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Abstract. The standard theory of neutrino oscillations is revieweglhlghting the main assump-
tions: the definition of the flavor states, the equal-momeragsumption and the time distance
assumption. It is shown that the standard flavor states areat@pproximations of the states that
describe neutrinos in oscillation experiments. The equatentum assumption is shown to be
unnecessary for the derivation of the oscillation probgbilhe time = distance assumption de-
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trino oscillations.
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1. INTRODUCTION

The idea of neutrino oscillations was discovered by Brunot@mrvo in the late 50s in
analogy withk %-K 9 oscillations [1, 2]. In essence, neutrino oscillationslapton flavor
transitions which depend on the distance and time of neupiopagation between a
source and a detector. This is a quantum-mechanical efteetta neutrino mixing,
i.e. the fact that flavor neutrinos are coherent superpositof massive neutrinos. The
oscillations are caused by the interference of the diftem@assive neutrinos, which have
different phase velocities.

Since in the late 1950s only oretive flavor neutrino was known, the electron
neutrino, Pontecorvo invented the concept afterile neutrinovs [3], which does not
take part in weak interactions. The muon neutrino was des@aat Brookhaven in 1962
in the first accelerator neutrino experiment of Ledermarmwietz, Steinbergegt al.
[4], following the independent feasibility estimates offfeecorvo [5] and Schwartz [6].
Since then, it became clear that oscillations betweenrdifteactive neutrino flavors are
possible if neutrinos are massive and mixdddeed, in 1967 Pontecorvo [3] discussed
the possibility of a depletion of the solag flux due tove — vy, (Or Ve — V) transitions
before the first measurement in the Homestake experimenti91969 Gribov and
Pontecorvo [10] discussed solar neutrino oscillationstdug—v,, mixing.

1In 1962 Maki, Nakagawa, and Sakata [7] considered for thetfiree a model withve—vy, mixing of
different neutrino flavors. Unfortunately, this model digt have any impact on neutrino mixing research,
since its existence was unknown to the community until tke T8s [8].
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The standard theory of neutrino oscillations was develap&875-76 by Eliezer and
Swift [11], Fritzsch and Minkowski [12], Bilenky and Pontawo [13, 14]. In this theory,
massive neutrinos are treated as plane waves, having defingrgy and momentum.
Such a description, however, is not completely consistestause energy—momentum
conservation implies that the creation and detection ofsmaseutrinos with definite
energies and momenta is possible only if all the particleslued in the production
and detection processes have definite energies and moréetproblem is that in this
case energy—momentum conservation cannot hold simuliahefor different massive
neutrinos and the production and detection of a superpasii different massive
neutrinos are forbidden. In order to overcome this probléns necessary to treat
neutrinos and the other particles participating in the pobidn and detection processes
as wave packets, as discussed in section 5.

The plan of this paper is as follows: in section 2 we review stendard theory of
neutrino oscillations, highlighting the main assumptiowkich are discussed in the
following sections; in section 3 we discuss the definitiorflafor neutrino states; in
section 4 we present a covariant plane-wave theory of meutgcillations; in section 5
we discuss the necessity of a wave-packet treatment ofinewtscillations, in section 6
we present a simple quantum-mechanical wave-packet méaeutrino oscillations,
and finally in section 7 we draw our conclusions.

2. STANDARD THEORY OF NEUTRINO OSCILLATIONS
Neutrino oscillations are a consequence of neutrino mixing

VC!L(X) - ZuakaL(X) (CY =6 U, T) ’ (1)

wherev, (X) are the left-handed flavor neutrino fieldg, (x) are the left-handed mas-
sive neutrino fields ant is the unitary mixing matrix (see Refs. [8, 15, 16, 17, 18]).

