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The 
al
ulation of the real part of a quasi-parti
le dispersion relation at next-to-leading order in

the hard thermal loop e�e
tive theory is a very di�
ult problem. Even though the hard thermal loop

e�e
tive theory is almost 20 years old, there is only one next-to-leading order 
al
ulation of the real

part of a quasi-parti
le dispersion relation in the literature [1℄. In this paper, we 
al
ulate the fermion

mass in QED and QCD at next-to-leading order. For QED the result is M = eT/
√
8 (1− (1.427 ±

0.02)e/4π) and for QCD with Nf = 2 and Nc = 3 we obtain M = gT/
√
6 (1 + (1.867 ± 0.02)g/4π).

PACS numbers: 11.10.Wx, 11.15.-q

I. INTRODUCTION

It is well known that the behaviour of an elementary parti
le be
omes modi�ed when the parti
le propagates

in a medium. The parti
les be
ome �dressed� by their intera
tion with the medium, and one speaks of 
olle
tive

modes, or quasi-parti
les. One studies these 
olle
tive modes by looking at the 
orresponding thermal propagators.

The behaviour of the quasi-parti
les is dedu
ed from the analyti
 stru
ture of the propagator. In [2℄ it was shown

from general prin
iples that the singularity stru
ture of 
ertain 
omponents of gauge and matter propagators are

gauge-independent, when all 
ontributions of a given order are systemati
ally taken into a

ount.

The 
al
ulation of dispersion relations for soft quantities at next-to-leading order (NLO) in the hard thermal loop

(HTL) e�e
tive theory is notoriously di�
ult. There are several 
al
ulations of damping rates at NLO. The soft stati


gluon damping rate was 
al
ulated in Ref. [3℄. The damping rate of a soft stati
 quark was 
al
ulated in Ref. [4, 5, 6℄.

Cal
ulations of masses and os
illation frequen
ies require the real part of the dispersion relation, whi
h is 
onsiderably

more di�
ult to obtain. There is only one 
omplete 
al
ulation in the literature of the real part of a quasi-parti
le

dispersion relation at NLO: the pure glue plasma frequen
y in the long wavelength limit was 
al
ulated by S
hulz [1℄.

In this paper we 
al
ulate the fermion mass, in QED and QCD, at NLO. It is straightforward to obtain the result for

QCD from the 
orresponding result for QED by adjusting the HTL masses and in
luding an overall fa
tor CF in the

quark self energy.

For soft stati
 ele
trons with momenta Qµ = (q0 ∼ eT, ~q = 0), the mass and damping rate of the quasi-parti
le are

obtained from the solution of the equation

det (Q/ −Σret(Q))
∣

∣

∣

q0=M−iγ
= 0. (1)

The fermion self-energy 
an be de
omposed in the usual way:

Σret = γ0Σ
(0)
ret + ~γ · q̂Σ(i)

ret. (2)

Sin
e we have taken q = 0, the only non-zero 
omponent is Σ
(0)
ret(q0) = Tr (γ0Σret(Q))/4. From now on, we suppress

the supers
ript `(0)' to simplify the notation. In addition, we suppress throughout the subs
ript `ret' indi
ating the

retarded 
omponent of the self energy. Using this notation we write the dispersion relation as

q0 − Σ(q0)
∣

∣

∣

q0=M−iγ
= 0. (3)

At leading order (LO), the self energy is given by the familiar HTL result,

ReΣHTL =
e2T 2

8q0
, ImΣHTL = 0. (4)

http://arxiv.org/abs/0805.0170v1


2

Substituting (4) into (3) we obtain the leading order results for the mass and damping rate:

mf := M (0) =
eT√
8
, γ(0) = 0. (5)

We are interested in obtaining NLO 
orre
tions to these results. To obtain these NLO 
orre
tions, we expand the

dispersion relation around the lowest order (LO) solution in Eqn. (5), keeping 
ontributions to linear order in NLO

quantities. The resulting equations are parti
ularly simple be
ause of the fa
t that the imaginary part of the LO HTL

self energy is zero. The real and imaginary parts of the dispersion relation give

M (1) −M (1)ReΣ′
HTL[M

(0)]− ReΣNLO
[

M (0)
]

= 0, (6)

γ(1) − γ(1)ReΣ′
HTL

[

M (0)
]

+ ImΣNLO
[

M (0)
]

= 0.

