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Abstract. The standard theory of neutrino oscillations is reviewed, highlighting the main assump-
tions: the definition of the flavor states, the equal-momentum assumption and the time= distance
assumption. It is shown that the standard flavor states are correct approximations of the states that
describe neutrinos in oscillation experiments. The equal-momentum assumption is shown to be
unnecessary for the derivation of the oscillation probability. The time= distance assumption de-
rives from the wave-packet character of the propagating neutrinos. We present a simple quantum-
mechanical wave-packet model which allows us to describe the coherence and localization of neu-
trino oscillations.
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1. INTRODUCTION

The idea of neutrino oscillations was discovered by Bruno Pontecorvo in the late 50s in
analogy withK0-K̄0 oscillations [1, 2]. In essence, neutrino oscillations arelepton flavor
transitions which depend on the distance and time of neutrino propagation between a
source and a detector. This is a quantum-mechanical effect due to neutrino mixing,
i.e. the fact that flavor neutrinos are coherent superpositions of massive neutrinos. The
oscillations are caused by the interference of the different massive neutrinos, which have
different phase velocities.

Since in the late 1950s only oneactive flavor neutrino was known, the electron
neutrino, Pontecorvo invented the concept of asterile neutrinoνs [3], which does not
take part in weak interactions. The muon neutrino was discovered at Brookhaven in 1962
in the first accelerator neutrino experiment of Lederman, Schwartz, Steinberger,et al.
[4], following the independent feasibility estimates of Pontecorvo [5] and Schwartz [6].
Since then, it became clear that oscillations between different active neutrino flavors are
possible if neutrinos are massive and mixed1. Indeed, in 1967 Pontecorvo [3] discussed
the possibility of a depletion of the solarνe flux due toνe→ νµ (or νe→ νs) transitions
before the first measurement in the Homestake experiment [9]. In 1969 Gribov and
Pontecorvo [10] discussed solar neutrino oscillations dueto νe–νµ mixing.

1 In 1962 Maki, Nakagawa, and Sakata [7] considered for the first time a model withνe–νµ mixing of
different neutrino flavors. Unfortunately, this model did not have any impact on neutrino mixing research,
since its existence was unknown to the community until the late 70s [8].
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The standard theory of neutrino oscillations was developedin 1975–76 by Eliezer and
Swift [11], Fritzsch and Minkowski [12], Bilenky and Pontecorvo [13, 14]. In this theory,
massive neutrinos are treated as plane waves, having definite energy and momentum.
Such a description, however, is not completely consistent,because energy–momentum
conservation implies that the creation and detection of massive neutrinos with definite
energies and momenta is possible only if all the particles involved in the production
and detection processes have definite energies and momenta.The problem is that in this
case energy–momentum conservation cannot hold simultaneously for different massive
neutrinos and the production and detection of a superposition of different massive
neutrinos are forbidden. In order to overcome this problem,it is necessary to treat
neutrinos and the other particles participating in the production and detection processes
as wave packets, as discussed in section 5.

The plan of this paper is as follows: in section 2 we review thestandard theory of
neutrino oscillations, highlighting the main assumptions, which are discussed in the
following sections; in section 3 we discuss the definition offlavor neutrino states; in
section 4 we present a covariant plane-wave theory of neutrino oscillations; in section 5
we discuss the necessity of a wave-packet treatment of neutrino oscillations, in section 6
we present a simple quantum-mechanical wave-packet model of neutrino oscillations,
and finally in section 7 we draw our conclusions.

2. STANDARD THEORY OF NEUTRINO OSCILLATIONS

Neutrino oscillations are a consequence of neutrino mixing:

ναL(x) = ∑
k

Uαk νkL(x) (α = e,µ,τ) , (1)

whereναL(x) are the left-handed flavor neutrino fields,νkL(x) are the left-handed mas-
sive neutrino fields andU is the unitary mixing matrix (see Refs. [8, 15, 16, 17, 18]).
Since a flavor neutrinoνα is created byν†

αL(x) in a charged-current weak interaction
process, in the standard plane-wave theory of neutrino oscillations [11, 12, 13, 14, 8], it
is assumed thatνα is described by the standard flavor state

|να〉= ∑
k

U∗
αk |νk〉 , (2)

which has the same mixing as the fieldν†
αL(x).