Since a flavor neutrinog is created byv;r,L(x) in a charged-current weak interaction
process, in the standard plane-wave theory of neutrindlatsens [11, 12, 13, 14, 8], it
is assumed that, is described by the standard flavor state

Va) = Zuék“}k), (2)

which has the same mixing as the fieﬁ(x).
Since the massive neutrino stateg) have definite massy and definite energ¥,
they evolve in time as plane waves:

.0 B
= [vk(D) = Ho[w(t)) = Bw(t)),  [w(t)) =e i), (3)
whereHg is the free Hamiltonian operator,

EZ = p2+ ¢, (4)



and|w(t = 0)) = |v) (all the massive neutrinos start with the same arbitrarysgha
The resulting time evolution of the flavor neutrino state @ B) is given by

|va<t>>=ZU§ke“Ek‘|vk>: )3 (ZUéke“Ek‘UBk>|vﬁ>- (5)
B=eu,t

Hence, if the mixing matriXJ is different from unity {.e. if there is neutrino mixing),
the statdvy(t)), which has pure flavosr at the initial timet = 0, evolves in time into a
superposition of different flavors. The quantity in parests in Eq. (5) is the amplitude
of vg — Vg transitions at the time after v, production. The probability obg — vg
transitions at the time= T of neutrino detection is given by
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Pap(T) = (Vg |va(T))[? = 'ZUékE“EkT Upk| = gu;kuﬁkua,-u;;je—i<Ek—Ei>T. (6)
1)

One can see thd,3(T) depends on the energy differendgs— E;. In the standard
theory of neutrino oscillations it is assumed that all massieutrinos have the same
momentump. Since detectable neutrinos are ultrarelativistiee have
i’ A
Ex~E+ =X Ex—Ej = ——
k=5t S T

) (7)
WhereAmﬁj = g —n% andE = |p| is the energy of a massless neutrino (or, in other
words, the neutrino energy in the massless approximatlormnost neutrino oscilla-
tion experiments the tim& between production and detection is not measured, but the
source-detector distantes known. In this case, in order to apply the oscillation prob
ability to the data analysis it is necessary to expiess a function oL.. Considering
ultrarelativistic neutrinos, we havie~ L, leading to the standard formula for the oscil-
lation probability:

P.a(LE)=S U UnUgiUZ —'Anﬁjl' 8
aB(7 )—; akYpkYajlgj €Xpl —I oF . (8)
N

Summarizing, there are three main assumptions in the stridaory of neutrino
oscillations:

(A1) Neutrinos produced or detected in charged-currenkwairaction processes are
described by the flavor states in Eq. (2).

(A2) The massive neutrino stat¢g) in Eq. (2) have the same momentunegtial-
momentum assumptign

2 Itis known that neutrino masses are smaller than about or(s@/the reviews in Refs. [19, 20]). Since
only neutrinos with energy larger than about 100 keV can beatied (see the discussion in Ref. [21]), in
oscillation experiments neutrinos are always ultrareistic.



(A3) The propagation time is equal to the distahctaveled by the neutrino between
production and detectiont{ine = distance assumptidh

In the following we will show that the assumptions (A1) and 3jAcorrespond to ap-
proximations which are appropriate in the analysis of aurneutrino oscillation exper-
iments (section 3 and 5, respectively). Instead, the equuahentum assumption (A2) is
not physically justified [22, 23, 24, 25, 26], as one can gasiderstand from the appli-
cation of energy-momentum conservation to the productiocgss. However, in sec-

tion 4 we will show that the assumption (A2) is actually notessary for the derivation
of the oscillation probability if both the evolutions in gggaand in time of the neutrino
state are taken into account.

3. FLAVOR NEUTRINO STATES

The state of a flavor neutring, is defined as the state which describes a neutrino
produced in a charged-current weak interaction procesthegwith a charged lepton
¢ or from a charged leptofy, (¢ = e*, u™,1* for a = e, u, 1, respectively), or the
state which describes a neutrino detected in a chargedstusteak interaction process
with a charged leptod, in the final state. In fact, the neutrino flavor can only be
measured through the identification of the charged leptsnaated with the neutrino
in a charged-current weak interaction process.

