical action is the introduction of the three
dimension two operators O 42, Oy and Ognost, €qs.(7),(9),(13). Let us start by considering the gluon operator
O 42 (x) = 3 A%(x) A% (z). Introducing the BRST doublet of sources (X, .J) as

sA=J, sJ =0, (60)

it turns out that O 42 can be introduced in a BRST invariant way, namely

S, = s/d43:)\ (Oa2+3¢J) = /d4:1: (JOA2 + 3¢ T2+ XNALDE) (61)



where ( is a constant parameter needed to account for the ultraviolet divergences of the vacuum correlation function

(A (2) A5 (2)) (A3 () AL (1))

The operators Off, Ognost can be introduced in a similar way. More specifically, defining the BRST doublet
of sources (7,0) as
sT=o0, so=0, (62)

the invariant term S, describing the coupling of Of is given by
Sy = s/d4xT (Of;+ 360 +pJ) = /d4x (0O05; + 2ko* +pod —7505) , (63)

where k and p are constant parameters, needed for renormalization purposes. Notice in fact that expression (63)
contains the mixing term o.J. This term, allowed by power counting, accounts for the ultraviolet divergences of
the mixed vacuum correlation function ((Af,(z)Aj, (2))(P2 ()P (y) — @b (y)w? (y) — e (y)cP(y))).

Finally, the introduction of a third doublet of sources (1, )

sn=20, s6 =0, (64)

allows us to introduce the ghost operator Oghost () = ge®c®(z)c?(x), namely

Sg =S / d4{E’I7 (Oghost + %ﬂ 9) - /d4«f (eoghost + %592 =N Soghost) ) (65)

where 3 is a constant parameter needed for the divergences of the correlation function ((£%°¢%(x)c?(x))(e™"c™ (y)c™ (y))).
Notice, however, that the ghost operator Ognost breaks the symmetries (55). Therefore, to maintain the symmetry
content of the theory is necessary to introduce two more BRST doubles of external sources,

sni = —0;, sty = 0,
_ (66)
891' = 77]7, ) Sﬁi =0 )
and define an extra term given by
Scxtra = S / d4$ gEab (éi(b;’lcb - niwgcb)
= /d4a: [gaab (ﬁi(b?cb + it + Oiwic® + HiCchb) — g%0;9%c"c + gQUichcac} . (67)
3.7 The complete classical action
We are now ready to write down the complete classical action X, given by
X = Yo+ Sextra ’
EO = S2+Scxt+SJ+SU+St97
Se = S1+4+ S,
Si = So+ Stecal s
So = Sym+ Smac (68)

where, Sym, Smaa, S 1, Sa, Sext, S, Soy So, Sextra are given, respectively, by (16), (17), (30), (39), (58), (61),

Local?

(63), (65), (67). Thus, the complete classical action is

M= SYM + SMAG + S]i_,rgija] + Sa + Scxt + SJ + Sa' + SH + Scxtra ) (69)
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or, explicitly, we have
Y = Sym+s / d'z (aaDszﬁ + Oy Ay + DM GY — N DG + M, Dva?
—ge® X pbe 4 ge®YAbe — QL AL — gsab§ZAZc - QuA, + L% + Le— XN;Z-MLZZ-)
@ 4. [ -a, b-a=b 2- Tbab _ ~b b 2- b b
—Es/d T [cazba —gec e+ gTwi Pt (¢ ¢; — wiw!) — 2g7w{ pic’c }
—|—s/d4:17)\ (%AZAZ +3¢J)+ s/d43:7' (9008 — wiwd — %) + iko+pJ]
+s / d* [gs“b (néacb + éigbfcb - mwfcb) + %[3 779}
_ S d4 -baDabAb _ —aMab b ab=a DbcAc ba A _8 a abAa b _aMab b
= Sym+ w1 ib"D; A, — ¢ ¢’ +ge®c"(Df A} )e +ib Oy Ay + €0,(Ouc + ge™ Ajc’) + ¢ &5
—Wf MO} + GIFC G + M Dty + N[ Dty + ge® (O + ge AL )y | + N Dy
+M Dzbgi_)f + g™ (dyc + gaCdAZCd)@f] — QZDZbcb — gs“szAZc +&, [gsab(DZCcC)c
2
—%sabECdAchcd} — Q. (0uc+ gs“bAﬁcb) + ge®Lecbe + gsach“cb + ge®Yigbe — X2 [ga“bwfc
2 ~ 2 ~ ~
—i—%s“bsc‘iqﬁgcccd} + gs“bechc -Y° [ga“bqﬁgc — %E“ba‘:dwé’cccd} + x (MSZMEZ + N:fiN;fi)
+%[b“b“ + 2ige™b?ec — ¢? (P8} — wiwd — ) (éé’-qﬁ? - @?wf - Ebcb) — 2ig?02¢% b P
+2g308¢% e ce] + %JAZAZ + )\AZDzbcb + 0 (979 — wiwd — &%) + 7 (b — ge®eicle)
¢
2

