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Static Q̄Q Potentials and the Magnetic Component of QCD Plasma near T
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Static quark-anti-quark potential encodes important information on the chromodynamical inter-
action between color charges, and recent lattice results show its very nontrivial behavior near the
deconfinement temperature Tc. In this paper we study such potential in the framework of the “mag-
netic scenario” for the near Tc QCD plasma, and particularly focus on the linear part (as quantified
by its slope, the tension) in the potential as well as the strong splitting between the free energy
and internal energy. By using an analytic “ellipsoidal bag” model, we will quantitatively relate the
free energy tension to the magnetic condensate density and relate the internal energy tension to the
thermal monopole density. By converting the lattice results for static potential into density for ther-
mal monopoles we find the density to be very large around Tc and indicate at quantum coherence,
in good agreement with direct lattice calculation of such density. A few important consequences for
heavy ion collisions phenomenology will also be discussed.

PACS numbers: 12.38.Mh, 25.75.-q, 47.75.+f

I. INTRODUCTION

The interaction potential between static quark and
anti-quark pair is a traditional observable to study the
quark confinement mechanism in QCD. It was originally
inferred from heavy meson spectrum and Regge trajec-
tories, and has then been extensively studied in lattice
gauge theories, for reviews see e.g. [1, 2]. Its vacuum
(T = 0) form is well known, usually represented as a
sum of a Coulomb part V ∼ 1/r, dominant at small
separation between Q̄Q, and a linear part V = σr dom-
inant at large separation (see the black solid curve in
Fig.1). The latter implies the confinement of quarks and
has been interpreted in terms of chromo-electric flux tube
(or “string”) formation between well-separated Q̄Q pair.
The so-called string tension σ in the vacuum (T = 0) has
been consistently determined by different methods to be

σvac ≈ (426MeV )2 ≈ 0.92GeV/fm (1)

With current RHIC and future LHC experimental
programs exploring excited hadronic matter and quark-
gluon plasma (QGP) at increasing temperature T , it is
very important to know the finite T form of the static Q̄Q
potential, which has recently been calculated by means
of the lattice QCD, see e.g. [3–5]. At finite tempera-
ture, there are actually two potentials associated with
a Q̄Q pair separated by distance r: one is the free en-
ergy F (T, r) and the other is the internal energy V (T, r),
with the difference related to the entropy generated in
the medium by the Q̄Q pair, i.e.

V (T, r) = F (T, r)−T (∂F/∂T ) = F (T, r)+TS(T, r) (2)

What is directly evaluated on lattice is the free energy
F (T, r) from which the corresponding V (T, r) and S(T, r)
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FIG. 1: The static Q̄Q potential at T ≈ Tc (adapted from [3]).
The blue boxes are for the internal energy V (r) while the red
diamonds are for free energy F (r), with the green dashed line
indicating the strong linear rise in V (r) for r ∈ (0.5, 1)fm and
the black solid line showing the vacuum Q̄Q potential.

can be inferred [3]. While at T = 0 there is no entropy
and the free and internal energies are identical, splitting
between the two shall be expected at T > 0 and may
carry key information about the medium and deconfine-
ment transition near Tc.

The lattice results indeed show remarkably different
potentials F (T, r) and V (T, r) near Tc (see e.g. Fig.1-4
in [6] and also here Fig.1 adapted from [3]). In particular
let us emphasize two important points.
(i) The tensions (slopes of the potentials at r about
0.3 − 1fm) have very different temperature dependeces:
while the tension of the free energy σF decreases with T ,
to near zero at Tc (an expected signal of deconfinement),
the tension of the internal energy σV remains nonzero till
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FIG. 2: Effective string tensions in the free energy σF (T )
(from [4]) and the internal energy σV (T ) (extracted from [3]).

about T = 1.3Tc, with a peak value at Tc about 5 times
(!) the vacuum tension σvac (see Fig.2).
(ii) This drastically different behavior persists to very
large distances, where linear behavior changes to satu-
rated values. Near Tc the internal energy flattens to huge
asymptotic value at large r → ∞, e.g. V (T,∞) ∼ 4GeV
at Tc with the corresponding entropy S(Tc,∞) ≈ 20 im-
plying huge number of states involved, ∼ exp(20).
These features indicate strikingly strong interaction be-
tween the static color charges and the medium near Tc,
which persists into the deconfined phase.