Let us first consider a neutrino produced in the generic dpoagess

Pl — Pe+ 05 +vq, 9)

where R is the decaying particle and=Pepresents any number of final particles. For
example: in the pion decay process — p™ + v, we have P= mrt, Pr is absent
anda = y; in a nuclearB™ decay process ,Z) — N(A,Z—1) +e" + ve we have
Pi=N(A,Z), P-=N(A,Z—-1) anda = e. The following method can easily be modified
in the case of a/q produced in the generic scattering procégst P, — Pz + vy by
replacing the/{ in the final state with & in the initial state.

The final state resulting from the decay of the initial paeti is given by

) =5[P), (10)

whereS is theS-matrix operator. Since the final state contains all the decay channels
of P, it can be written as

|f>=Z%F’k\vk,£;,PF>+..., (11)

where we have singled out the decay channel in Eq. (9) and wethken into account
that the flavor neutrinwy is a coherent superposition of massive neutringsSince

3 A different opinion, in favor of the equal-momentum assuiomt has been recently expressed in
Ref. [27]. On the other hand, other authors [28, 29, 30] adiaxt an equal-energy assumption, which
we consider as unphysical as the equal-momentum assumption



the states of the other decay channels represented by déts {i1l) are orthogonal to
|vk, 24, Pe) and the statepy, £, Pr) with differentks are orthonormal, the coefficients
eszfof’k are the amplitudes of production of the corresponding statee decay channel in
Eq. (9):

D = (Vi L&, Pel ) = (v, €4, PE[ S [P1) - (12)

Projecting the final state in Eq. (11) ovéf,, Pr) and normalizing, we obtain the flavor
neutrino state [31, 32, 17, 33]

~1/2
V) = (zwﬁﬁ) AT (13)

Therefore, a flavor neutrino state is a coherent superpasiti massive neutrino states
|vk) and the coefficienwapk of the kth massive neutrino component is given by the
amplitude of production ofy. Since, in general, the amplitudeﬁof’k depend on the
production process, a flavor neutrino state depends on thauption process. In the
following, we will call a flavor neutrino state of the type igEH13) a ‘production flavor
neutrino staté

Let us now consider the detection of a flavor neutwgdhrough the generic charged-
current weak interaction process

Vg +Dy — D+ 4y, (14)

where [ is the target particle andDrepresents one or more final particles. In general,
since the incoming neutrino state in the detection proceassuperposition of massive
neutrino states, it may not have a definite flavor. Therefeeanust consider the generic
process

v+Dy, (15)

with a generic incoming neutrino state). In this case, the final state of the scattering
process is given by
[f) =S|v,Dy), (16)

This final state contains all the possible scattering chianne
|f) = |Dp, ly)+..., (17)

where we have singled out the scattering channel in Eq. (#4)want to find the
component

|Va, D) = Z%%\Vk, Di) (18)

of the initial state|v, D;) which corresponds to the flavar, i.e. the component which
generates only the scattering channel in Eq. (14). This m&et|Dg, /) = S|vq,D)).
Using the unitarity of the mixing matrix, we obtain

Ve, D)) = ST|DE, 47) . (19)



From Egs. (18) and (19), the coeﬁiciemVaDk are the complex conjugate of the amplitude
of detection ofvy in the detection process in Eq. (14):

A5 = (v, Di|ST|DE, ) . (20)

Projecting|vq, Dy) over|D;) and normalizing, we finally obtain the flavor neutrino state
in the detection process in Eq. (14):

—-1/2
Ver) = (z |%?|2> Z%Dkwk» (21)

In the following, we will call a flavor neutrino state of thigge a ‘detection flavor
neutrino staté

Although the expressions in Egs. (13) and (21) for the prodocand detection
flavor neutrino states have the same structure, these s$tatesdifferent meanings.
A production flavor neutrino state describes the neutrimated in a charged-current
interaction process, which propagates out of a source. ¢Jahdescribes the initial
state of a propagating neutrino. A detection flavor neutstade does not describe a
propagating neutrino. It describes the component of the sfaa propagating neutrino
which can generate a charged lepton with appropriate flawrough a charged-current
weak interaction with an appropriate target particle. Imotwords, the scalar product

Aq = (vg|v) (22)

is the probability amplitude to find &, by observing the scattering channel in Eq. (14)
with the scattering process in Eq. (15).