Since the massive neutrino states|νk〉 have definite massmk and definite energyEk,
they evolve in time as plane waves:

i
∂
∂ t

|νk(t)〉= H0 |νk(t)〉= Ek |νk(t)〉 , |νk(t)〉= e−iEkt |νk〉 , (3)

whereH0 is the free Hamiltonian operator,

E2
k = p2

k+m2
k , (4)



and |νk(t = 0)〉 = |νk〉 (all the massive neutrinos start with the same arbitrary phase).
The resulting time evolution of the flavor neutrino state in Eq. (2) is given by

|να(t)〉= ∑
k

U∗
αke−iEkt |νk〉= ∑

β=e,µ,τ

(

∑
k

U∗
αke−iEkt Uβk

)

|νβ 〉 . (5)

Hence, if the mixing matrixU is different from unity (i.e. if there is neutrino mixing),
the state|να(t)〉, which has pure flavorα at the initial timet = 0, evolves in time into a
superposition of different flavors. The quantity in parentheses in Eq. (5) is the amplitude
of να → νβ transitions at the timet after να production. The probability ofνα → νβ
transitions at the timet = T of neutrino detection is given by

Pαβ (T)= |〈νβ |να(T)〉|2=
∣

∣

∣

∣

∣

∑
k

U∗
αk e−iEkT Uβk

∣

∣

∣

∣

∣

2

=∑
k, j

U∗
αkUβkUα j U

∗
β j e

−i(Ek−E j )T . (6)

One can see thatPαβ (T) depends on the energy differencesEk −E j . In the standard
theory of neutrino oscillations it is assumed that all massive neutrinos have the same
momentum~p. Since detectable neutrinos are ultrarelativistic2, we have

Ek ≃ E+
m2

k

2E
, Ek−E j =

∆m2
k j

2E
, (7)

where∆m2
k j ≡ m2

k −m2
j andE ≡ |~p| is the energy of a massless neutrino (or, in other

words, the neutrino energy in the massless approximation).In most neutrino oscilla-
tion experiments the timeT between production and detection is not measured, but the
source-detector distanceL is known. In this case, in order to apply the oscillation prob-
ability to the data analysis it is necessary to expressT as a function ofL. Considering
ultrarelativistic neutrinos, we haveT ≃ L, leading to the standard formula for the oscil-
lation probability:

Pαβ (L,E) = ∑
k, j

U∗
αkUβkUα j U

∗
β j exp

(

−i
∆m2

k jL

2E

)

. (8)

Summarizing, there are three main assumptions in the standard theory of neutrino
oscillations:

(A1) Neutrinos produced or detected in charged-current weak interaction processes are
described by the flavor states in Eq. (2).

(A2) The massive neutrino states|νk〉 in Eq. (2) have the same momentum (“equal-
momentum assumption”).

2 It is known that neutrino masses are smaller than about one eV(see the reviews in Refs. [19, 20]). Since
only neutrinos with energy larger than about 100 keV can be detected (see the discussion in Ref. [21]), in
oscillation experiments neutrinos are always ultrarelativistic.



(A3) The propagation time is equal to the distanceL traveled by the neutrino between
production and detection (“time= distance assumption”).

In the following we will show that the assumptions (A1) and (A3) correspond to ap-
proximations which are appropriate in the analysis of current neutrino oscillation exper-
iments (section 3 and 5, respectively). Instead, the equal-momentum assumption (A2) is
not physically justified [22, 23, 24, 25, 26], as one can easily understand from the appli-
cation of energy-momentum conservation to the production process3. However, in sec-
tion 4 we will show that the assumption (A2) is actually not necessary for the derivation
of the oscillation probability if both the evolutions in space and in time of the neutrino
state are taken into account.

3. FLAVOR NEUTRINO STATES

The state of a flavor neutrinoνα is defined as the state which describes a neutrino
produced in a charged-current weak interaction process together with a charged lepton
ℓ+α or from a charged leptonℓ−α (ℓ±α = e±,µ±,τ± for α = e,µ,τ, respectively), or the
state which describes a neutrino detected in a charged-current weak interaction process
with a charged leptonℓ−α in the final state. In fact, the neutrino flavor can only be
measured through the identification of the charged lepton associated with the neutrino
in a charged-current weak interaction process.