Such static Q̄Q potentials at finite T are closely con-
nected with a number of phenomenological issues. For
example, the consequence of these features for the sur-
vival of quarkonium in deconfined plasma is much de-
bated, e.g. on what/which potential should be used [7–
9]. If, as suggested in [10, 11], the internal energy is used,
J/ψ state would exist even in the deconfined plasma in
1 − 2Tc. Persistence of some baryonic states above Tc
is also indicated by other observable like the baryonic
susceptibilities[12, 13]. These potentials also imply sig-
nificant interaction energy in the quark-gluon plasma and
in the many body context this may lead to a large clas-
sical plasma parameter Γ (defined as the ratio of average
interaction energy to average kinetic energy): indeed the
Γ value in sQGP has been estimated to be above one
(about 3) and thus in a typical liquid regime (see for ex-
ample [14–16]). If so, QGP would be a strongly coupled
Coulombic liquid, in agreement with the strong collec-
tive flow observed at RHIC, see more in reviews [17, 18].
Apart from QGP phenomenology, it is important to un-
derstand the microscopic origin of the potentials, espe-
cially the strong splitting between two potentials and the
large energy/entropy associated with the static Q̄Q pair
near Tc. Earlier attempts can be found in e.g. [19–21].

In this paper we will specifically focus on the “ten-
sions” σF and σV (as shown in Fig.2) related to the

linear part of the potentials (while leaving the discus-
sion of “screening” behavior at very large distances to
further studies). We will provide an explanation in the
framework of the magnetic scenario of QCD plasma near
Tc [15, 22–25]. In such a scenario, the near Tc QCD
plasma is strongly influenced by the magnetic compo-
nent, made of relatively light and abundant chromo-

magnetic monopoles. Those are quasiparticles above Tc
which undergo the Bose-Einstein condensation (BEC)
below Tc, enforcing color confinement (for reviews see
e.g. [26, 27]). Two key points of the present model for
the potentials are: First, we identify the Q̄Q free energy
as been probed by an adiabatically “slow separation” pro-
cess while the internal energy by a “fast separation” pro-
cess. Second, we further relate the linear part of poten-
tials with the flux tube formation, enabled by condensed
monopoles below Tc while thermal monopoles above Tc,
between the Q̄Q pair during the separation process [28],
and relate the free/internal energy tensions with the con-
densed/thermal monopoles respectively. These ideas will
be elaborated more in Section II and III.
The rest of the paper is structured as follows. In

Section-IV we will develop an analytic “elliptic flux bag”
model for a static charge-anti-charge pair by solving the
Laplace equation for electric field inside it. This al-
lows to get the potentials correctly interpolating between
Coulomb at short distance and linear behavior at larger
distance. The model will then be used in section-V to de-
termine the free and potential energies and relate the ex-
tracted σF (T ) and σV (T ) with the monopole condensate
and the thermal monopole density, respectively. Finally
we summarize the results in Section-VI.

II. FREE V.S. INTERNAL ENERGY AND

SLOW V.S. FAST SEPARATION

Let’s start by examining the difference between the
free energy and the internal energy. We already in-
troduced the effective string tensions σF (T ) and σV (T )
as the slopes of linear parts in F (T, r) and V (T, r)
respectively, and emphasized their quite different T -
dependencies shown in Fig.2. While σF vanishes at T >
Tc, σV survives to at least 1.3Tc. While σF monotonously
decreases with T , σV peaks at Tc to a maximal value of 5
times the vacuum string tension σvac. What is the differ-
ence in the meaning of F and V , and why do they have
such different T -dependence? As has been emphasized
in [10], the free and internal energies actually correspond
to slow and fast (relative) motion of the charges, respec-
tively. Let us explain this idea in more details.
Consider the “level crossing” phenomena, occurring

while the separation between charges is changed. Sup-
pose a pair of static charges (held by external “hands”)
are moved apart in thermal medium at certain speed
v = L̇. For each fixed L, there are multiple configu-
rations of the medium populated thermally. When L is
changed, the energies of these configurations are cross-
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ing each other, and at each level crossing there is cer-
tain probability to change between the levels, depend-
ing on the speed of separation v = L̇. If the motion is
adiabatically slow, then all the level crossing processes
happen with probability 1: in thermodynamical context
this leads to maintained equilibrium and maximal en-
tropy/heat generation. If however the pair is separated
very fast, then the level crossing is suppressed and the
medium is no longer in equilibrium with the pair. The
amount of entropy generated is less than in the adiabatic
case. In the extreme case one may expect that the pair,
if moving on a time scale much much shorter than the
medium relaxation time scale, decouples from the media
and produce negligible entropy. It is plausible, therefore,
to identify the adiabatic limit as probing the free en-
ergy F (T, L) measured on the lattice with the presence
of static Q̄Q pair. The “internal energy” V (T, L), on the
other hand, is different from F (T, L) by subtracting the
entropy term and thus can be probed in the extremely
fast limit in which possible transitions among multiple
states via level crossing do not occur and no entropy is
generated.
We emphasize that such phenomenon in thermal