In order to understand the connection of the production ateation flavor neutrino
states with the standard flavor neutrino states in Eq. (23, useful to express thg
matrix operator as

s=1—i/d4chc<x>, Hee() = — j3(x) P (x), (23)

fsz

whereGg is the Fermi constant (we considered only the first ordeupleative contri-
bution of the effective low-energy charged-current weakraction Hamiltonian). The
weak charged currenf (x) is given by

POO= Y VaV (1-y°) ta0) +1P ()

a=€U,T

ZUGKVk ( —y5) o (X) +hP(X) (24)
a=eu,T

wherehp( X) is the hadronic weak charged current. The production arettieh ampli-
tudeser), andZ2. can be written as

Dy =g My, gy =g Mgy, (25)



with the interaction matrix elements
. Gr — —Pr
M =i . / d'% (v, 5RO VP (1= V%) a0 0) 57 (9), (26)
. Gr _ _\ 1D|—Dg*
MZ=1 7 [ ax R0 (1) a2 B 0. @)

HereJE'_)PF(x) andJE'_)DF(x) are, respectively, the matrix elements of the-PPr and
D, — Dg transitions.
Using Eq. (25), the production and detection flavor neutsitabes can be written as

Uak VK (28)

73 Vi |uaj|2|//z§’,|2

Uk Vk) - (29)

Zﬁ, |ua,|2| B

These states have a structure which is similar to the stdrild&or states in Eq. (2), with
the relative contribution of the massive neutrinoproportional taJ;,. The additional
factors are due to the dependence of the production andtidbetgrrocesses on the
neutrino masses.

In experiments which are not sensitive to the dependenceff and.#>, on the
difference of the neutrino masses, it is possible to appnaie

M= My, MY~ R (30)

In this case, since

; Uakl>=1, (31)

we obtain, up to an irrelevant phase, the standard flavorineidtates in Eq. (2), which
do not depend on the production or detection process. Hémeetandard flavor neu-
trino states are approximations of the production and tietetlavor neutrino states in
experiments which are not sensitive to the dependence afdb&ino interaction rate
on the difference of the neutrino masses. All neutrino &&n experiments have this
characteristic: since the detectable neutrinos are ala@vistic, neutrino oscillation ex-

periments are insensitive to any effect of neutrino massteei production and detection
processes. Therefore, the assumption (Al) in the stankdeoayt of neutrino oscillations
IS correct as an appropriate approximation in the analysigotrino oscillation experi-

ments.

4. COVARIANT PLANE-WAVE THEORY OF OSCILLATIONS

In this section we show that the equal-momentum assumpfidhdan be avoided by
considering not only the time evolution of the neutrinoesats in the standard theory,
but also their space dependence.



Let us consider a neutrino oscillation experiment in whigh— vg transitions are
studied with a production process of the type in Eqg. (9) anctedion process of
the type in Eqg. (14). In this case, the produced flavor neuwitrig is described by
the production flavor state]) in Eq. (13). If the neutrino production and detection
processes are separated by a space-time int€fyh), the neutrino propagates freely
between production and detection, evolving into the state

V(T,L)) =e ETHPLVE), (32)

whereE = Hg and P are, respectively, the energy and momentum operators.ighis
the incoming neutrino state in the detection process. Thaiarde of the measurable
Vg — Vg transitions is given by the scalar product in Eq. (22):

Aap(T,L) = (Vg |v(T,L)) = (vgle FTHPHvE) (33)

with the detection flavor staqe?['33> in Eq. (21).