Let us first consider a neutrino produced in the generic decayprocess

PI → PF+ ℓ+α +να , (9)

where PI is the decaying particle and PF represents any number of final particles. For
example: in the pion decay processπ+ → µ+ + νµ we have PI = π+, PF is absent
andα = µ; in a nuclearβ+ decay process N(A,Z) → N(A,Z−1)+e++ νe we have
PI = N(A,Z), PF = N(A,Z−1) andα = e. The following method can easily be modified
in the case of aνα produced in the generic scattering processℓ−α +PI → PF+ να by
replacing theℓ+α in the final state with aℓ−α in the initial state.

The final state resulting from the decay of the initial particle PI is given by

| f 〉= S |PI〉 , (10)

whereS is theS-matrix operator. Since the final state| f 〉 contains all the decay channels
of PI, it can be written as

| f 〉= ∑
k

A
P

αk |νk, ℓ
+
α ,PF〉+ . . . , (11)

where we have singled out the decay channel in Eq. (9) and we have taken into account
that the flavor neutrinoνα is a coherent superposition of massive neutrinosνk. Since

3 A different opinion, in favor of the equal-momentum assumption, has been recently expressed in
Ref. [27]. On the other hand, other authors [28, 29, 30] advocated an equal-energy assumption, which
we consider as unphysical as the equal-momentum assumption.



the states of the other decay channels represented by dots inEq. (11) are orthogonal to
|νk, ℓ

+
α ,PF〉 and the states|νk, ℓ

+
α ,PF〉 with differentks are orthonormal, the coefficients

A P
αk are the amplitudes of production of the corresponding statein the decay channel in

Eq. (9):
A

P
αk = 〈νk, ℓ

+
α ,PF| f 〉= 〈νk, ℓ

+
α ,PF|S |PI〉 . (12)

Projecting the final state in Eq. (11) over|ℓ+α ,PF〉 and normalizing, we obtain the flavor
neutrino state [31, 32, 17, 33]

|νP
α〉=

(

∑
i
|A P

α i |2
)−1/2

∑
k

A
P

αk |νk〉 . (13)

Therefore, a flavor neutrino state is a coherent superposition of massive neutrino states
|νk〉 and the coefficientA P

αk of the kth massive neutrino component is given by the
amplitude of production ofνk. Since, in general, the amplitudesA P

αk depend on the
production process, a flavor neutrino state depends on the production process. In the
following, we will call a flavor neutrino state of the type in Eq. (13) a “production flavor
neutrino state”.

Let us now consider the detection of a flavor neutrinoνα through the generic charged-
current weak interaction process

να +DI → DF+ ℓ−α , (14)

where DI is the target particle and DF represents one or more final particles. In general,
since the incoming neutrino state in the detection process is a superposition of massive
neutrino states, it may not have a definite flavor. Therefore,we must consider the generic
process

ν +DI , (15)

with a generic incoming neutrino state|ν〉. In this case, the final state of the scattering
process is given by

| f 〉= S |ν,DI〉 , (16)

This final state contains all the possible scattering channels:

| f 〉= |DF, ℓ
−
α 〉+ . . . , (17)

where we have singled out the scattering channel in Eq. (14).We want to find the
component

|να ,DI〉= ∑
k

A
D

αk|νk,DI〉 (18)

of the initial state|ν,DI〉 which corresponds to the flavorα, i.e. the component which
generates only the scattering channel in Eq. (14). This means that|DF, ℓ

−
α 〉= S |να ,DI〉.

Using the unitarity of the mixing matrix, we obtain

|να ,DI〉= S
† |DF, ℓ

−
α 〉 . (19)



From Eqs. (18) and (19), the coefficientsA D
αk are the complex conjugate of the amplitude

of detection ofνk in the detection process in Eq. (14):

A
D

αk = 〈νk,DI|S† |DF, ℓ
−
α 〉 . (20)

Projecting|να ,DI〉 over|DI〉 and normalizing, we finally obtain the flavor neutrino state
in the detection process in Eq. (14):

|νD
α 〉=

(

∑
i
|A D

α i |2
)−1/2

∑
k

A
D

αk |νk〉 . (21)

In the following, we will call a flavor neutrino state of this type a “detection flavor
neutrino state”.

Although the expressions in Eqs. (13) and (21) for the production and detection
flavor neutrino states have the same structure, these stateshave different meanings.
A production flavor neutrino state describes the neutrino created in a charged-current
interaction process, which propagates out of a source. Hence, it describes the initial
state of a propagating neutrino. A detection flavor neutrinostate does not describe a
propagating neutrino. It describes the component of the state of a propagating neutrino
which can generate a charged lepton with appropriate flavor through a charged-current
weak interaction with an appropriate target particle. In other words, the scalar product

Aα = 〈νD
α |ν〉 (22)

is the probability amplitude to find aνα by observing the scattering channel in Eq. (14)
with the scattering process in Eq. (15).