—g20;0%c"c + g*niwicte + g 92} . (70)

+2 2+ pJo+ 502 + ge® (ﬁéacb + 57 + ;0% + Qi c® + Hichb) —ige®nbec® — ¢*netce

The expressions for the gluon and ghost propagators given in Sect.2 are easily derived by considering the relevant
quadratic terms of (70) and by replacing (J,,6) by the more conventional mass parameters (m?, pu?,v?) originat-
ing from the corresponding dimension two condensates, i.e. m? ~ (A%A%) [8], u? ~ ((¢f ¢} — @fwf — c*c*)) [32],
v? ~ (e7bcecb) [14].

The action (70) constitutes our starting point in order to establish the renormalizability of the model.

4 Ward identities

It turns out that X fulfills the following set of Ward identities:

e The Slavnov-Taylor identity:

S = fan (LI 0 en onen amen w e
= 508 T 0K ) 5Aa T 50,04, " oLedct | oL dc | der | de
5N, 6% 5, % 5N, 6%
(?/ ll_ a/‘ _M X _ _ Qa _ Kll - ‘a/ —
Tisgr T sor T Mgy, — Mu ONT, O = K 5es — ¥ 5%
> R P SR > 5
pxe 2 g0E G0 0 NN (71)

Tve TN 0% T e e | T

e The four global Wi(N)—identities which mix the Faddev-Popov ghost fields with the auxiliary localizing fields:

wM @) =0, (N=1,234), (72)
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Q K 13 L Y Yy X X A T J o n 0 n i 0;, 0;
dim 3 3 3 4 3 3 3 3 2 2 2 2 2 2 3 3 3 3
gh. number -1 -1 -2 -2 -1 -1 0 -2 -1 -1 0 0 -1 0 -1 -1 0 -2
Qscharge 0O O 0O 0O 1 -1 1 -1 0 0 0 0O 0 0 1 -1 1 -1
Table 2: Quantum numbers of the external sources
where
Wy d4 ‘.15_2 a 0% e 98 (o 0% 0¥ 0% 08 0 0%
Wil®) = / I<¢ e o T T O T TR 77
Oy = [ atofor S @IS e O 85 GE 08 5w og
WiE) = / dw(“l 5o owr Mo T XSt xase s + 205
e [ [( 08 5N 6N 8% (6% )\ 0% 0%
() = [d — _— — — X¢
WirE) / x_(ayiﬁ >5ca+’5xgaba+ sor N ) 5 T S
ox ox ox ox
M 02 Ne 02 gO%  9p 02|
wiges ~ s Ve, 6L]
sy = [an](5E )9 SR A (58 NS as
Wir®) = / I_(éxa %) 5@ " isvane TG Y ) s i
ox ox ox ox
N —— — M*—— 4+ §— — 275,—
T Vigen ~ Muigge * 05, 6L} (73)
The global U(8) invariance:
Qi;(X) =0, (74)
with
—) ) 1) 1) 1)
i — a _ (l _ a —(l M(ll _M(l N(l.
QJ / <¢ 6¢a J 5¢§1+w1 J6 a+ M16Ma MJ6Ma + MéNﬁj
1) ) ) ) ) ) ) ) _ 0
_Ne, AT Xo-2 X g, 5,2 ) (75
wigNa T Gve T ave T axe T axe M~ My Y Hsei) (75)

The trace of (75) defines a new charge displayed in the Tables 1 and 2. This operator generalizes that of
eq.(47).

