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The fermion mass at next-to-leading order in the HTL e�etive theory
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The alulation of the real part of a quasi-partile dispersion relation at next-to-leading order in

the hard thermal loop e�etive theory is a very di�ult problem. Even though the hard thermal loop

e�etive theory is almost 20 years old, there is only one next-to-leading order alulation of the real

part of a quasi-partile dispersion relation in the literature [1℄. In this paper, we alulate the fermion

mass in QED and QCD at next-to-leading order. For QED the result is M = eT/
√
8 (1− (1.427 ±

0.02)e/4π) and for QCD with Nf = 2 and Nc = 3 we obtain M = gT/
√
6 (1 + (1.867 ± 0.02)g/4π).

PACS numbers: 11.10.Wx, 11.15.-q

I. INTRODUCTION

It is well known that the behaviour of an elementary partile beomes modi�ed when the partile propagates

in a medium. The partiles beome �dressed� by their interation with the medium, and one speaks of olletive

modes, or quasi-partiles. One studies these olletive modes by looking at the orresponding thermal propagators.

The behaviour of the quasi-partiles is dedued from the analyti struture of the propagator. In [2℄ it was shown

from general priniples that the singularity struture of ertain omponents of gauge and matter propagators are

gauge-independent, when all ontributions of a given order are systematially taken into aount.

The alulation of dispersion relations for soft quantities at next-to-leading order (NLO) in the hard thermal loop

(HTL) e�etive theory is notoriously di�ult. There are several alulations of damping rates at NLO. The soft stati

gluon damping rate was alulated in Ref. [3℄. The damping rate of a soft stati quark was alulated in Ref. [4, 5, 6℄.

Calulations of masses and osillation frequenies require the real part of the dispersion relation, whih is onsiderably

more di�ult to obtain. There is only one omplete alulation in the literature of the real part of a quasi-partile

dispersion relation at NLO: the pure glue plasma frequeny in the long wavelength limit was alulated by Shulz [1℄.

In this paper we alulate the fermion mass, in QED and QCD, at NLO. It is straightforward to obtain the result for

QCD from the orresponding result for QED by adjusting the HTL masses and inluding an overall fator CF in the

quark self energy.

For soft stati eletrons with momenta Qµ = (q0 ∼ eT, ~q = 0), the mass and damping rate of the quasi-partile are

obtained from the solution of the equation

det (Q/ −Σret(Q))
∣

∣

∣

q0=M−iγ
= 0. (1)

The fermion self-energy an be deomposed in the usual way:

Σret = γ0Σ
(0)
ret + ~γ · q̂Σ(i)

ret. (2)

Sine we have taken q = 0, the only non-zero omponent is Σ
(0)
ret(q0) = Tr (γ0Σret(Q))/4. From now on, we suppress

the supersript `(0)' to simplify the notation. In addition, we suppress throughout the subsript `ret' indiating the

retarded omponent of the self energy. Using this notation we write the dispersion relation as

q0 − Σ(q0)
∣

∣

∣

q0=M−iγ
= 0. (3)

At leading order (LO), the self energy is given by the familiar HTL result,

ReΣHTL =
e2T 2

8q0
, ImΣHTL = 0. (4)
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Substituting (4) into (3) we obtain the leading order results for the mass and damping rate:

mf := M (0) =
eT√
8
, γ(0) = 0. (5)

We are interested in obtaining NLO orretions to these results. To obtain these NLO orretions, we expand the

dispersion relation around the lowest order (LO) solution in Eqn. (5), keeping ontributions to linear order in NLO

quantities. The resulting equations are partiularly simple beause of the fat that the imaginary part of the LO HTL

self energy is zero. The real and imaginary parts of the dispersion relation give

M (1) −M (1)ReΣ′
HTL[M

(0)]− ReΣNLO
[

M (0)
]

= 0, (6)

γ(1) − γ(1)ReΣ′
HTL

[

M (0)
]

+ ImΣNLO
[

M (0)
]

= 0.