In order to understand the connection of the production and detection flavor neutrino
states with the standard flavor neutrino states in Eq. (2), itis useful to express theS-
matrix operator as

S= 1− i
∫

d4xHCC(x) , HCC(x) =
GF√

2
j†ρ(x) jρ(x) , (23)

whereGF is the Fermi constant (we considered only the first order perturbative contri-
bution of the effective low-energy charged-current weak interaction Hamiltonian). The
weak charged currentjρ(x) is given by

jρ(x) = ∑
α=e,µ,τ

να(x)γρ
(

1− γ5
)

ℓα(x)+hρ(x)

= ∑
α=e,µ,τ

∑
k

U∗
αk νk(x)γρ

(

1− γ5
)

ℓα(x)+hρ(x) , (24)

wherehρ(x) is the hadronic weak charged current. The production and detection ampli-
tudesA P

αk andA D
αk can be written as

A
P

αk =U∗
αkM

P
αk , A

D
αk =U∗

αkM
D
αk , (25)



with the interaction matrix elements

M
P
αk =−i

GF√
2

∫

d4x〈νk, ℓ
+
α |νk(x)γρ

(

1− γ5
)

ℓα(x) |0〉JPI→PF
ρ (x) , (26)

M
D
αk = i

GF√
2

∫

d4x〈νk|νk(x)γρ
(

1− γ5
)

ℓα(x) |ℓ−α 〉JDI→DF
ρ

∗
(x) . (27)

HereJPI→PF
ρ (x) andJDI→DF

ρ (x) are, respectively, the matrix elements of the PI → PF and
DI → DF transitions.

Using Eq. (25), the production and detection flavor neutrinostates can be written as

|νP
α〉= ∑

k

M P
αk

√

∑ j |Uα j |2 |M P
α j |2

U∗
αk |νk〉 , (28)

|νD
α 〉= ∑

k

M D
αk

√

∑ j |Uα j |2 |M D
α j |2

U∗
αk |νk〉 . (29)

These states have a structure which is similar to the standard flavor states in Eq. (2), with
the relative contribution of the massive neutrinoνk proportional toU∗

αk. The additional
factors are due to the dependence of the production and detection processes on the
neutrino masses.

In experiments which are not sensitive to the dependence ofM P
αk andM D

αk on the
difference of the neutrino masses, it is possible to approximate

M
P
αk ≃ M

P
α , M

D
αk ≃ M

D
α . (30)

In this case, since
∑
k

|Uαk|2 = 1, (31)

we obtain, up to an irrelevant phase, the standard flavor neutrino states in Eq. (2), which
do not depend on the production or detection process. Hence,the standard flavor neu-
trino states are approximations of the production and detection flavor neutrino states in
experiments which are not sensitive to the dependence of theneutrino interaction rate
on the difference of the neutrino masses. All neutrino oscillation experiments have this
characteristic: since the detectable neutrinos are ultrarelativistic, neutrino oscillation ex-
periments are insensitive to any effect of neutrino masses in the production and detection
processes. Therefore, the assumption (A1) in the standard theory of neutrino oscillations
is correct as an appropriate approximation in the analysis of neutrino oscillation experi-
ments.

4. COVARIANT PLANE-WAVE THEORY OF OSCILLATIONS

In this section we show that the equal-momentum assumption (A2) can be avoided by
considering not only the time evolution of the neutrino states, as in the standard theory,
but also their space dependence.



Let us consider a neutrino oscillation experiment in whichνα → νβ transitions are
studied with a production process of the type in Eq. (9) and a detection process of
the type in Eq. (14). In this case, the produced flavor neutrino να is described by
the production flavor state|νP

α〉 in Eq. (13). If the neutrino production and detection
processes are separated by a space-time interval(T,L), the neutrino propagates freely
between production and detection, evolving into the state

|ν(T,L)〉= e−iET+iPL |νP
α〉 , (32)

whereE ≡ H0 andP are, respectively, the energy and momentum operators. Thisis
the incoming neutrino state in the detection process. The amplitude of the measurable
να → νβ transitions is given by the scalar product in Eq. (22):

Aαβ (T,L) = 〈νD
β |ν(T,L)〉= 〈νD

β |e−iET+iPL|νP
α〉 , (33)

with the detection flavor state|νD
β 〉 in Eq. (21).