The exact rigid symmetries:

Ri;(X) = /d4:c <¢‘; fwj j(i; + M;:Z&f\i + N Jfa + Eaéi?a +X§’%
_m% _ejg—;>= 0,
RM(Z) = /d4 ( ;wz Nglgvza +X756§a —&g—i) =0,
R (D) = /d4 < 65; _ gff Nﬁiéj\?a M;‘lzéf\i —l—Xféii +}Qa5§q
+0; ;52 +m§§) =0 (76)
e The diagonal gauge fixing condition:
% =i, A, . (77)
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e The diagonal anti-ghost equation:

0
5z + 8#@ 0 (78)
e The SL(2,R) symmetry:
0¥ 0¥ 4% 0
— 4 -~ 0 H TA o _
DY) = /d:v (c Soa ~ '3La 50 295L> 0. (79)
e The local U(1) invariance:
W3(E) = —id%b (80)
with 5
ab a
8#% +g€ Z y ybv (81)
yeoff
where
Off = {Az,ba,a‘l, @ g, g, @l Wi, Q0 KO €0 L0 KO XYY M;jz,M;jz,N;jl,N;ji} . (82)
e The BRST on-shell invariance of the general operator (042 + aOpy):
0 0x 0x 0x
4 e e o~ —
UE) = /d (6/\+ =i 2775L) 0. (83)

5 Algebraic characterization of the most general counterterm

We can face now the issue of the renormalizability of the starting action ¥. We shall employ the algebraic
renormalization [38] and look for the most general invariant counterterm which can be freely added to all orders
of perturbation theory. To that purpose we perturb the classical action ¥ by adding an arbitrary integrated local
polynomial ¥cr in the fields and external sources of dimension bounded by four, zero ghost number and zero
Qg-charge. Requiring thus the perturbed action, ¥ + eXc, satisfies the same Ward identities as ¥ to the first

order in the perturbation parameter €, we get:
S(E + EECT) =

0
51) (E + EECT) =

(5 ) ssen -

W(N)(E +eXeor)
Ri; (2 + eXor)
RE (D + eXor)
Qii(X+€Xcr) =
D(E + eSer)
W3(E + eXer)
UX + eXer)

0+ 0(e?),
10, A, + O(e?)

0+ 0(e?),

(84)
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This amounts to imposing the following conditions on Xt

Se¥er = 0,
O Ser = 0
5b cT = ’
0 0
(5—6—#6“@)2@ - 0,
WMser = 0, (N=1,2,34)
RijXcr = 0,
ROYr = 0, (K =1,2),
QijXcr = 0,
DsY¥er = 0,
W3Ser = 0,
UScr = 0, (85)
where Sy; is the nilpotent linearized Slavnov-Taylor operator,
S85 =0, (86)
S — /d4$ 6_2_;’_6_2 L_i_&_z L_FL +5_2L+6_2L+6_Ei
v 8Qs T 5Ka ) 5As T 5Aa \6Qe T 6Ke) T 6q, 5A JA, 09, ' 6L e
5_25 +5_Z£+5_Ei+bi+lb£ + o2 N© J __ai
§ce §L* 6L b6c ' dc 0L sca 5c ’5(;5“ 15 @ f“(sMa MENG,
1) —. 0 0 0 0 0 0 0
(- K Y= X — — 40— —0;,— + 7 ,
( Waen Y s TN vE TR s T, +’759} (87)

while )/VZZ (N), with N = 1,...,4, and Ds; are the linearized operators corresponding to the Ward identities (73)
and (79), respectively, and they are given by

(1) A Y o ST R S S S 5 5
RO A 0 me 0 _ye 0 ;0% 0 0% 9 40 Lo, 0
W / ! (sz ser T 5o T uisae TN S T sva o abeove  Com Mo
=2 d4 —ai _ ai — N& J —_ Xe J — 3 0% i _ 5_2 g _gi 20, — 0
Wi / v (“’ ber  CGwr wigam 3Le  oxgabe  obeoxy o6 | L)

wr® /d4:1: _(%+w?>%+%%+i%%+i%%+(%—X?) i
;Lzaa_g?+ca52q_Mgié%—l-Nﬁi&éz—H%—%i%_ ,
Wit = /d4“’ _(5(§a_¢a> 6 gﬁ&iﬂ”&%ﬂ%_i%sia“L(gsoil_na) :
+§§a%_ca%+N§i%—Mﬁi&+%i 27715‘; ,

5§ 0% 5 0% 4 5
— 4, a — — — 20—
P = /d ! (c sci ~ 'sLashe spasLe Y 6L) ' (89)

For further use, let us write some useful commutation and anticommutation relations

+

and

W ssh = wi®, WP ss| = Wi,

{Ri;,Ss = Qij, [9‘{(1),82} = R@ (90)
W3, 8s] = 0, {U,Ss} = Ds.