medium is a direct analogue of what exists in pure quan-
tum mechanical context. Perhaps the oldest example is
the so called Landau-Zener phenomenon [29, 30] of elec-
tron dynamics during the vibrational motion of two nu-
clei in a diatomic molecule. Specific electron quantum
states ψn(L) are defined at fixed L (the separation be-
tween two nuclei) with energies En(L), and certain levels
cross each other at specific value of L. The issue is the
probability of the transition during such crossing of two
levels. Consider two levels with their energies given ap-
proximately by E1(L) ≈ σ1L+C1 and E2(L) ≈ σ2L+C2

near the crossing point. When the two nuclei approach
the crossing point adiabatically slowly v = L̇ → 0, the
electrons always change from one state to the other se-
lecting the lowest state at any L. If the two nuclei have
fast relative motion then the transition between the two
levels at crossing point is suppressed. More quantita-
tively, Landau and Zener showed that the probability to
remain in the original state (i.e. no transition) is expo-
nentially small at small velocity v

Premain = exp

[

− 2π|H12|2
v|σ1 − σ2|

]

(3)

where H12 is the off-diagonal matrix element of a two-
level model Hamiltonian describing the transition be-
tween the two levels.

III. STABLE AND METASTABLE FLUX TUBES

We now turn to the possible microscopic origin of the
linear rise in both potentials. Let’s start with the “dual
superconductor” model for QCD confinement in the vac-
uum, introduced by t’Hooft-Mandelstam [31] and well
supported by extensive studies in lattice QCD. In this

model, certain “magnetically charged” condensate (i.e.
a magnetic superconductor) occupies the vacuum and
expels the electric flux between Q̄Q into a stable flux
tube by forming magnetic super-current on tube surface,
known as (dual) Meissner effect. Such flux tube naturally
gives rise to a linear potential and the vacuum string ten-
sion is thus identified with energy per unit length of such
flux tube, mathematically described by the well-known
Abrikosov-Nielsen-Olesen (ANO) solution [32] (for re-
views and further references see e.g. [1, 2, 33, 34]). What
happens at finite T then? With increasing T, the free en-
ergy tension decreases and eventually the linear part in
Q̄Q free energy disappears at Tc, signaling the deconfine-
ment transition. Since the flux tube and free energy ten-
sion is a direct consequence of the magnetic condensate,
the decrease of σF toward Tc is naturally interpreted as
the gradual “melting” of the magnetic condensate due to
thermal excitations: similar phenomena is known for the
usual superconductor in condensed matter systems.

Now, where does the linear part in internal energy (and
the associated tension σV ) come from? In particular,
why does it persist even above Tc? The answer first pro-
posed in [15] relates it to the “normal” monopoles, as
opposed to the BEC condensed monopoles existing only
below Tc. Such thermal monopoles can also expel the
electric flux into (meta-stable) flux tube by forming a
magnetic current (which may suffer from dissipation) on
the tube surface: its dual phenomenon, i.e. magnetic
flux tube formation in thermal electron plasma is well
know in classical (e.g. solar) plasma physics. Specific
condition for the persistence of the electric flux tube in
a magnetic plasma was further developed in [28], for in-
finitely long flux tubes. There it has been found that
“normal” monopoles are much less effective for this task
as compared with “super” monopoles, but nevertheless
able to mechanically stabilize the flux tube provided high
enough density of these thermal monopoles. What has
not been previously considered is the mechanism for dy-
namical formation of flux tube between a Q̄Q pair with
finite separation.

Here we provide a dynamical explanation of why large
energy, growing approximately linearly with length, ap-
pears in a magnetic plasma when a pair of two electric
charges are separated with certain speed v, see sketch of
the setting in Fig.3. The answer lies in the Maxwell equa-
tions (with the presence of magnetic sources, see e.g.[42]),
in particularly the dual Faraday’s law which relates the

circulation of the magnetic field
∫

~B~dl over a closed con-
tour with the change of electric flux penetrating the en-
closed area. As an electric charge moves through the
loop, rotating magnetic field in the magnetic medium
leads to solenoidal magnetic current (a “magnetic coil”).
In the confined phase T < Tc this current, after relax-
ation, becomes the persistent super-current, remaining
forever without loss: thus the free energy F has a linear
term for T < Tc. In a deconfined plasma phase T > Tc
this is impossible, thus σF = 0: the solenoidal “magnetic
coil” created in the fast process has only normal magnetic
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FIG. 3: Schematic demonstration of magnetic solenoidal by
Dural Faraday’s law, see text.