Using (4) and (5) we obtain

M (1) =
1

2
ReΣNLO

[

M (0)
]

, γ(1) = −1

2
ImΣNLO

[

M (0)
]

. (7)

To obtain the NLO mass and damping rate from (7) we must alulate the NLO self energy. The original paper

by Braaten and Pisarski [7℄ identi�ed three potential ontributions. They are: (1) orretions to the LO result for

the 1-loop diagram obtained by expanding to next order in the ratio of the soft external momentum to the hard loop

momentum; (2) ontributions to the 2-loop diagrams from the region of the phase spae that orresponds to both

loops hard; and (3) ontributions to 1-loop diagrams with soft loop momentum, and all propagators and verties

replaed with HTL e�etive ones. The power ounting arguments of Braaten and Pisarski refer to the maximum

possible ontribution from eah type of term. The atual ontribution may be lower order for kinematial reasons, or

beause of some anellation between di�erent integrals.

The full NLO ontribution is ontained in the dressed 1-loop diagrams shown in Fig. 1, where the dots on the

verties indiate the sum of the bare vertex and the HTL vertex. These diagrams ontain all of the ontributions

identi�ed by Braaten and Pisarski, if the loop momentum is integrated over the full range from zero to in�nity. The

integral will also ontain subleading ontributions that are suppressed by powers of oupling.

FIG. 1: The diagrams that ontribute to the self-energy up to NLO. Wavy lines indiate HTL photons and solid lines are HTL

fermions. The verties are de�ned in Eqn. (22).

It has been demonstrated that the NLO ontribution to the dispersion relation from the diagrams in Fig. 1 is gauge

invariant. This result is obtained by using the fat that the HTL verties and propagators satisfy the usual Ward

identities. One �nds that the gauge dependent ontribution to the NLO fermion self-energy is proportional to an

integral times the square of the inverse propagator S(−1)(Q) = Q/ − ΣHTL(Q), whih vanishes on the mass shell. In

[8℄ it was pointed out that a straightforward evaluation of the integral produes mass-shell singularities that anel

the ontributions from the two inverse propagators, and give a �nite gauge dependent ontribution to the damping

rate. This problem was resolved by Rebhan [9℄ who showed that the integral must be regulated before the mass

shell is approahed. Using this proedure one �nds that the position of the pole is gauge independent, and the gauge

dependene ours only in the unphysial residue.

The integral that orresponds to the diagrams in Fig. 1 has the general form

Σ(q0) = e2
∫

dp0

∫

dpF(q0, p0, p,mf , nb(p0), nf (p0))
∣

∣

∣

q0=mf

. (8)
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The fator of e2 in front of the integral is the expliit fator oming from the two verties. The integrand is obtained

by ombining HTL propagators and HTL vertex funtions, and thermal distribution funtions (de�ned in (12)). The

HTL propagators and verties depend on the 4-momenta and the HTL fermion mass mf . As explained above, we

substitute the LO result q0 = mf in order to extrat the NLO ontribution.

We begin by noting that, if the integral in Eqn. (8) is dominated by the part of phase spae that orresponds to

p-soft, we an expand the thermal distribution funtions and use: nb(p) → T/p and nf (p) → 0. After expanding the

distribution funtions, one an extrat a fator of the temperature, and sale all remaining variables by the LO mass

mf . The result has the form

ΣNLO = e2T · I , (9)

where I is a dimensionless integral that an be alulated numerially.

For the imaginary part of the self energy, we have expliitly alulated the 2-loop ontributions and heked that

the integral in (8) is dominated by the p-soft region of the phase spae. The numerial alulation of the integral

represented in (9) has been done previously [4, 5, 6℄. The result is [13℄:

γQED =
e2T

4π
· (1.35), (10)

γQCD =
g2TCF
4π

· (1.41) for Nc = 3, Nf = 2, CF = 4/3.

In this paper we alulate the real part of the self energy by evaluating numerially the integrals that orrespond

to the diagrams in Fig. 1, without expanding the distribution funtions. We extrat the numerial oe�ients of the

NLO terms by extrapolating to small values of the oupling onstant. The result of this omputation is

MQED =
eT√
8

[

1− (1.427± 0.02)
e

4π

]

+O(e3T ), (11)

MQCD =
gT√
6

[

1 + (1.867± 0.02)
g

4π

]

+O(g3T ), (Nf = 2, Nc = 3).