From the second and the third constraints of (85) it follows that Xcr is independent from the diagonal Lagrange
multiplier b, and that the diagonal antighost ¢ enters only through the combination (€2, + 0,¢). Furthermore,
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from general results on the cohomology of gauge theories [38], it turns out that the most general solution of the
constraint Sy Xcr = 0, i.e. the first of egs.(85), can be written as

Sor = ag Sym + SeACY (91)

with A1) being an integrated local polynomial with ghost number —1, given by

ACD = / d*x [al QOAY 4 ay KGAS + az 5 ge®Abc + as €1 0™ + as €L ge™Auc® + ag (9,c*) AL

+a7 (R + 0,6)A, + ag L + ag cL + ajo Xf gs“%?c + a1 )_(fwf + a2 Y” gs“bwfc
+a13 Y97 + ara V97 + ars X + arg Njj; 9,07 + arr N ge®Au 6] + ars My, 8,057
ab=a =b

bp ~b S a b b - b b
+arg Myj; g™ Ap; + ago ib“c” + a1 g e + agz g et Ay A, + az3 W7 7 ¢ b5

+a2s Of PF 02w + ags WL PIGT Y + ae WP PLBTW? + agr @I PLGSBY + ans BF PLwiw?

Fago W BT AL) + azo 0 5 8 + ag10f Pfwlwh + agy W o’ + ass Wi ghetc”

+aga @) P’ e’ + ass Wi O Au Ay + ase 0f ¢ AL AY, + asr 0f ¢F AL A + ags 0f 07 ¢

azy &} 9" Au0ud] + aso & =" (0uAu) b + aa XN M, + 5 (s A+ aas 7) Ay Ay

+3(asa A+ ass T) A Ay + (a6 A + asr 7)E ¢ + (ass A+ aso )BT + (aso A+ asy T)@fw!

+(ase J + as3 0)wi @i + (asa J + ass o)\ + (ase J + as7 0)T + assn 0y A, + ason b

—I—gsab (aeo n & + ag n Q;(iléf’? + ago n@fwf + ags 9@?(}5? + aga éigbfcb + ags m@fcb)} , (92)

where the coefficients a,, n = 0,...,65, are free dimensionless parameters. Notice also that in the derivation of
expression (92) use has been made of the fact that the action X, and thus ¢, are left invariant by the following
discrete symmetry . .

Y=Y Ve oy yde o ydes Yo, (93)
where Y%, with a = 1,2, stands for the elements of the off-diagonal set (82), while )41 for the diagonal sector

ydiag € {A,u.;b7CaEaQ}Lvanaeaniaﬁiveivéi} ) (94)
and Y the sources A, 7, J, 0. As one can easily recognize, this symmetry plays the role of the charge conjugation.

After a quite lengthy calculation one finds that the most general expression for A(=1) compatible with all constraints
(85) and the discrete symmetry (93) is

ACY = / d'z {(al +ag) (AL + ge®Ep Al c) + (az + aa)e D + (a1 — ag + ag) (N DE ¢} — M Dibey)
—(ag + ag)@?j\/l“%ﬁ-’ —ag E“DZbAZ +ag L" +ag Lc+ agy x NﬁiM,‘ji + ago(iE°b* — gs“béaébc)
—(—aag — a20)92®f¢§1(é§¢2 — wé’wé’) + (—aag — 2a90)g* @l ¢t + (as — ag — cvas3) A AL AL

—|—%0J43 TALA} — (—aag + 2a90 — aqy) )\(gi_)fgbf — wiw — Eac‘l) — (as + aa7) T((J;;ld);l — @fwf) + aq7 TE