Using (4) and (5) we obtain

M (1) =
1

2
ReΣNLO

[

M (0)
]

, γ(1) = −1

2
ImΣNLO

[

M (0)
]

. (7)

To obtain the NLO mass and damping rate from (7) we must 
al
ulate the NLO self energy. The original paper

by Braaten and Pisarski [7℄ identi�ed three potential 
ontributions. They are: (1) 
orre
tions to the LO result for

the 1-loop diagram obtained by expanding to next order in the ratio of the soft external momentum to the hard loop

momentum; (2) 
ontributions to the 2-loop diagrams from the region of the phase spa
e that 
orresponds to both

loops hard; and (3) 
ontributions to 1-loop diagrams with soft loop momentum, and all propagators and verti
es

repla
ed with HTL e�e
tive ones. The power 
ounting arguments of Braaten and Pisarski refer to the maximum

possible 
ontribution from ea
h type of term. The a
tual 
ontribution may be lower order for kinemati
al reasons, or

be
ause of some 
an
ellation between di�erent integrals.

The full NLO 
ontribution is 
ontained in the dressed 1-loop diagrams shown in Fig. 1, where the dots on the

verti
es indi
ate the sum of the bare vertex and the HTL vertex. These diagrams 
ontain all of the 
ontributions

identi�ed by Braaten and Pisarski, if the loop momentum is integrated over the full range from zero to in�nity. The

integral will also 
ontain subleading 
ontributions that are suppressed by powers of 
oupling.

FIG. 1: The diagrams that 
ontribute to the self-energy up to NLO. Wavy lines indi
ate HTL photons and solid lines are HTL

fermions. The verti
es are de�ned in Eqn. (22).

It has been demonstrated that the NLO 
ontribution to the dispersion relation from the diagrams in Fig. 1 is gauge

invariant. This result is obtained by using the fa
t that the HTL verti
es and propagators satisfy the usual Ward

identities. One �nds that the gauge dependent 
ontribution to the NLO fermion self-energy is proportional to an

integral times the square of the inverse propagator S(−1)(Q) = Q/ − ΣHTL(Q), whi
h vanishes on the mass shell. In

[8℄ it was pointed out that a straightforward evaluation of the integral produ
es mass-shell singularities that 
an
el

the 
ontributions from the two inverse propagators, and give a �nite gauge dependent 
ontribution to the damping

rate. This problem was resolved by Rebhan [9℄ who showed that the integral must be regulated before the mass

shell is approa
hed. Using this pro
edure one �nds that the position of the pole is gauge independent, and the gauge

dependen
e o

urs only in the unphysi
al residue.

The integral that 
orresponds to the diagrams in Fig. 1 has the general form

Σ(q0) = e2
∫

dp0

∫

dpF(q0, p0, p,mf , nb(p0), nf (p0))
∣

∣

∣

q0=mf

. (8)
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The fa
tor of e2 in front of the integral is the expli
it fa
tor 
oming from the two verti
es. The integrand is obtained

by 
ombining HTL propagators and HTL vertex fun
tions, and thermal distribution fun
tions (de�ned in (12)). The

HTL propagators and verti
es depend on the 4-momenta and the HTL fermion mass mf . As explained above, we

substitute the LO result q0 = mf in order to extra
t the NLO 
ontribution.

We begin by noting that, if the integral in Eqn. (8) is dominated by the part of phase spa
e that 
orresponds to

p-soft, we 
an expand the thermal distribution fun
tions and use: nb(p) → T/p and nf (p) → 0. After expanding the

distribution fun
tions, one 
an extra
t a fa
tor of the temperature, and s
ale all remaining variables by the LO mass

mf . The result has the form

ΣNLO = e2T · I , (9)

where I is a dimensionless integral that 
an be 
al
ulated numeri
ally.

For the imaginary part of the self energy, we have expli
itly 
al
ulated the 2-loop 
ontributions and 
he
ked that

the integral in (8) is dominated by the p-soft region of the phase spa
e. The numeri
al 
al
ulation of the integral

represented in (9) has been done previously [4, 5, 6℄. The result is [13℄:

γQED =
e2T

4π
· (1.35), (10)

γQCD =
g2TCF
4π

· (1.41) for Nc = 3, Nf = 2, CF = 4/3.