II. NOTATION

In this setion we de�ne our notation and give the integrals that determine the real part of the fermion self energy

at NLO. We use

{γµ, γν} = 2gµν , gµν = diag (1,−1,−1,−1).

The thermal distribution funtions are de�ned as

nb(p) =
1

eβp − 1
, nf (p) =

1

eβp + 1
, NB(p) = 1 + 2nb(p), NF (p) = 1− 2nf(p). (12)

In this paper we are only interested in thermal e�ets and onsequently we ignore zero temperature piees of the self-

energy. We use apital letters to denote 4-momenta: K = (k0, ~k). We take the external momentum to be Q = (q0,~0)
and the loop momentum is P = (p0, ~p). We write R = P +Q so that we have ~r = ~p. Retarded propagators and self

energies are obtained from p0 → p0 + iǫ and advaned funtions from p0 → p0 − iǫ. In QED, to leading order the

fermion and photon thermal masses are

m2
f =

e2T 2

8
, m2

G =
e2T 2

6
, (13)

and in QCD

m2
f =

g2T 2

8
CF , m

2
G =

g2T 2

6

(

Nc +
1

2
Nf

)

, CF =
N2
c − 1

2Nc
, (14)

where Nc is the number of olours and Nf is the number of �avours.

The HTL self energy is

ΣHTL(Q) =
m2
f

q
Q0(q0, q), Q0(q0, q) =

1

2
ln

(

q0 + q

q0 − q

)

, (15)
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and we de�ne

ΣHTL(d)(Q) = 2i ImΣretHTL(Q), ΣHTL(s)(Q) = 2ReΣretHTL(Q). (16)

The HTL fermion propagators are written as

S(R) =
1

2
(S+(R)(γ0 − r̂/) +

1

2
S−(R)(γ0 + r̂/)), (17)

S+(R) = − 2r2

2r
(

m2
f + r (r − r0)

)

+ ln
(

r0+r
r0−r

)

(r − r0)m2
f

,

S−(R) =
2r2

2r
(

m2
f + r (r + r0)

)

− ln
(

r0+r
r0−r

)

m2
f (r + r0)

.

We use the ovariant gauge and write the photon propagator in terms of transverse and longtitudinal omponents

(reall that p = r),

Dµν(P ) = PTµνDT (P ) + PLµν
p2

P 2
DL(P ), (18)

DT (P ) =
1

P 2 −G(p0, r)
, DL(P ) =

P 2

r2
1

P 2 − F (p0, r)
,

G(p0, r) =
1

r2

(

1− Q0 (p0, r) p0
r

)

P 2m2
G +m2

G,

F (p0, r) = − 1

r2
2m2

G

(

1− Q0 (p0, r) p0
r

)

P 2.

Furthermore, we de�ne the disontinuities and the priniple parts as

d±(R) = 2iImS±
ret(R), P±(R) = ReS±

ret(R), (19)

dT/L(P ) = 2iImD
T/L
ret (P ), PT/L(P ) = ReD

T/L
ret .

Here, eah disontinuity ontains a pole ontribution and a ut ontribution:

dT/L(K) = −2πi
∑

n=±1

nZT/L(ωT/L(k), k) δ(k0 − nωT/L(k))− 2πiβT/L(k0, k), (20)

d±(K) = −2πi Z(k0, k)
[

δ(k0 − ω±(k)) + δ(k0 + ω∓(k))
]

− 2πiβ±(k0, k).

Expressions for the funtions {βT , βL β+, β−}, and the equations from whih {ωT , ωL ω+, ω−}, are obtained an

be found using Eqns. (17) and (18). They are also given in the appendix of [6℄.