—(ag — ag)gaab(néacb + éiqﬁfcb — mwacb) 4 agq J\ + ass o\ + asg JT + asr o + asg 776‘} . (95)
Noticing that
JT =0+ Sx(A1), (96)
and renaming the coefficients as
ay + as — aq, as + aqg — —as, ag — as,
1
ag — A4, ag — as, aq1 — Qg, a0 — —3zQaar,
1
as3 — as, Qg7 — Qg, as4 — a1 56,
1 1
as5 + as6 — A11 P, as7 = Q12 5K, asg — a13 35, (97)
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we get
AED = / d' {al (AL + ge®6n Abc) — st Die” + (a1 + az + az) (N3 D¢y — M Dby
tas L% — (a3 + a4)£:)§l./\/lab¢? — Q4 EaDZbAZ + a5 Lc+ ag XN;ZiM;:i — % a7(iEaba _ gaabéaébc)
— —a a1 ~ —a Aa a Aa
—5(07 — 2a3)g°w{ ¢ (éf’?(ﬁ? - W?W?) + afar — a3)g*wiele’c® + %(as —ay — aag) A\ A A}
+1as TAL AL + alaz + ar + ag) Mofo) — @iwd — ) — (as + ag) T(§7 ¢ — Wiwf) + ag "
_(a3 _ a5)gaab(776acb + éi(blilcb —_ ni@”«cb) + aio %C J\+ all pO’)\ + a9 %Ii oT + a3 %B 7’]6‘} N (98)
so that for the counterterm o1 we get
1
Ser = [ d4x{<ao +2a1>[5<8uA3><aﬂAz — 0, A%) — g (0, AL) (A, AL — A AL + gt (9, 4,) Ag AL
92 ag 92 b Ab
+3(AMAMAZAZ + A AVALAY) | + > (0uAL) (0, A, — 0L AL) + (ap + 4a1)IAZAZAUAV
+i(a; — a4)b“DszZ — (a3 + aq) [6“820“ — &ge™(9,A,) " — 2¢%ge® A0’ — gzéac“AHAM}
(a3 + 1) | 670767 — 19" (0, 4,) 6] — 26795 A, 0,0% — G107 A A |
(a5 + 1) [B70%wf — B g (O Ay )ul — 2079 AuDy! — Pl A Ay
+(2a1 — az — a4)g?e®cb (e — ¢Ld? + @fwf)AZAz + (a1 —aqg — a5)geab6‘chZCAZ
—(a1 —a3)(Qu + 8ué)gsabAZcb + (a1 — 2a3 — ay) [QQQEGbECdeAch8H¢? + ganbngcha(Ach)qﬁf
+2938bca)g¢?Aqucc _ 92(€ac€bd + EadEbc)@gAZ(DﬁeCe)¢?:| + (2(11 — a3 — a4 — a5)g3(5aegbd + 5be€ad)
x@fAZAde-’c — (a2 + 2a3)g25“b50d(1\7§i¢? + M;fl-@f)Achd + (a1 + a2+ a3)QZDzbcb — azKZDzbcb

2

+a5gaaszAZc — (a1 + a2 +az+ a5)gaab§z(focC)c + (a2 + 2a3)%5“b5‘3d§zAchcd — asge®®Lbc
2

—(2a3 — a5)%5“chacb + a5(Qy + 0,8)0,c + azg®ePe X! — Vi)t — asge® (V¢ — X oWl

+X{17$ - Y;aqglij)c — (a3 + as + as) [2gg“b@f((9“c)8u¢g + ggab@g(azc)(bg + 292@1(15?14#6#0}
+(a1 + az + as + a5)ge® (9,0) (N ¢f — M5w?) — (a1 + ag + ag) (ML Db ¢Y + N Dew? + M Db ¢}

_ _ o . B _
+NﬁiDszf) — ag X(M;L-M;fi + NﬁiN,‘fi) + ) [a7b“b“ + 2i(a7 — a5)g£“bb“cbc — ¢*(a7 — 2a3) ((b?(b?
—wiw] — Eaca) ((;ngbg’» - @?wf - Ebcb) — 2ig%(a7 — 2a3)@0l ¢2bc® 4 2¢% (a7 — 2a3 — %)@fgbfsbcébccc}
+(2a1 + a3 —aq — aag)%JAZAZ + (a1 —aqg — ozag)/\AZDZbcb + (as + ag) (o c* — iTh®c*)