In this paper we 
al
ulate the real part of the self energy by evaluating numeri
ally the integrals that 
orrespond

to the diagrams in Fig. 1, without expanding the distribution fun
tions. We extra
t the numeri
al 
oe�
ients of the

NLO terms by extrapolating to small values of the 
oupling 
onstant. The result of this 
omputation is

MQED =
eT√
8

[

1− (1.427± 0.02)
e

4π

]

+O(e3T ), (11)

MQCD =
gT√
6

[

1 + (1.867± 0.02)
g

4π

]

+O(g3T ), (Nf = 2, Nc = 3).

II. NOTATION

In this se
tion we de�ne our notation and give the integrals that determine the real part of the fermion self energy

at NLO. We use

{γµ, γν} = 2gµν , gµν = diag (1,−1,−1,−1).

The thermal distribution fun
tions are de�ned as

nb(p) =
1

eβp − 1
, nf (p) =

1

eβp + 1
, NB(p) = 1 + 2nb(p), NF (p) = 1− 2nf(p). (12)

In this paper we are only interested in thermal e�e
ts and 
onsequently we ignore zero temperature pie
es of the self-

energy. We use 
apital letters to denote 4-momenta: K = (k0, ~k). We take the external momentum to be Q = (q0,~0)
and the loop momentum is P = (p0, ~p). We write R = P +Q so that we have ~r = ~p. Retarded propagators and self

energies are obtained from p0 → p0 + iǫ and advan
ed fun
tions from p0 → p0 − iǫ. In QED, to leading order the

fermion and photon thermal masses are

m2
f =

e2T 2

8
, m2

G =
e2T 2

6
, (13)

and in QCD

m2
f =

g2T 2

8
CF , m

2
G =

g2T 2

6

(

Nc +
1

2
Nf

)

, CF =
N2
c − 1

2Nc
, (14)

where Nc is the number of 
olours and Nf is the number of �avours.

The HTL self energy is

ΣHTL(Q) =
m2
f

q
Q0(q0, q), Q0(q0, q) =

1

2
ln

(

q0 + q

q0 − q

)

, (15)
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and we de�ne

ΣHTL(d)(Q) = 2i ImΣretHTL(Q), ΣHTL(s)(Q) = 2ReΣretHTL(Q). (16)

The HTL fermion propagators are written as

S(R) =
1

2
(S+(R)(γ0 − r̂/) +

1

2
S−(R)(γ0 + r̂/)), (17)

S+(R) = − 2r2

2r
(

m2
f + r (r − r0)

)

+ ln
(

r0+r
r0−r

)

(r − r0)m2
f

,

S−(R) =
2r2

2r
(

m2
f + r (r + r0)

)

− ln
(

r0+r
r0−r

)

m2
f (r + r0)

.

We use the 
ovariant gauge and write the photon propagator in terms of transverse and longtitudinal 
omponents

(re
all that p = r),

Dµν(P ) = PTµνDT (P ) + PLµν
p2

P 2
DL(P ), (18)

DT (P ) =
1

P 2 −G(p0, r)
, DL(P ) =

P 2

r2
1

P 2 − F (p0, r)
,

G(p0, r) =
1

r2

(

1− Q0 (p0, r) p0
r

)

P 2m2
G +m2

G,

F (p0, r) = − 1

r2
2m2

G

(

1− Q0 (p0, r) p0
r

)

P 2.

Furthermore, we de�ne the dis
ontinuities and the prin
iple parts as

d±(R) = 2iImS±
ret(R), P±(R) = ReS±

ret(R), (19)

dT/L(P ) = 2iImD
T/L
ret (P ), PT/L(P ) = ReD

T/L
ret .

Here, ea
h dis
ontinuity 
ontains a pole 
ontribution and a 
ut 
ontribution:

dT/L(K) = −2πi
∑

n=±1

nZT/L(ωT/L(k), k) δ(k0 − nωT/L(k))− 2πiβT/L(k0, k), (20)

d±(K) = −2πi Z(k0, k)
[

δ(k0 − ω±(k)) + δ(k0 + ω∓(k))
]

− 2πiβ±(k0, k).