Neglecting mass effects in the production and detection processes, we approximate
the production and detection flavor states with the standardones given in Eq. (2). Then,
we obtain

Aαβ (T,L) = ∑
k

U∗
αkUβke−iEkT+ipkL . (34)

Notice that the consideration of the space-time interval between neutrino production and
detection allows one to take into account both the differences in energy and momentum
of the massive neutrinos [22, 23, 24, 25, 26].

In oscillation experiments in which the neutrino propagation timeT is not measured,
it is possible to adopt the light-rayT = L approximation (assumption (A3)), since
neutrinos are ultrarelativistic (the effects of possible deviations fromT = L are shown
to be negligible in Refs. [34, 18]). In this case, the phase inEq. (34) becomes

−EkT + pkL =−(Ek− pk)L =−E2
k − p2

k

Ek+ pk
L =− m2

k

Ek+ pk
L ≃−m2

k

2E
L , (35)

which leads to the standard oscillation probability in Eq. (8).
Equation (35) shows that the phases in the flavor transition amplitude are independent

from the values of the energies and momenta of different massive neutrinos [22, 23,
24, 25, 26], because of the relativistic dispersion relation in Eq. (4). In particular,
Eq. (35) shows that the equal-momentum assumption (A2) in section 2, adopted in
the standard derivation of the neutrino oscillation probability, is not necessary in an
improved derivation which takes into account both the evolutions in space and in time
of the neutrino state.

We have called this derivation of the flavor transition probability “covariant plane-
wave theory of oscillations” because it is manifestly Lorentz invariant. This is important
because flavor, which is the quantum number that distinguishes different types of quarks
and leptons, is a Lorentz-invariant quantity. For example,an electron is seen as an
electron by any observer, never as a muon. Therefore, the probability of flavor neutrino
oscillations must be Lorentz invariant [24, 35].
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FIGURE 1. Space-time diagram representing schematically the propagation of the wave packet of a
massless particle (a) and the propagation of the wave packets of a superposition of a massless and a
massive ultrarelativistic particle (b) from a production process P to a detection process D.

5. WAVE-PACKET TREATMENT

So far, we have considered massive neutrinos as particles described by plane waves
with definite energy and momentum. However, theT = L assumption (A3) requires
a wave packet description. The reason is simple: since planewaves cover all space-
time in a periodic way they cannot describe the localized events of neutrino production
and detection. As discussed in introductory books on optics(see [36, 37]) and quantum
mechanics (see [38, 39]), real localized particles are described by superpositions of plane
waves known aswave packets.

Moreover, different massive neutrinos can be produced and detected coherently only
if the energies and momenta in the production and detection processes have sufficiently
large uncertainties [40, 41]. The uncertainty of the production process implies that the
massive neutrinos propagating between production and detection have a momentum
distribution [21], i.e. they are described by wave packets.

The propagation of a massless particle between localized production and detection
processes separated byT ≃ L is illustrated schematically in the space-time diagram in
Fig. 1a. The interesting case of propagation of a superposition of two neutrinos with
definite masses, one massless (ν1) and one massive but ultrarelativistic (ν2) is illustrated
schematically in Fig. 1b. One can note that in these diagramsboth the production and
detection processes occupy a finite region in space-time, called thecoherence region,
in which the propagating particles are produced or detectedcoherently. Indeed, the
uncertainty principle implies that any interaction process I has a space uncertaintyσ I

x
related to the momentum uncertaintyσ I

p by

σ I
x σ I

p ∼
1
2
. (36)

A point-like process would have an infinite momentum uncertainty and a process with



definite momentum would be completely delocalized in space.The momentum uncer-
tainty can be estimated as the quadratic sum of the uncertainties of the momenta of the
localized particles taking part in the process:

(σ I
p)

2 ∼ ∑
i
(σ i

p)
2 . (37)

The sum is over the initial particles and the final particles which are localized through
interaction with the environment. Their momentum uncertaintiesσ i

p are related to the
sizeσ i

x of their wave packets by uncertainty relations analogous toEq. (36),

σ i
x σ i

p ∼
1
2
. (38)

Therefore, the space uncertainty of the process is given by

(σ I
x)

−2 ∼ ∑
i
(σ i

x)
−2 . (39)

It is clear that the particle with larger momentum uncertainty and associated smaller
space uncertainty gives the dominant contribution.