+(a3 + as + ag)Tgeccbec — (2a3 — as)ge™ (GEacb + 708 + ;0% + Gl + 0,00 — inbacb)

+2¢%as3 (néac“c + 0;0%c"c — m@fc“c) + ag%aAZAZ + CLgTAZDszb + alas + a7 + ag) [J((Jgf(bf

—@fwd — %) 4+ A(ib e — gsabéacbc)} — (a3 + ag)o (¢} ¢f — wfwy) + alog T 4anplo

3 K2

"ralzg o’ + a13§ 92} . (99)

After the characterization of the most general local counterterm Y1 compatible with all constraints, eqs.(85), we
still have to check if it can be reabsorbed through a multiplicative redefinition of the fields, sources and parameters
of the starting action ¥, according to

S[Wo, ¥, Jo, Yo, 0, Ko, o, To, Jo, 00] = S[W, 0, T,9,Q, K, \, 7, J,0] + e St + O(€?) | (100)
where

Vo=2°V, w=2 v, J=2Z;7, Oo=2Z0, (101)
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with

s\ e w

(

Qo

K03>

{A5, 0%, e, e},
{A,,b,c,e, 0%, ¢ wi @i},

{0

L*,L,Q, X“ X“ Yo v® M;fl,M“

wis

Nll

{gaoé5X7<7pali7ﬂ}'

Moreover, by taking into account the mixing of the sources displaying the same quantum numbers, i.e, (QZ, KZ)’
(A, 7) and (J,0), we shall set

Qo o A Jo J
— 13 — —
mea(i) ()= () ()= 0)

where the Z-matrices are given by

ZQK—]I+6<

ZQ
ZKQ

ZK 2T\ Zr ZoJ

By direct inspection of Ycr, the renormalization factors are found to be

with

2V =g ZMEo
—~1/2 —-1/2 1 2 1/2
7\ = 7,217} 7= 7,

1/2 1/2_~1/2
Z¢ —qu =Z;

Z}/2:Z_1Z}/221/2 Zl/2 Z Z* 1/221/2
w g c c ) w -

)

Zy =2y, In=Z,2"2Zu,  Zy=27'2"Zu,

1

1

1
1

1

Zx =Z:.'\°, Zg=2722.2.""
Ty = Zy = 2,127 2,
_ 1/2 »—1 2
Zy = Zn, = T, = 21222 27
_ 1/2 -1 2
Zy =25 = 2;°2: 2%, Zg, =2V
ZL _ Z;1Z51/2Z:_1/2, 7, = Z;1Z51/2ZC_1/2,

Ze = Zwy, Zg = Zal/2,

ag ag
+6(7+G/1>, Zg = 1—67,
_ G3+G47 Z;/z _ 1—ea3_a4,
2
(“‘”’_ )
—as),
—a
6(“1+“2+ 32 4)’

2a1+2a2+a3—a4—a6),
+e a0+2a4+a7),

+€|2a09 — 2(1 +a<)a3 + 2a4 — 2a§a7+2aa8 — 2a§a9 + aig

+e(
(
[
+e[a0 1+aa3+a4—aa7—(—a—i—%)(as—ag)-i-all},
|
(

—€|2a4 +2— a8—2a9—a12},

—elag — 2a3 + 2a4 + 2as5 —alg) ,
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i’ _;jiu n, 97ﬁi777i7 éiu 91} 5

ZQK) , Z)\T —T+4e <Z)\ Z)\T> , Z,]g —T+4e <ZJ ZJo

Ro

]

(102)

(103)

(104)

(105)
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and

—a1 — ag — %(a;; — a4) ‘ a9

Lok = I+e 1 )
0 ‘ —a; — §(a3 —ay)

_%(ao —a3+a4) — aas ‘ as

Z)\T = ]I+ € 3
+a(as + ay + ag) ‘ %(ao — a3+ 3a4) — ag

—ap + a3 — aq4 — aag ‘ as

Zj, = I+e€ (107)
+a(as + ar + ag) ‘ a4 — ag

This concludes the proof of the renormalizability of the complete calssical starting action X.