Neglecting mass effects in the production and detectiosgs®es, we approximate
the production and detection flavor states with the standaed given in Eq. (2). Then,
we obtain . .

Agp(T,L) = Zugkuﬁke—'Ek”'pkL. (34)

Notice that the consideration of the space-time intervial/ben neutrino production and
detection allows one to take into account both the diffeesrin energy and momentum
of the massive neutrinos [22, 23, 24, 25, 26].

In oscillation experiments in which the neutrino propagatimeT is not measured,
it is possible to adopt the light-ray = L approximation (assumption (A3)), since
neutrinos are ultrarelativistic (the effects of possibéwidtions fromT = L are shown
to be negligible in Refs. [34, 18]). In this case, the phadeqn(34) becomes

EZ— Pk o
ExT + pkL (Ex—px)L Eet pe L Ect pr L~ = L, (35)

which leads to the standard oscillation probability in B). (

Equation (35) shows that the phases in the flavor transitigplitude are independent
from the values of the energies and momenta of different masgutrinos [22, 23,
24, 25, 26], because of the relativistic dispersion refaiio Eq. (4). In particular,
Eq. (35) shows that the equal-momentum assumption (A2) aticse 2, adopted in
the standard derivation of the neutrino oscillation pralitgbis not necessary in an
improved derivation which takes into account both the evoiis in space and in time
of the neutrino state.

We have called this derivation of the flavor transition ptabty “covariant plane-
wave theory of oscillations” because it is manifestly Ldranvariant. This is important
because flavor, which is the quantum number that distingsidifferent types of quarks
and leptons, is a Lorentz-invariant quantity. For example,electron is seen as an
electron by any observer, never as a muon. Therefore, thmbpildy of flavor neutrino
oscillations must be Lorentz invariant [24, 35].
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FIGURE 1. Space-time diagram representing schematically the paimagof the wave packet of a
massless particle (a) and the propagation of the wave paoket superposition of a massless and a
massive ultrarelativistic particle (b) from a producticegess P to a detection process D.

5. WAVE-PACKET TREATMENT

So far, we have considered massive neutrinos as particksibled by plane waves
with definite energy and momentum. However, the= L assumption (A3) requires
a wave packet description. The reason is simple: since plaves cover all space-
time in a periodic way they cannot describe the localizeashessef neutrino production

and detection. As discussed in introductory books on ofies [36, 37]) and quantum
mechanics (see [38, 39]), real localized particles arerdestby superpositions of plane
waves known asave packets

Moreover, different massive neutrinos can be produced atected coherently only
if the energies and momenta in the production and detectiocegses have sufficiently
large uncertainties [40, 41]. The uncertainty of the praducprocess implies that the
massive neutrinos propagating between production anctiteiehave a momentum
distribution [21], i.e. they are described by wave packets.

The propagation of a massless particle between localizedugption and detection
processes separated Dy~ L is illustrated schematically in the space-time diagram in
Fig. 1a. The interesting case of propagation of a supeiposif two neutrinos with
definite masses, one masslagg @nd one massive but ultrarelativistig] is illustrated
schematically in Fig. 1b. One can note that in these diagizotis the production and
detection processes occupy a finite region in space-timiedctne coherence region
in which the propagating particles are produced or detectdterently. Indeed, the
uncertainty principle implies that any interaction pra&ckdas a space uncertaint
related to the momentum uncertaimy by

1
Oy Op ~ 5 (36)

A point-like process would have an infinite momentum ungetyaand a process with



definite momentum would be completely delocalized in spabe. momentum uncer-
tainty can be estimated as the quadratic sum of the unckewiof the momenta of the
localized particles taking part in the process:

(0p)? ~ Y (0p)%. (37)

The sum is over the initial particles and the final particlésal are localized through
interaction with the environment. Their momentum uncettas gy, are related to the

sized), of their wave packets by uncertainty relations analogou&itq(36),

a)i( alio ~ o (38)
Therefore, the space uncertainty of the process is given by
(G2~ S (). (39)
I

It is clear that the particle with larger momentum uncettaisnd associated smaller
space uncertainty gives the dominant contribution.