current, which is a meta-stable flux tube and eventually
disappears due to dissipation. Yet it is still generated:
thus σV − σF is nonzero and there is splitting between
free and internal energy.
Let us emphasize again the different roles of the super

and normal magnetic components. The former responds
quantum mechanically as a whole and does not gener-
ate any entropy nor contribute to the splitting. the lat-
ter, however, has finite relaxation time and nonzero dis-
sipation, “feels” the different time scales involved in the
slow/fast processes, and therefore is responsible for en-
tropy generation and the splitting between free and inter-
nal energy. In short, the σF tells us about the super com-
ponent only, while the difference σV − σF tells us about
the normal component. One arrives at the following pic-
ture for an evolving magnetic medium: with increasing
T the monopole ensemble starts as a monopole conden-
sate and continuously evaporates into a mixture of both
condensed and thermal monopoles; at T > Tc the con-
densate melts entirely into a normal component of ther-
mally excited monopoles. If so, the thermal monopoles
are expected to be most important in the temperature
range 0.8− 1.3Tc where the splitting is most significant.
We end this Section with discussions on a few impor-

tant phenomenological implications of the “dual Fara-
day effect” and the meta-stable flux tube. First, it
means that magnetic monopoles may induce new mech-
anism of (electric) jet energy loss particularly near Tc.

In the jet quenching process, a very fast electric parton
(quark or gluon) penetrates the bulk medium through
various phases and thus may create behind it the above
discussed “magnetic coil” in the near Tc region where
there are abundant thermal monopoles to be accelerated
solenoidally by B field due to the fast moving electric jet
and thus take enormous amount of energy away from the
jet. Such near-Tc enhancement of jet quenching has been
first suggested by us in [35] and found to be strongly fa-
vored by the azimuthal anisotropy data of jet quenching.
Second, it also implies specific patterns of multi-particle
correlations if such flux tubes can be created and pro-
tected by monopoles in heavy ion collisions, as elaborated
first in [36]. One example is related to what happens to
the flux tube created by a fast jet: clearly the monopoles
forming the “coil” will subsequently collide with the bulk
thermal matter, with their energy being converted and
distributed into the bigger volume: this may possibly
be the beginning of “conical flow” process suggested in
[37]. The other example concerns the narrow-azimuthal-
angle long-range-rapidity correlations known as “ridge”
which seems originating from certain local initial fluc-
tuation seeds, but its narrowness in angle may be pos-
sibly preserved till the end of long bulk evolution only
if certain mechanism like the flux tube by the thermal
monopoles protects the initial seed from acoustic expan-
sion (see detailed discussions in [36]). The existence of
meta-stable flux tubes in the near Tc plasma (and their
associated large entropy) may also bear relevance to the
observed cluster correlations [38]. While the existence
and dynamical formation of such flux tubes are studied
in [28] and here, another very important question (par-
ticularly for phenomenology) is its life time, i.e. the flux
tube decay and the end products. This problem has re-
cently been partially addressed in [39] where a relatively
short life time is found in the classical treatment. On
one hand from hydrodynamic modeling we know the near
Tc plasma has very small shear viscosity which indicates
short mean free path and frequent scattering, while on
the other hand for the magnetic currents to last long
and hold the flux tube they better do not scatter too
often: such a dilemma might be resolved if the thermal
monopoles become really coherent over large distance at
T close to Tc and the lattice study supports such coher-
ence [40]. These questions will be studied further else-
where.

IV. ELECTRIC FIELD SOLUTION IN THE

ELLIPSOIDAL BAG

In this Section we will solve the Maxwell equation for
electric field induced by a pair of static charge-anti-charge
separated by a distance L = 2a along ẑ axis (±Qe sitting
at ∓aẑ), with a special “tangent boundary condition”
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(T.B.C.) on the boundary surface ΣB , i.e.

~▽2

Φ(r) = Qe[δ
3(r− aẑ)− δ3(r+ aẑ)] (4)

~▽Φ · n̂ΣB
|ΣB

= 0

The model itself is a version of an old idea known as
the Bag Model used for light hadrons [41] at T = 0,
now generalized to give an approximate description of
the electric field configuration between static Q̄Q in the
chromo-magnetic medium at finite temperature.