Expressions for the fun
tions {βT , βL β+, β−}, and the equations from whi
h {ωT , ωL ω+, ω−}, are obtained 
an

be found using Eqns. (17) and (18). They are also given in the appendix of [6℄.

III. INTEGRANDS

At zero temperature, the integral 
orresponding to the diagrams in Fig. 1 
an be written as

Σ(Q) = −i e2
∫

dP
(

Γµ(Q,P +Q)S(P +Q)Γν(P +Q,Q) Dµν(P ) +Mµν(Q,P,−P,Q)Dµν(P )
)

, (21)

where

∫

dP :=
∫

dp0
∫

d3p, and iS and −iDµν 
orrespond to the ele
tron and photon lines respe
tively. We need

to obtain the 
orresponding integral at �nite temperature. We work in the Keldysh representation of the real time

formalism. The method we use to sum over Keldysh indi
es is des
ribed in [10℄. The verti
es Γ and M are de�ned

in Eqn. (22) where Pψin indi
ates the momentum of an in
oming fermion, Pψout is the momentum of an outgoing

fermion, and Pµγin is the momentum of an in
oming photon,

Γµ(Pψin, Pψout) = γµ + ΓHTL
µ (Pψin, Pψout), (22)

Mµν(Pψin, P
µ
γin, P

ν
γin, Pψout) = MHTL

µν (Pψin, P
µ
γin, P

ν
γin, Pψout).
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A 
omplete expression for the integrand is derived in Ref. [6℄. A reasonably simple form is obtained by rewriting

the HTL verti
es in terms of the self energies, and rearranging the result. There are several tri
ks that must be used

to remove the dependen
e on the HTL verti
es. First, one uses the Kubo-Martin-S
hwinger (KMS) 
onditions for

3- and 4-point fun
tions to obtain an expression that depends only on retarded vertex fun
tions. A 
omplete list of

the KMS 
onditions for 3- and 4-point fun
tions is found in [10℄. For many terms, the HTL Ward identities 
an be

used to repla
e 
ontra
tions of HTL verti
es with the 
onne
ting photon momentum by the appropriate di�eren
e of

HTL self energies. There are some terms for whi
h one must use expli
it results for the HTL 3-point vertex fun
tions.

Fortunately, these expressions have a parti
ularly simple form when one of the fermions is not moving. Using these

te
hniques, all 
omponents of the verti
es 
an be written as simple fun
tions of the HTL self-energy. These self-

energies also appear in the denominators of the HTL fermion propagators. The general strategy is to rearrange terms

in the numerators to 
an
el as many terms as possible with the 
orresponding fa
tors in the denominators. Signi�
ant

simpli�
ations o

ur after 
ombining terms and using the mass shell 
ondition q20 = m2
f . The imaginary part of the

resulting expression, whi
h determines the damping rate at NLO, has been evaluated numeri
ally in Refs. [4, 5, 6℄.

The 
al
ulation of the real part of the self energy, whi
h determines the NLO 
ontribution to the mass, is more


ompli
ated for several reasons. One problem is that se
ond diagram in Fig. 1 produ
es pure real tadpole type 
ontri-

butions that 
an be dropped in the 
al
ulation of the imaginary part. There are additional numeri
al 
ompli
ations

that will be dis
ussed in more detail in Se
. IV. We give below the integrals that need to be 
al
ulated to obtain the

NLO 
ontribution to the real part of the self energy [6℄. We separate terms that 
ontain di�erent 
ombinations of

delta fun
tions, prin
iple parts, and thermal fa
tors. In addition, we de�ne the operator

N̂ := − ie2

32π3

∫

dp0

∫

dr, (23)

whi
h will be fa
tored out of all expressions. The integrals are

ReΣ(dL, NB) =
12

q0
N̂ r2dL(p)NB (p0) , (24)

ReΣ(dL,P+, NB) = − 2

q20
N̂ r2 (−r + q0 + r0)

2
dL(P )NB (p0)P+(R),

ReΣ(dL,P−, NB) = − 2

q20
N̂ r2 (r + q0 + r0)