The coherence time;} of an interaction procesisis the time over which the wave
packets of the interacting particles overlap. If the predeshe decay of a particle in
vacuum, the localization of such particle and its decay pctalis very poor and the
coherence timej; is of the order of the particle lifetime. On the other handhé decay
occurs in a medium where the decaying particle and its ptsdure well localized or if
the production process is a scattering process, the catestiene can be estimated by

-2

(0) 2~ Z (%) : (40)

wherey; is the velocity of the particlé, becauses; must be dominated by the particle
with smaller ratiooy/vi, which is the first to leave the interaction region. Therefan
generalg} > oy, in agreement with the physical expectation that the cotuereegion
of a process must be causally connected.

As illustrated in Fig. 1, one can estimate the size of the waagket of a massive
neutrino created in a production process P as the cohereneef of the production
process,

ol ~af . (41)

Let us emphasize that there is a profound difference betwleerbehavior of final
neutrinos and other particles in the production process.ifitial particles have wave
packets which are determined by their creation process prdwious interactions. The
initial particles and the final particles which interact wthe environment contribute
to the coherence time{” through their contribution to the momentum uncertainty in
Eqg. (37). An initial decaying particle contributes dirgctb the coherence time;”
with its lifetime. On the other hand, neutrinos are stabld &ave the production
process without interacting with the environment. Therefdhey do not contribute



to the determination of the coherence ti€ and the size of their wave packets is
determined byoy".

Considering now the detection procd3sif there is only one particle propagating
between the production and detection processes, as shdwig iba, the coherence size
of the detection process is determined by Eq. (37), with tine aver all the participating
particles which interact with the environment and the pgapiag particle, which is
described by a wave packet. In the case of neutrino mixirgntgutrino propagating
between the production and detection processes is in densugerposition of massive
neutrino wave packets which propagate with different phaetecity, as illustrated in
Fig. 1b. In this case, in the detection process, the wavegisad different massive
neutrinos are separated by a distaAge= AvT, whereAv is the velocity difference. If
the source—detector distance is very large, the separatitire massive neutrino wave
packets at detection may be larger than their size, leadiniget lack of overlap [42].
In this case, the effective coherence size of the neutrineviianction at the detection

process is
Ot~/ (GF)2+ (B2 ~ \/ ()2 + (A T)2. (42)

However, Eqg. (39) shows that the particle with smaller spaweertainty gives the
dominant contribution to the coherence size of the detegirocess. Therefore, if the
effective coherence size in Eq. (42) of the neutrino wavetion is dominated by the
separation of the wave packefs/(T >> ¢") and there is another particle participating in
the detection process which has much smaller space umigrtidie different massive
neutrinos cannot be detected coherently. In this cases ttarnot be any interference
between the different massive neutrino contributions sodhtection process and the
probability of transitions between different flavors redsi¢o the incoherent transition
probability

Pai "= 3 Vel W, (43)

which does not oscillate as a function of the source—detdetance. On the other hand,
if all the other particles participating in the detectiomgess have space uncertainties
which are larger than effective coherence size in Eq. (4#)@heutrino wave function,
the different massive neutrinos are detected cohereritly [dading to the interference
of their contributions to the detection process which nmestg itself as oscillations of
the probability of flavor transitions, according to Eq. (8).

These considerations show that a wave-packet treatmentaséive neutrinos is
important in order to understand the coherence propertiesudrino oscillations.