6

Conclusion

In this paper the gluon and ghost propagators have been investigated by taking into account the effects of the Gribov
copies as well as of dimension two operators. The output of our results is summarized in Sect.2, where the ex-
pressions for the tree level propagators can be found, being in good agreement with the most recent lattice data [31].

Certainly, much work is needed in order to reach a better understanding of the maximal Abelian gauge. Nev-
ertheless, the results which we have obtained enable us to strengthen the fact that the agreement with the lattice
data has been obtained only when the effects of the Gribov copies and of the dimension two operators have been
simultaneously encoded in the starting Lagrangian, which enjoys the important property of being renormalizable.
This point can be better clarified by the following considerations:

e The quantization procedure and the issue of the Gribov copies

The starting point to analyze Yang-Mills theories at the quantum level is by means of the Faddeev-Popov
quantization formula, based on the introduction of a gauge fixing and of the corresponding ghost term. It is
known that such a procedure is plagued by the existence of the Gribov copies. A full resolution of this issue,
amounting to restrict the domain of integration in the Feynman path integral to the fundamental modular
region, is still unavailable. A partial solution to this problem consists of restricting the domain of integration
to the Gribov region €2, which is still affected by Gribov copies. Although this procedure does not eliminate
all copies, it has the advantage of being effectively implementable. As we learn from the work of Zwanziger
[22, 23] in the Landau gauge, the restriction to the region €2 is achieved through the introduction in the
Yang-Mills action of a nonlocal operator, known as the horizon function. This nonlocal operator can be cast
in local form by introducing a set of additional localizing fields. Remarkably, the resulting local action turns
out to be renormalizable [22, 23]. This procedure has been successfully adapted to the maximal Abelian
gauge [10, 13]. A second point to be noticed is that the introduction of the horizon function in its local form
is equivalent to the introduction of a specific dimension two operator. In fact, the Gribov-Zwanziger gap
equation [21, 22, 23] determining the Gribov parameter 7, namely

T
5 =0 (108)

with I" being the 1PI effective action, is equivalent to require the existence of a nonvanishing dimension two
condensate. In the case of the Landau gauge, this condensate is given by [22, 23]

(FAPCAL () (0, (2) — 6, (2))) £ 0, (109)

where (bffc, éf ¢ stand for the localizing fields and the indices A, B, C belong to the adjoint representation of
SU(2). In the case of the maximal Abelian gauge the corresponding condensate is given by (e*? A, (z)(¢% (z)—
qub(:zr» The same feature holds in the Coulomb gauge, see [39] for a review.

Introduction of the dimension two operators
As mentioned before, the inclusion of the horizon function is equivalent to the introduction of a dimension
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two field operator in the localizing fields. Therefore, we can look for other dimension two operators which can
be added to the theory, provided one is able to maintain renormalizability. From this point of view, the intro-
duction of the three dimension two operators O 2 = % ALAL, Ofp = (P2 — wPw? —ePc), Ognost = (£20%c?)
looks very natural. It is remarkable that these three operators can be simultaneously added to the horizon
term in a way which preserves renormalizability. We also notice that all three operators considered here have
their analogue in the Landau gauge, see [7, 28] and refs. therein. In much the same way as the horizon

function, these operators carry nonperturbative information, encoded in the corresponding condensates.

The good agreement of our results with the lattice data can be taken as evidence of the fact these di-
mension two operators play a relevant role in the infrared. For example, without the introduction of the two
operators Oy, Oghost, the infrared behavior of the off-diagonal ghost propagator would be deeply different
from that of eq.(12). Instead, it would have displayed an enhanced behavior of the type 1/k?, as reported
in our previous investigation [10], where only the horizon function and the gluon condensate O 42 were taken
into account. The same occurs for the diagonal gluon propagator, eq.(8). Without the introduction of O,
it would be vanishing at k = 0.

We remark that the same features have been detected in the Landau gauge, where the most recent lat-
tice data [40, 41, 42] point towards a finite and nonvanishing gluon propagator at & = 0, while exhibiting a
less enhanced ghost propagator. As discussed in [28] these features can be accounted for by considering the
effects of dimension two operators, which nicely fit within the Gribov-Zwanziger framework.
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