2 dL(P )NB (p0)P−(R),

ReΣ(d+,PL, NF ) = − 2

q20
N̂ r2 (−r + q0 + r0)

2 d+(R)NF (r0)PL(P ),

ReΣ(d−,PL, NF ) = − 2

q20
N̂ r2 (r + q0 + r0)

2 d−(R)NF (r0)PL(P ),

ReΣ(dT , NB) = − 1

q20
N̂ dT (p)NB (p0)

(

2
(

−3r0R
2 + 4m2

fr0 + 8r2q0 + 6P 2q0
)

−R2ΣHTL(s)(R)
)

,

ReΣ(PT , NF ) =
2

q20
N̂ R2NF (r0)PT (P )ΣHTL(d)(R),

ReΣ(dT ,P+, NB) = − 1

q20
N̂ (p0 − r)2 (r + p0 + 2q0)

2 dT (P )NB (p0)P+(R),

ReΣ(dT ,P−, NB) = − 1

q20
N̂ (r + p0)

2 (−r + p0 + 2q0)
2 dT (P )NB (p0)P−(R),

ReΣ(d+,PT , NF ) = − 1

q20
N̂ (p0 − r)

2
(r + p0 + 2q0)

2
d+(R)NF (r0)PT (P ),

ReΣ(d−,PT , NF ) = − 1

q20
N̂ (r + p0)

2
(−r + p0 + 2q0)

2
d−(R)NF (r0)PT (P ).

The sixth equation in (24) 
ontains the part of the lowest order result that 
omes from the Bose-Einstein distribution

fun
tion and the last two equations 
ontain the part of the lowest order result that 
omes from the Fermi-Dira


distribution fun
tion. The results for these two terms are

Re(dT , NB) =
e2T 2

12
+ · · · ,

Re(d+,PT , NF ) + Re(d−,PT , NF ) =
e2T 2

24
+ · · · (25)

where the dots indi
ate the NLO 
ontribution.
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IV. NUMERICAL ANALYSIS

In this se
tion we brie�y des
ribe the numeri
 methods used to get the results given in Eq. (11). The dimensionless

integrals to be evaluated numeri
ally, given in Eq. (24), are of the form

I(g) =

∫ ∞

0

dp

∫ ∞

−∞

dp0 f(g, p0, p) , (26)

where g is the 
oupling 
onstant. The integrand f(g, p0, p) diverges along some 
urve p0 = h(p) like [p0 − h(p)]−1
and

therefore the integrals must be de�ned using a prin
iple value pres
ription,

I(g) = lim
ǫ→0

[

∫ ∞

0

dp

(

∫ h(p)−ǫ

−∞

dp0 f(g, p0, p) +

∫ ∞

h(p)+ǫ

dp0 f(g, p0, p)

)]

. (27)

The 
urve h(p) 
an be 
omputed numeri
ally for ea
h integrand to a high and 
ontrollable a

ura
y. We write

(h̃(p) − h(p))/h(p) ∼ δ, where h̃(p) is the numeri
 estimate of h(p) and δ is a measure of the error. A numeri


approximation of the required integrals is obtained as

Ĩ(g, ǫ) =

∫ ∞

0

dp

(

∫ h̃(p)−ǫ

−∞

dp0 f(g, p0, p) +

∫ ∞

h̃(p)+ǫ

dp0 f(g, p0, p)

)

+O(ǫ). (28)

The integral must be evaluated for a number of di�erent values of ǫ and then extrapolated to ǫ → 0. However, for

numeri
 stability, one must require ǫ ≫ δ h̃(p). As a 
onsequen
e, we have to estimate h(p) to very high a

ura
y in

order to get a reliable extrapolation of the limit ǫ → 0. This extrapolation is illustrated in Fig. 2 for one value of the


oupling 
onstant.

0 0.001 0.002 0.003 0.004 0.005 0.006
ε / m

f

1.001490

1.001495

1.001500

1.001505

1.001510

1.001515

1.001520

1.001525

Σ(
 m

f )
 / 

m
f

FIG. 2: Extrapolation of the numeri
 estimate of the sum of integrals given in Eq. 24 to ǫ → 0 as de�ned in the text (for QCD

at g = 0.005).