6. QUANTUM-MECHANICAL WAVE-PACKET MODEL

In this section we present a simple one-dimensional quam@&thanical wave-packet
model [23, 43] in which the momentum uncertainties of théestavhich describe the
produced and detected massive neutrinos are approximgt€aibissian distributions.
More complete three-dimensional models in which the neatrhomentum uncertain-
ties are obtained from a quantum field theoretical calautadif the production and de-
tection processes are discussed in Refs. [44, 45, 46, 42148,



Neglecting mass effects in the production and detectiocgsses, we describe the
produced and detected neutrinos ima— vg experiment with the wave-packet flavor
states

VE) = 3 Vi [ puR(p) (), VR =3 Ui [ doul(p) w(p), - (49)

with the Gaussian momentum distributions

Pp 1 _(P—p)? o1 (P po)°
U (p) = (ZH(OFF,’)Z)%‘ exp[ 4(05)2 ] ;W (p)= (ZH(UE)Z)%‘ exp[ 4(08)2 ] :
(45)

The average momentg of the massive neutrinos are determined by the kinematics of
the production process. They are the same in the detectimess because of causality.
On the other hand, the energy-momentum uncertainties ipribsiuction and detection
processesg), anday, may be quite different.

The flavor transition amplitude is given by

Aap(T,L) = (vg| e ETHPL )

402

2
O Zugkuﬁk/dp exp [—iEk(p)TqLipL—@] , (46)

with the massive neutrino energies

Ex(p) =/ P>+ ng. (47)

and the global energy-momentum uncertainty

1 1 1

— = + . (48)
o5 (0F)?  (0p)?

This expression has a correct behavior from the physicaitpafi view, because the
smaller energy-momentum uncertainty must dominate in gterchination of the total
uncertainty. On the other hand, the global space-time taiogy ox = 1/20} is domi-
nated by the largest of the space-time uncertaintfes- 1/205 andoy = 1/207) of the

production and detection processes:

0x = (0¢)*+(0Y)?. (49)

Since in practice the massive neutrino wave packets areyalslaarply peaked at the
average momentunof < E,f(pk) /my), we can approximate

Ex(p) ~ Ex+ Vi (P— Px) (50)
whereEy andyvy are, respectively, the average energy and the group velgiggn by

JE
Ex=Ex(p) = \/PE+NME, W= dkép) :E_I;' (51)

P=pk




With this approximation, the integration ovep th Eq. (46) is Gaussian, leading to

N . . (L—VkT)2

Comparing with Eqg. (34), one can notice the additional sepgipn factor forlL —
VT | 2 oy due to the wave packets.

Finally, integrating the space-time dependent oscilfatiwobability P,z(T,L) =
\AO,B(T,L)|2 over the unobserved propagation tifie we obtain, for ultrarelativistic
neutrinos,

2 2
" " . L L
PaB(L) = ZUGkUBkUC{j UBj exp | —2m @;— (@) — 21?82 (Losc> , (53)
! j j

with the oscillation and coherence lengths

Losc_ Amie Lcoh 4\/§E2

A”ﬁj , |A”1% |

The coefficient, which is the only quantity in Eq. (53) depending on the pixiatun
process, comes from the general ultrarelativistic appnaxion [23, 49, 50, 51, 34, 18]

E.~E =
K +€2E

(54)

Pk~ E—

In the limit of negligible wave packet effects, i.e. for« LC‘J’h and oy < LOSC the
oscillation probability in the wave packet approach reduoghe standard one |n Eq. (8),
obtained in the plane wave approximation. The additidoedlizationand coherence
terms

2 2
L

PO° = exp | -2 &2 LOSC . RM=exp|-| =] | (56)
3 o

have the following phyS|caI meaning [23, 43, 52, 21, 26, &4, 48, 33, 34].

The localization ternP °¢ suppresses the oscillations dueAlrmﬁ if ox 2> LOSC This
means that in order to measure the interference of the naalseuwrlno componentzk
andv;j the production and detection processes must be localizepaioe-time regions
much smaller than the oscillation Iengl[i’rfc. In practice this requirement is satisfied in
all neutrino oscillation experiments.