The coherence timeσ I
t of an interaction processI is the time over which the wave

packets of the interacting particles overlap. If the process is the decay of a particle in
vacuum, the localization of such particle and its decay products is very poor and the
coherence timeσ I

t is of the order of the particle lifetime. On the other hand, ifthe decay
occurs in a medium where the decaying particle and its products are well localized or if
the production process is a scattering process, the coherence time can be estimated by

(σ I
t )

−2 ∼ ∑
i

(

σ i
x

vi

)−2

, (40)

wherevi is the velocity of the particlei, becauseσ I
t must be dominated by the particle

with smaller ratioσ i
x/vi , which is the first to leave the interaction region. Therefore, in

generalσ I
t & σ I

x, in agreement with the physical expectation that the coherence region
of a process must be causally connected.

As illustrated in Fig. 1, one can estimate the size of the wavepacket of a massive
neutrino created in a production process P as the coherence time σP

t of the production
process,

σ ν
x ∼ σP

t . (41)

Let us emphasize that there is a profound difference betweenthe behavior of final
neutrinos and other particles in the production process. The initial particles have wave
packets which are determined by their creation process or byprevious interactions. The
initial particles and the final particles which interact with the environment contribute
to the coherence timeσP

t through their contribution to the momentum uncertainty in
Eq. (37). An initial decaying particle contributes directly to the coherence timeσP

t
with its lifetime. On the other hand, neutrinos are stable and leave the production
process without interacting with the environment. Therefore, they do not contribute



to the determination of the coherence timeσP
t and the size of their wave packets is

determined byσP
t .

Considering now the detection processD, if there is only one particle propagating
between the production and detection processes, as shown inFig. 1a, the coherence size
of the detection process is determined by Eq. (37), with the sum over all the participating
particles which interact with the environment and the propagating particle, which is
described by a wave packet. In the case of neutrino mixing, the neutrino propagating
between the production and detection processes is in general a superposition of massive
neutrino wave packets which propagate with different phasevelocity, as illustrated in
Fig. 1b. In this case, in the detection process, the wave packets of different massive
neutrinos are separated by a distance∆x= ∆vT, where∆v is the velocity difference. If
the source–detector distance is very large, the separationof the massive neutrino wave
packets at detection may be larger than their size, leading to the lack of overlap [42].
In this case, the effective coherence size of the neutrino wave function at the detection
process is

σ ν
x,eff ∼

√

(σ ν
x )

2+(∆x)2 ∼
√

(σP
t )

2+(∆vT)2 . (42)

However, Eq. (39) shows that the particle with smaller spaceuncertainty gives the
dominant contribution to the coherence size of the detection process. Therefore, if the
effective coherence size in Eq. (42) of the neutrino wave function is dominated by the
separation of the wave packets (∆vT ≫ σP

t ) and there is another particle participating in
the detection process which has much smaller space uncertainty, the different massive
neutrinos cannot be detected coherently. In this case, there cannot be any interference
between the different massive neutrino contributions to the detection process and the
probability of transitions between different flavors reduces to the incoherent transition
probability

Pincoherent
αβ = ∑

k

|Uαk|2 |Uβk|2 , (43)

which does not oscillate as a function of the source–detector distance. On the other hand,
if all the other particles participating in the detection process have space uncertainties
which are larger than effective coherence size in Eq. (42) ofthe neutrino wave function,
the different massive neutrinos are detected coherently [41], leading to the interference
of their contributions to the detection process which manifests itself as oscillations of
the probability of flavor transitions, according to Eq. (8).

These considerations show that a wave-packet treatment of massive neutrinos is
important in order to understand the coherence properties of neutrino oscillations.

6. QUANTUM-MECHANICAL WAVE-PACKET MODEL

In this section we present a simple one-dimensional quantum-mechanical wave-packet
model [23, 43] in which the momentum uncertainties of the states which describe the
produced and detected massive neutrinos are approximated by Gaussian distributions.
More complete three-dimensional models in which the neutrino momentum uncertain-
ties are obtained from a quantum field theoretical calculation of the production and de-
tection processes are discussed in Refs. [44, 45, 46, 47, 48,21].