A simplification we use is that the boundary ΣB is
approximated by a rotational ellipsoid with the two
charges at its focal points. This boundary shape can
be specified by a single parameter ξB , the elliptic-
ity. Such boundary ΣB is very conveniently param-
eterized in terms of the parabolic coordinates system
(ξ, η, φ), which we use: see Appendix A for necessary
formulae related to it. In Fig.4 we show a few el-
lipsoidal shapes with parameters (from inside to out-
side) (L, ξB) to be (0.1, 6.62),(1, 1.68),(2, 1.29),(3, 1.16)
respectively, the dashed lines indicate constant-η curves
(for L = 3 case) with (from top to bottom) η =
0.8, 0.5, 0.2,−0.2,−0.5,−0.8, the solid/empty circles in-
dicate the positions of positive/negative charges, and the
arrows indicate the tangent electric fields on the bound-
ary.

0 22 11
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z çæ
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FIG. 4: The ellipsoidal shapes we use for solving the electric
field equations, see text for detailed explanations.

We follow the standard method in classical electrostat-
ics, see for example [42]. First, we rewrite (4) in (ξ, η, φ)
coordinates for solutions with axial symmetry, i.e. as-

suming Φ = Φ(ξ, η) independent of angle φ

∂

∂ξ

[

(ξ2 − 1)
∂Φ

∂ξ

]

+
∂

∂η

[

(1− η2)
∂Φ

∂η

]

=
Qeδ(ξ − 1)

πL

[

δ(η − 1)− δ(η + 1)

]

=
∑

ν=1,3,5,...

Qeδ(ξ − 1)

πL
(2ν + 1)Pν [η] (5)

The last line in the above is an expansion of the η-
dependence in terms of Legendre functions Pν [η] which
in the interval η ∈ [−1, 1] form a set of orthogonal and
complete basis functions. Similarly, we do the expansion
for the η-dependence of Φ:

Φξ,η =
∑

ν=1,3,5,...

Qefν [ξ]

πL
(2ν + 1)Pν [η] (6)

Then by simply comparing the coefficients of Pν [η] on
both sides of Eq.(5) we obtain the equations for the func-
tions fν [ξ] defined in ξ ∈ (1,∞):

d

dξ

[

(1 − ξ2)
dfν
dξ

]

+ ν(ν + 1)fν = −δ(ξ − 1) (7)

while the boundary condition in Eq(4) now becomes

f ′[ξ = ξB ] = 0 (8)

with the parameter ξB specifying the boundary surface
ΣB. The solutions are given in terms of the Legendre
functions of the first and second kinds:

fν [ξ] = −kBν Pν [ξ]−Qν [ξ] (9)

kBν = −Q
′
ν [ξB ]

P ′
ν [ξB ]

= −ξBQν [ξB]−Qν−1[ξB]

ξBPν [ξB]− Pν−1[ξB ]

The full electrostatic potential is then given by

Φ
(

~r
∣

∣L, ξB
)

= − Qe

4πL

∑

ν=1,3,5,...

(8ν + 4)Pν [η]
(

kBν Pν [ξ] +Qν [ξ]
)

=
Qe

4πL

2

ξ + η
+

(−Qe)

4πL

2

ξ − η

− Qe

4πL

∑

ν=1,3,5,...

(8ν + 4)kBν Pν [ξ]Pν [η] (10)

We’ve used the Neumann expansion of Legendre func-
tions (see e.g. [45]) to write down the second equality:
in there the first two terms are nothing but the usual
Coulomb potentials by the ±Qe charges, while the last
summation term reflects the nontrivial boundary contri-
bution. At very large ν the summand terms go asymp-
totically like νξν/ξ2ν+2

B , so with ξ satisfying 1 < ξ ≤ ξB,
the summation is guaranteed to converge. The electric

field ~E = −~▽Φ has been calculated using (A4) and the
expression is quite lengthy which we skip showing here.
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The volume occupied by the electric field (i.e. the el-
lipsoid bulk within ξB) is given by

VE(L, ξB) =

∫ ξB

1

dξ

∫ 1

−1

dη

∫ 2π

0

dφHξHηHφ

=
πL3

6
ξB(ξ

2
B − 1) (11)

And the total electric field energy in this volume is given
by

Etotal(L, ξB)

=

∫ ξB

1

dξ

∫ 1

−1

dη

∫ 2π

0

dφHξHηHφ
ρe × Φ(ξ, η)

2

= Eself + EE

Eself =
Q2

e

4πL

1

(ξ + η) → 0
+

Q2
e

4πL

1

(ξ − η) → 0

EE = − Q2
e

4πL
+

Q2
e

4πL

∑

ν=1,3,5,...

(8ν + 4)kBν

≡ Q2
e

4πL
ĒE(ξB) (12)

The Eself is the familiar self-interaction of the two
charges which we discard. The “real” interactional en-
ergy EE consists (again) a Coulomb piece and a boundary
modification.
We conclude this section by one remark: so far the two

key variables L and ξB remain free parameters: they will
be related in the next section.