The localization term allows one to distinguish neutrinoiketion experiments from
experiments on the measurement of neutrino masses. AsHowstnsin Ref. [40], neu-
trino oscillations are suppressed in experiments whichadte to measure, through
energy—momentum conservation, the mass of the neutrideeth from the energy—
momentum dispersion relation in Eq. (4) the uncertaintyhefrhnass determination is

5m = \/ (2E8E)? + (2P )2 ~ 2/2E 0y, (57)
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L~ Lcoh L> Lcoh

FIGURE 2. Schematic illustration of the separation of two wave pacith different group velocities,
produced coherently at= 0 with widthsa determined by the coherence size of the production process.
The coherence size of the detection process is assumed egbgille.

where the approximation holds for ultrarelativistic néuas. If m? < |An‘§j |, the mass

of v¢ is measured with an accuracy better than the diﬁererm%j. In this case the
neutrinov; is not produced or detected and the interferencecand vj which would
generate oscillations does not occur. The localizatiom tutomatically suppresses the
interference ofy andvj, because

() ) )

If the condition
o < L, (59)

which is necessary for unsuppressed interferenag andv;, is satisfied, as usual in
neutrino oscillation experiments, the localization teram ®©e neglected, leading to the
flavor transition probability

2
L L
P ; UakUUJUﬁkUBJ exp| — Losc ( Lcoh) ) (60)

which is a function of the distande depending on the oscillation and coherence lengths
in Eq. (54).

In EqQ. (60), eacHK j term contains, in addition to the standard oscillation phése
coherence terrﬁ’kJ , which suppresses the interference of the massive nestriend

vj for distances larger than the corresponding coherencéhleneg. forL > Lﬁ‘j)h. This
suppression is due to the separation of the different magsiutrino wave packets,
which propagate with different velocities, as illustraiadFigs. 1b and 2. When the
wave packets ofj andv; are so much separated that they cannot both overlap with
the detection process, the massive neutrmnoand v; cannot be absorbed coherently
[42, 41]. In this case, only one of the two massive neutriraygributes to the detection
process and the interference effect which produces théaigms is absent. However, in
general, the flavor transition probability does not vanksir.example, it. > Lﬁ?h for all

k and j, the flavor transition probability reduces to the incohéteamsition probability

in Eq. (43).



7. CONCLUSIONS

We have reviewed the standard theory of neutrino osciliatidighlighting the three
main assumptions: (Al) the definition of the flavor state)(fhe equal-momentum
assumption and (A3) the time distance assumption.

We have shown that the flavor neutrino state that describesutimo produced or
detected in a charged-current weak interaction processndispon the process under
consideration. The standard flavor states are correct gippations of these states in
oscillation experiments, which are not sensitive to theetefence of neutrino interac-
tions on the different neutrino masses.

We have presented a covariant plane-wave theory of neutsoilations in which
both the evolutions in space and in time of the neutrino siagetaken into account,
leading to the standard probability of flavor transitiomstHis model, no assumption on
the energies and momenta of the propagating massive neslismeeded. Moreover,
the derivation of the Lorentz-invariant flavor transiticipability is manifestly Lorentz
invariant.

We have argued that the time distance assumption derives from the wave-packet
character of the propagating neutrinos. We have discussedédcessity of a wave-
packet treatment of neutrino oscillations for the desmipbf the localization of the
production and detection processes and the coherence oétilations. We have also
presented a simple quantum-mechanical wave-packet mduleh\eads to the standard
probability of flavor transitions with additional localizan and coherence terms which
have important physical meaning.

In conclusion, we would like to emphasize that the insighthef founders of the
theory of neutrino oscillations led them to the correct dtad expression for the flavor
transition probability. Our more modest task has been tofglthe assumptions and to
try to improve the derivation hoping to elucidate the deepsjdal nature of neutrino
oscillations.
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