Neglecting mass effects in the production and detection processes, we describe the
produced and detected neutrinos in aνα → νβ experiment with the wave-packet flavor
states

|νP
α〉= ∑

k

U∗
αk

∫

dpψP
k (p) |νk(p)〉 , |νD

β 〉= ∑
k

U∗
βk

∫

dpψD
k (p) |νk(p)〉 , (44)

with the Gaussian momentum distributions

ψP
k (p)=

1
(

2π(σP
p)

2
)

1
4

exp

[

−(p− pk)
2

4(σP
p)

2

]

, ψD
k (p)=

1
(

2π(σD
p )

2
)

1
4

exp

[

−(p− pk)
2

4(σD
p )

2

]

.

(45)
The average momentapk of the massive neutrinos are determined by the kinematics of
the production process. They are the same in the detection process because of causality.
On the other hand, the energy-momentum uncertainties in theproduction and detection
processes,σP

p andσD
p , may be quite different.

The flavor transition amplitude is given by

Aαβ (T,L) = 〈νD
β |e−iET+iPL |νP

α〉

∝ ∑
k

U∗
αkUβk

∫

dp exp

[

−iEk(p)T + ipL− (p− pk)
2

4σ2
p

]

, (46)

with the massive neutrino energies

Ek(p) =
√

p2+m2
k . (47)

and the global energy-momentum uncertainty

1
σ2

p
=

1
(σP

p)
2 +

1
(σD

p )
2 . (48)

This expression has a correct behavior from the physical point of view, because the
smaller energy-momentum uncertainty must dominate in the determination of the total
uncertainty. On the other hand, the global space-time uncertainty σx = 1/2σp is domi-
nated by the largest of the space-time uncertaintiesσP

x = 1/2σP
p andσD

x = 1/2σD
p of the

production and detection processes:

σx = (σP
x )

2+(σD
x )2 . (49)

Since in practice the massive neutrino wave packets are always sharply peaked at the
average momentum (σp ≪ E2

k(pk)/mk), we can approximate

Ek(p)≃ Ek+vk (p− pk) , (50)

whereEk andvk are, respectively, the average energy and the group velocity given by

Ek = Ek(pk) =
√

p2
k +m2

k , vk =
∂Ek(p)

∂ p

∣

∣

∣

∣

p=pk

=
pk

Ek
. (51)



With this approximation, the integration over dp in Eq. (46) is Gaussian, leading to

Aαβ (T,L) ∝ ∑
k

U∗
αkUβk exp

[

−iEkT + ipkL−
(L−vkT)2

4σ2
x

]

. (52)

Comparing with Eq. (34), one can notice the additional suppression factor for|L −
vkT|& σx due to the wave packets.

Finally, integrating the space-time dependent oscillation probability Pαβ (T,L) =
|Aαβ (T,L)|2 over the unobserved propagation timeT, we obtain, for ultrarelativistic
neutrinos,

Pαβ (L) = ∑
k, j

U∗
αkUβkUα j U

∗
β j exp



−2π i
L

Losc
k j

−
(

L

Lcoh
k j

)2

−2π2ξ 2

(

σx

Losc
k j

)2


 , (53)

with the oscillation and coherence lengths

Losc
k j =

4πE

∆m2
k j

, Lcoh
k j =

4
√

2E2

|∆m2
k j|

σx . (54)

The coefficientξ , which is the only quantity in Eq. (53) depending on the production
process, comes from the general ultrarelativistic approximation [23, 49, 50, 51, 34, 18]

pk ≃ E− (1−ξ )
m2

k

2E
, Ek ≃ E+ξ

m2
k

2E
. (55)

In the limit of negligible wave packet effects, i.e. forL ≪ Lcoh
k j andσx ≪ Losc

k j , the
oscillation probability in the wave packet approach reduces to the standard one in Eq. (8),
obtained in the plane wave approximation. The additionallocalizationandcoherence
terms

Ploc
k j = exp



−2π2ξ 2

(

σx

Losc
k j

)2


 , Pcoh
k j = exp



−
(

L

Lcoh
k j

)2


 , (56)

have the following physical meaning [23, 43, 52, 21, 26, 44, 45, 47, 48, 33, 34].
The localization termPloc

k j suppresses the oscillations due to∆m2
k j if σx & Losc

k j . This
means that in order to measure the interference of the massive neutrino componentsνk
andν j the production and detection processes must be localized inspace-time regions
much smaller than the oscillation lengthLosc

k j . In practice this requirement is satisfied in
all neutrino oscillation experiments.