V. THE FREE AND INTERNAL ENERGY OF

THE CHARGE PAIR

With the solutions of electric field in the ellipsoidal bag
(characterized by two parameters L and ξB) from preced-
ing Section, we now examine the dynamic formation of
such bag when separating a pair of Q̄Q from zero to a
finite distance L. The key point is that for a given L, the
bag boundary ξB shall be optimized so that the “cost”
for creating such a configuration is minimized. Further-
more we study two settings: slow and fast separation of
the Q̄Q to a finite distance L, with the outcome being
respectively the free and internal energy associated with
the pair. With slow separation, the free energy increase
associated with the pair shall be minimized, and the dom-
inant contributions to the free energy include both the
electric field energy stored inside the bag and the energy
needed to exclude the monopole condensate out of the
bag volume (noting that for both there is no entropy as-
sociated and for thermal monopoles their contribution to
free energy in the slow separation process largely cancels
out between energy and entropy). With fast separation,
the energy increase shall be minimized, and the dominant
contributions to the energy include both the electric field
energy stored inside the bag and the energy deposited to

the thermal monopoles via the dual Faraday effect. We
will calculate both processes in the rest of this Section
and make connections with the lattice data.

A. Free Energy from Slow Separation

As afore-discussed, when the Q̄Q pair is separated in
an adiabatically slow way, the super component of the
magnetic medium i.e. the monopole condensate will be
expelled entirely (in an idealized picture) out of the vol-
ume VE occupied by electric field. Suppose the conden-
sate has a negative energy density −ǫC (thus a positive
“bag pressure”), then the overall change in free energy
brought about by separating the pair will be

∆F = EE(L, ξB) + ǫC(T ) · VE(L, ξB) (13)

Now for given separation distance L and bulk temper-
ature T , we determine the physical boundary of flux

bag ξphyB by minimizing the above ∆F , i.e. the physi-

cal boundary ξphyB (L, T ) satisfies:

∂∆F

∂ξB

∣

∣

∣

∣

ξB=ξphy

B

= 0 (14)

Combining the above with Eq.(11,12) we then obtain

[

1

3ξ2B − 1

dĒE
dξB

]∣

∣

∣

∣

ξB=ξphy

B

= −
(

L

lC

)4

(15)

where we have introduced a length scale

lC ≡ (6αE/πǫC)
1/4 (16)

with αE ≡ Q2
e/4π. This equation could be solved easily

by numerics. For each L with the above determined

ξphyB , we obtain via (13) the free energy associated with
the pair as a function of separation L, shown in Fig.5(a).
It turns out to be Coulomb at short distance(see the
magenta dashed curve) plus linear at large distance(see
the blue dashed line). The occurrence of a linear part is
due to the physical effect that for large L the medium
pressure (with which the electric field has to balance)
limits the transverse size of flux bag (where the field
gets weak as L increases) to saturate rather than grow
forever: thus the bag shape approaches a cylinder.

Mathematically, as L → ∞ one finds ξphyB → 1 but

L ·
√

(ξphyB )2 − 1 → finite. In Fig.4 the four bag shapes

are at growing L with ξB determined as in the above,
which clearly shows the shape becomes more and more
cylindrical at large L.

By fitting the dimensionless slop of the linear part in
Fig.5(a) we obtain the free energy string tension σF :

√
σF = 2.32× α

1/4
E × ǫ

1/4
C (17)
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FIG. 5: (a)(left) free energy F (in unit of αE/lC) versus separation L/lC ; (b)(Right) monopole condensate energy density

(ǫC)
1/4 in unit of

√
σvac with the two curves for αE being 0.5(upper, red) and 1(lower, blue) in Eq.(17) respectively.

Inversely, since we know σF (T ) from lattice as shown
in Fig.2, from the above formula we can infer the T -
dependence of the monopole condensate energy density
ǫC : see Fig.5(b). The two curves are for αE being 0.5(up-
per) and 1(lower) respectively. In both cases, ǫC de-
creases with T and drops abruptly close to Tc. The inter-
pretation is natural: toward Tc the monopole condensate
becomes less and less due to increasing thermal excita-
tions and eventually dies out around Tc.
A connection can be made between our result (17) and

the dual superconductor model (also known as Abelian
Higgs model) of vacuum confinement [33]. In that model,
a quadratic Higgs potential leads to a Higgs condensate
(the prototype of postulated monopole condensate) φ0
(with dimension of mass). By solving ANO flux tube a
string tension is obtained in the form

√
σ = c1φ0 with

the coefficient determined by gauge and Higgs coupling
constants λ and g. On the other hand the Higgs potential
implies that the condensate has a negative energy density
−ǫC = −λφ40/2, thus one arrives at a similar relation
between string tension and condensate energy density:√
σ = c2ǫ

1/4
C in that model with the coefficient to be

determined numerically for given coupling parameters,
see e.g. [43]. While that model works primarily at T = 0,
our model for σF extends to finite T.