III. INTEGRANDS

At zero temperature, the integral orresponding to the diagrams in Fig. 1 an be written as

Σ(Q) = −i e2
∫

dP
(

Γµ(Q,P +Q)S(P +Q)Γν(P +Q,Q) Dµν(P ) +Mµν(Q,P,−P,Q)Dµν(P )
)

, (21)

where

∫

dP :=
∫

dp0
∫

d3p, and iS and −iDµν orrespond to the eletron and photon lines respetively. We need

to obtain the orresponding integral at �nite temperature. We work in the Keldysh representation of the real time

formalism. The method we use to sum over Keldysh indies is desribed in [10℄. The verties Γ and M are de�ned

in Eqn. (22) where Pψin indiates the momentum of an inoming fermion, Pψout is the momentum of an outgoing

fermion, and Pµγin is the momentum of an inoming photon,

Γµ(Pψin, Pψout) = γµ + ΓHTL
µ (Pψin, Pψout), (22)

Mµν(Pψin, P
µ
γin, P

ν
γin, Pψout) = MHTL

µν (Pψin, P
µ
γin, P

ν
γin, Pψout).
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A omplete expression for the integrand is derived in Ref. [6℄. A reasonably simple form is obtained by rewriting

the HTL verties in terms of the self energies, and rearranging the result. There are several triks that must be used

to remove the dependene on the HTL verties. First, one uses the Kubo-Martin-Shwinger (KMS) onditions for

3- and 4-point funtions to obtain an expression that depends only on retarded vertex funtions. A omplete list of

the KMS onditions for 3- and 4-point funtions is found in [10℄. For many terms, the HTL Ward identities an be

used to replae ontrations of HTL verties with the onneting photon momentum by the appropriate di�erene of

HTL self energies. There are some terms for whih one must use expliit results for the HTL 3-point vertex funtions.

Fortunately, these expressions have a partiularly simple form when one of the fermions is not moving. Using these

tehniques, all omponents of the verties an be written as simple funtions of the HTL self-energy. These self-

energies also appear in the denominators of the HTL fermion propagators. The general strategy is to rearrange terms

in the numerators to anel as many terms as possible with the orresponding fators in the denominators. Signi�ant

simpli�ations our after ombining terms and using the mass shell ondition q20 = m2
f . The imaginary part of the

resulting expression, whih determines the damping rate at NLO, has been evaluated numerially in Refs. [4, 5, 6℄.

The alulation of the real part of the self energy, whih determines the NLO ontribution to the mass, is more

ompliated for several reasons. One problem is that seond diagram in Fig. 1 produes pure real tadpole type ontri-

butions that an be dropped in the alulation of the imaginary part. There are additional numerial ompliations

that will be disussed in more detail in Se. IV. We give below the integrals that need to be alulated to obtain the

NLO ontribution to the real part of the self energy [6℄. We separate terms that ontain di�erent ombinations of

delta funtions, priniple parts, and thermal fators. In addition, we de�ne the operator

N̂ := − ie2

32π3

∫

dp0

∫

dr, (23)

whih will be fatored out of all expressions. The integrals are

ReΣ(dL, NB) =
12

q0
N̂ r2dL(p)NB (p0) , (24)

ReΣ(dL,P+, NB) = − 2

q20
N̂ r2 (−r + q0 + r0)

2
dL(P )NB (p0)P+(R),

ReΣ(dL,P−, NB) = − 2

q20
N̂ r2 (r + q0 + r0)

2 dL(P )NB (p0)P−(R),

ReΣ(d+,PL, NF ) = − 2

q20
N̂ r2 (−r + q0 + r0)

2 d+(R)NF (r0)PL(P ),

ReΣ(d−,PL, NF ) = − 2

q20
N̂ r2 (r + q0 + r0)

2 d−(R)NF (r0)PL(P ),

ReΣ(dT , NB) = − 1

q20
N̂ dT (p)NB (p0)

(

2
(

−3r0R
2 + 4m2

fr0 + 8r2q0 + 6P 2q0
)

−R2ΣHTL(s)(R)
)

,

ReΣ(PT , NF ) =
2

q20
N̂ R2NF (r0)PT (P )ΣHTL(d)(R),

ReΣ(dT ,P+, NB) = − 1

q20
N̂ (p0 − r)2 (r + p0 + 2q0)

2 dT (P )NB (p0)P+(R),

ReΣ(dT ,P−, NB) = − 1

q20
N̂ (r + p0)

2 (−r + p0 + 2q0)
2 dT (P )NB (p0)P−(R),

ReΣ(d+,PT , NF ) = − 1

q20
N̂ (p0 − r)

2
(r + p0 + 2q0)

2
d+(R)NF (r0)PT (P ),

ReΣ(d−,PT , NF ) = − 1

q20
N̂ (r + p0)

2
(−r + p0 + 2q0)

2
d−(R)NF (r0)PT (P ).