The localization term allows one to distinguish neutrino oscillation experiments from
experiments on the measurement of neutrino masses. As first shown in Ref. [40], neu-
trino oscillations are suppressed in experiments which areable to measure, through
energy–momentum conservation, the mass of the neutrino. Indeed, from the energy–
momentum dispersion relation in Eq. (4) the uncertainty of the mass determination is

δmk
2 =

√

(2Ek δEk)
2+(2pk δ pk)

2 ≃ 2
√

2Eσp , (57)



σP
x

~v1 ~v1

~v2 ~v2

~v1

L ∼ Lcoh

21
L

0
L ≫ Lcoh

21

~v2

FIGURE 2. Schematic illustration of the separation of two wave packets with different group velocities,
produced coherently atL = 0 with widthsσP

x determined by the coherence size of the production process.
The coherence size of the detection process is assumed to be negligible.

where the approximation holds for ultrarelativistic neutrinos. If δmk
2 < |∆m2

k j|, the mass

of νk is measured with an accuracy better than the difference∆m2
k j. In this case the

neutrinoν j is not produced or detected and the interference ofνk andν j which would
generate oscillations does not occur. The localization term automatically suppresses the
interference ofνk andν j , because

−2π2

(

σx

Losc
k j

)2

=−
(

∆m2
k j

4
√

2Eσp

)2

≃−1
4

(

∆m2
k j

δmk
2

)2

. (58)

If the condition
σx ≪ Losc

k j , (59)

which is necessary for unsuppressed interference ofνk andν j , is satisfied, as usual in
neutrino oscillation experiments, the localization term can be neglected, leading to the
flavor transition probability

Pαβ (L) = ∑
k, j

U∗
αkUα jUβkU

∗
β j exp



−2π i
L

Losc
k j

−
(

L

Lcoh
k j

)2


 , (60)

which is a function of the distanceL, depending on the oscillation and coherence lengths
in Eq. (54).

In Eq. (60), eachk, j term contains, in addition to the standard oscillation phase, the
coherence termPcoh

k j , which suppresses the interference of the massive neutrinos νk and

ν j for distances larger than the corresponding coherence length, i.e. forL ≫ Lcoh
k j . This

suppression is due to the separation of the different massive neutrino wave packets,
which propagate with different velocities, as illustratedin Figs. 1b and 2. When the
wave packets ofνk andν j are so much separated that they cannot both overlap with
the detection process, the massive neutrinosνk andν j cannot be absorbed coherently
[42, 41]. In this case, only one of the two massive neutrinos contributes to the detection
process and the interference effect which produces the oscillations is absent. However, in
general, the flavor transition probability does not vanish.For example, ifL ≫ Lcoh

k j for all
k and j, the flavor transition probability reduces to the incoherent transition probability
in Eq. (43).



7. CONCLUSIONS

We have reviewed the standard theory of neutrino oscillations, highlighting the three
main assumptions: (A1) the definition of the flavor states, (A2) the equal-momentum
assumption and (A3) the time= distance assumption.

We have shown that the flavor neutrino state that describes a neutrino produced or
detected in a charged-current weak interaction process depends on the process under
consideration. The standard flavor states are correct approximations of these states in
oscillation experiments, which are not sensitive to the dependence of neutrino interac-
tions on the different neutrino masses.

We have presented a covariant plane-wave theory of neutrinooscillations in which
both the evolutions in space and in time of the neutrino stateare taken into account,
leading to the standard probability of flavor transitions. In this model, no assumption on
the energies and momenta of the propagating massive neutrinos is needed. Moreover,
the derivation of the Lorentz-invariant flavor transition probability is manifestly Lorentz
invariant.

We have argued that the time= distance assumption derives from the wave-packet
character of the propagating neutrinos. We have discussed the necessity of a wave-
packet treatment of neutrino oscillations for the description of the localization of the
production and detection processes and the coherence of theoscillations. We have also
presented a simple quantum-mechanical wave-packet model which leads to the standard
probability of flavor transitions with additional localization and coherence terms which
have important physical meaning.

In conclusion, we would like to emphasize that the insight ofthe founders of the
theory of neutrino oscillations led them to the correct standard expression for the flavor
transition probability. Our more modest task has been to clarify the assumptions and to
try to improve the derivation hoping to elucidate the deep physical nature of neutrino
oscillations.
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