B. Internal Energy from Fast Separation

Now we study the case of separating the two charges to
a finite distance L within a time much smaller than the
relaxation time of the surrounding thermal bath. In par-
ticular we focus on the region about 0.8−1.3Tc, in which
the normal component of thermal monopoles becomes
substantial and dominant while the super component be-
comes less and less.
During such fast process, each monopole originally

in the volume to be occupied by the electric filed (i.e.
the ellipsoidal bag) will get a ”kick” due to the dual
Faraday effect (see Fig.3) but have no time to release
this energy into the surrounding medium. Suppose the
positive charge is moved along ẑ-axis from z = C to
z = C + δz in δt (and correspondingly the negative one
from z = −C to z = −(C + δz)), then the electric flux
penetrating the plane z = C changes from 0 to Qe, thus
generating a magnetic dynamical voltage Qe/δt. For a
monopole at a transverse distance ρ from ẑ axis, the
force is Qm(Qe/δt)/(2πρ), thus it gets the ”kick” and
obtains a momentum δp = QmQe/(2πρ), forming strong
non-thermal and non-super magnetic currents. For a bag
(L, ξB) formed after separation, the total kinetic energy
passed to the monopoles in the flux bag is obtained by in-
tegration over the bag volume (withD ≡ QmQe/4π = 1):

∆KM =

∫ ξB

1

dξ

∫ 1

−1

dη

∫ 2π

0

dφHξHηHφ

× 4nM D

L
√

(ξ2 − 1)(1− η2)

=
π2DnM

2
L2ξB(ξ

2
B − 1)1/2 (18)

We emphasize in the above only the monopole density
nM (T ) enters as a property of the medium depending
on T , while other equilibrium properties of the medium
shall not be ”felt” in such fast process.
Now the total energy change during such process in-

cludes the electric field energy in the bag volume, the
energy for expelling the monopole condensate (if there
is any) out of the volume, and the kinetic energy deliv-
ered to the normal monopoles, which are summed to be
∆E = EE(L, ξB) + ǫCVE + ∆KM (L, ξB). The last new
term due to the thermal monopoles will then partly con-
vert into entropy after they interact with the medium
particles at large for a time longer than the relaxation,
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T > 1.3Tc from [25] (see text for more details).

ultimately causing the splitting between free/internal en-
ergy. Since the condensate term ǫCVE becomes very
small close to Tc (as we showed in previous subsection)
and vanishes above Tc, we neglect it here for simplicity,
i.e. ∆E ≈ EE(L, ξB)+∆KM(L, ξB). To obtain the phys-

ical value ξphyB , we need to minimize ∆E according to ξB,
which leads to

∂∆E

∂ξB

∣

∣

∣

∣

ξB=ξphy

B

= 0 (19)

This can be written as
[

√

ξ2B − 1

2ξ2B − 1

dĒE
dξB

]∣

∣

∣

∣

ξB=ξphy

B

= −
(

L

lM

)3

(20)

Here we introduced a different length scale lM ≡
(2αE/π

2DnM )1/3. Not surprisingly we find the internal
energy, shown in Fig.6(a), to be a Coulomb at short dis-
tance(see the magenta dashed curve) plus linear at large
distance(see the blue dashed line).
Now the string tension in the internal energy is given

by the following formula:

√
σV = 3.88× α

1/6
E × n

1/3
M (21)

Since we know σV from lattice data in the 0.8 − 1.3Tc
region, by the above formula we can convert σV into
thermal monopole density nM (T ) in the same region:
see the two curves(connecting box symbols) for αE be-
ing 0.5(upper, red) and 1(lower, blue) respectively in
Fig.6(b). We also show an independent information on
the thermal monopole density above 1.3Tc from lattice
study in [25] in Fig.6(b) as green curves(connecting di-
amond symbols): the lower one is the original data for
SU(2) in [25], while the upper one is an extrapolation to
SU(3) by the simple Nc − 1 scaling for monopole species

(i.e. twice more monopoles in SU(3) than in SU(2)),
with both curves extended toward Tc according to the
fitting formula nm/T

3 = 0.48/log(2.48 · T/Tc)1.89 (and
twice in the upper one for SU(3)) in [25]. The com-
parison shows reasonably good agreement between our
estimates for the thermal monopole density from string
tension and the measured density by directly identifying
the thermal monopoles on the lattice.