In order to extra
t the NLO 
orre
tion to the thermal fermion mass we must further extrapolate the result to small

values of the 
oupling 
onstant. Using the LO result to set the dimensions, we use the ansatz

Σ(mf )

mf
= 1 + a1

g

2π
+ a2

( g

2π

)2

(ln 1/g + a′2) +O(g3), (29)

where we assume that all 
oe�
ients ai are of order one. Our goal is to determine the 
oe�
ient a1. The a

ura
y

of the result depends on two things: the a

ura
y of the numeri
 estimate of the integrals, and the size of the error
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that is made by negle
ting higher order terms from the ansatz. If we drop terms of order g2, the error in a1 
an be

estimated as

∆a1 ≈
∣

∣

∣

∣

2π

g

∆Σ

mf

∣

∣

∣

∣

+
∣

∣

∣
a2

g

2π
(ln(1/g) + a′2)

∣

∣

∣
, (30)

where ∆Σ is the error in Σ(mf ) from the numeri
 estimation of the integrals. Minimizing the error in a1 determines

the optimal range of values of the 
oupling 
onstant at whi
h the integrals should be 
omputed. We are able to obtain

an a

ura
y of the order of ∆Σ/mf ≈ 10−6
whi
h means that using 0.001 . g . 0.006 we obtain an error in the result

for a1 of order ∆a1 ≈ 0.02 (see Fig. 3).

0 0.001 0.002 0.003 0.004 0.005 0.006 0.007
Value of the coupling constant.

0.000

0.005

0.010

0.015

0.020

0.025

0.030

A
pp

ro
xi

m
at

ed
 e

rr
or

 in
 a

1.

∆a
1
 (estimate)

FIG. 3: The error in a1 as a fun
tion of the 
oupling 
onstant.

In Figs. 4 and 5 we have plotted the numeri
 results for Σ(mf )/mf and (Σ(mf )−mf )/mf ·2π/g = a1+O(g) along
with the best �t (least-square) 
urve. The best �t results for a1 are

aQED
1 = −1.427± 0.02, (31)

aQCD
1 = 1.867± 0.02 (Nf = 2, Nc = 3).
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0 0.001 0.002 0.003 0.004 0.005 0.006 0.007
e (QED), g (QCD)

0.998

0.999

1

1.001

1.002

1.003

1.004

Σ(
 m

f )
 / 

m
f

Numeric data (QED)
Numeric data (QCD)
Linear fit (QED)
Linear fit (QCD)

FIG. 4: The numeri
 results for Σ(mf )/mf along with the best �t 
urve.

FIG. 5: The numeri
 results for 2π/g(Σ(mf ) −mf )/mf . The dots are the result of the numeri
 
omputations, the solid lines


orrespond to the numeri
 estimate for a1 and the gray regions 
orrespond to the estimated errors as de�ned in Eq. (30).

V. DISCUSSION AND CONCLUSIONS

The 
al
ulation of dispersion relations for soft quantities at next-to-leading order in the hard thermal loop e�e
tive

theory is extremely di�
ult. Real quantities are parti
ularly hard to obtain. Our results for the next-to-leading

fermion mass in QED and QCD are given in Eqn (11).

It was pointed out in [11℄ that the subleading 
orre
tion to the 1-loop HTL 
ontribution (
al
ulated by expanding

to next order in the ratio of the soft external momentum to the hard loop momentum) is gauge dependent and of
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order ∼ e3 ln(1/e)T . There is a 
ontribution of the same order from 2-loop diagrams where one loop momentum

is of order T and the other loop momentum 
ontributes a log term 
oming from an integral of the form

∫

dp 1
p →

ln(phard/psoft) ∼ ln(1/e). In [12℄ it was shown that the sum of these two 
ontributions is gauge independent (in the


lass of 
ovariant gauges). Both of these 
ontributions 
ontribute to the 
oe�
ient a2 in Eqn. (29) and are formally

in
luded in the integrals given in this paper, whi
h 
orrespond to the diagrams in Fig. 1. The gauge independen
e of

the result in [12℄ suggests that the full 
ontribution at order g3 ln 1/g might be 
ontained in these diagrams.
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