A few comments are in order: (i) for 0.8 − 1Tc the
density quickly grows toward Tc while at the same time
results from previous subsection show rapid dropping of
condensate density in the same region, which strongly
indicates the scenario that close to Tc monopole conden-
sate is continuously and substantially getting excited into
thermal monopoles; (ii) around 1.3Tc we see our results
connect well to the higher T lattice data with reasonable
values of coupling αE ; (iii) cooling down to Tc we find
the monopole density nM/T

3 quickly rising almost by an
order of magnitude; (iv) the strongly increasing density
also suggests rapid increase of magnetic screening toward
Tc, which is in agreement with lattice results [44].

A particularly interesting feature is that the (normal-
ized) density nM/T

3 increases roughly by one order of

magnitude from 1.3Tc down to Tc, with the number
much larger than even a Stefan-Boltzman gas. This in-
dicates that near Tc the monopoles should be very light,
and furthermore their interactions should make it bene-
ficial in energy to have a large number of monopole-anti-
monopole pairs. The monopoles are so dense and light
that they become the dominant component in the near-
Tc plasma and presumably become quantum coherent,
and eventually reach the condensation point at Tc (see
most recent lattice results in [40] showing evidences for
such a scenario). It has been suggested that these ther-
mal monopoles near Tc seem to form a densely packed
liquid [22][25].
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VI. SUMMARY

In this paper, we have argued that the free energy
F (r, T ) and internal energy V (r, T ) can be probed by
slow and fast separation of the Q̄Q pair, respectively.
Furthermore we have identified the linear part in both
potentials with flux tube formation between the pair: for
free energy as probed by slow separation, there is sta-
ble flux tube protected by magnetic super-current due to
condensed monopoles which has no dissipation and exists
below Tc; for internal energy as probed by fast separa-
tion, there is meta-stable flux tube protected by magnetic
normal current due to thermal monopoles which are very
dense in the region 0.8 − 1.3Tc and generate large en-
tropy (the splitting between free and internal energy) via
dissipation on longer time scale. Based on these ideas we
have solved analytically the elliptic bags and provided
expressions for the potentials at all separations, which
happen to describe the data very well.
The main outcome from our study of the static Q̄Q po-

tentials is the particular relations we suggest between the
free energy F (r, T ) and internal energy V (r, T ) measured
on the lattice and the densities of the condensed and
“normal” monopoles: see Eqs.(17) and (21). Since those
densities can be directly obtained from the lattice config-
urations, one may check if these relations are correct or
not. Such further tests of the “magnetic scenario”[15, 23]
for the near Tc QCD plasma are rather straightforward
and should be performed.

Acknowledgements

The work of JL was partially supported by the Direc-
tor, Office of Energy Research, Office of High Energy and
Nuclear Physics, Divisions of Nuclear Physics, of the U.S.
Department of Energy under Contract No. DE-AC02-

05CH11231. The work of ES was supported in parts by
the US-DOE grant DE-FG-88ER40388.

Appendix A

In this Appendix we briefly list the parabolic coordi-
nates formulae needed for the calculation in Sec.2.
The coordinates we use are (ξ, η, φ) with two focal

points at ±aẑ, which are related to cylindrical coordi-
nates (ρ, φ, z) by

ρ = a
√

(ξ2 − 1)(1− η2) , φ = φ , z = aξη (A1)

The variables are defined in the following domains: ξ ∈
(1,∞), η ∈ [−1, 1], φ ∈ [0, 2π). Writing ds2 = H2

ξ dξ
2 +

H2
ηdη

2 +H2
φdφ

2, we have

Hξ = a

√

ξ2 − η2
√

ξ2 − 1
, Hη = a

√

ξ2 − η2
√

1− η2
,

Hφ = a
√

(ξ2 − 1)(1− η2) (A2)

The Laplacian is given by

~▽2

=
1

a2(ξ2 − η2)

{

∂

∂ξ

[

(ξ2 − 1)
∂

∂ξ

]

+
∂

∂η

[

(1 − η2)
∂

∂η

]

+

[

1

ξ2 − 1
+

1

1− η2

]

∂2

∂φ2

}

(A3)

Finally the gradient is given by

~▽ = ξ̂
∂

Hξ∂ξ
+ η̂

∂

Hη∂η
+ φ̂

∂

Hφ∂φ
(A4)

For more details one could consult books such as [45].
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