The sixth equation in (24) ontains the part of the lowest order result that omes from the Bose-Einstein distribution

funtion and the last two equations ontain the part of the lowest order result that omes from the Fermi-Dira

distribution funtion. The results for these two terms are

Re(dT , NB) =
e2T 2

12
+ · · · ,

Re(d+,PT , NF ) + Re(d−,PT , NF ) =
e2T 2

24
+ · · · (25)

where the dots indiate the NLO ontribution.
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IV. NUMERICAL ANALYSIS

In this setion we brie�y desribe the numeri methods used to get the results given in Eq. (11). The dimensionless

integrals to be evaluated numerially, given in Eq. (24), are of the form

I(g) =

∫ ∞

0

dp

∫ ∞

−∞

dp0 f(g, p0, p) , (26)

where g is the oupling onstant. The integrand f(g, p0, p) diverges along some urve p0 = h(p) like [p0 − h(p)]−1
and

therefore the integrals must be de�ned using a priniple value presription,

I(g) = lim
ǫ→0

[

∫ ∞

0

dp

(

∫ h(p)−ǫ

−∞

dp0 f(g, p0, p) +

∫ ∞

h(p)+ǫ

dp0 f(g, p0, p)

)]

. (27)

The urve h(p) an be omputed numerially for eah integrand to a high and ontrollable auray. We write

(h̃(p) − h(p))/h(p) ∼ δ, where h̃(p) is the numeri estimate of h(p) and δ is a measure of the error. A numeri

approximation of the required integrals is obtained as

Ĩ(g, ǫ) =

∫ ∞

0

dp

(

∫ h̃(p)−ǫ

−∞

dp0 f(g, p0, p) +

∫ ∞

h̃(p)+ǫ

dp0 f(g, p0, p)

)

+O(ǫ). (28)

The integral must be evaluated for a number of di�erent values of ǫ and then extrapolated to ǫ → 0. However, for

numeri stability, one must require ǫ ≫ δ h̃(p). As a onsequene, we have to estimate h(p) to very high auray in

order to get a reliable extrapolation of the limit ǫ → 0. This extrapolation is illustrated in Fig. 2 for one value of the

oupling onstant.

0 0.001 0.002 0.003 0.004 0.005 0.006
ε / m

f

1.001490

1.001495

1.001500

1.001505

1.001510

1.001515

1.001520

1.001525

Σ(
 m

f )
 / 

m
f

FIG. 2: Extrapolation of the numeri estimate of the sum of integrals given in Eq. 24 to ǫ → 0 as de�ned in the text (for QCD

at g = 0.005).

In order to extrat the NLO orretion to the thermal fermion mass we must further extrapolate the result to small

values of the oupling onstant. Using the LO result to set the dimensions, we use the ansatz

Σ(mf )

mf
= 1 + a1

g

2π
+ a2

( g

2π

)2

(ln 1/g + a′2) +O(g3), (29)

where we assume that all oe�ients ai are of order one. Our goal is to determine the oe�ient a1. The auray

of the result depends on two things: the auray of the numeri estimate of the integrals, and the size of the error
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that is made by negleting higher order terms from the ansatz. If we drop terms of order g2, the error in a1 an be

estimated as

∆a1 ≈
∣

∣

∣

∣

2π

g

∆Σ

mf

∣

∣

∣

∣

+
∣

∣

∣
a2

g

2π
(ln(1/g) + a′2)

∣

∣

∣
, (30)

where ∆Σ is the error in Σ(mf ) from the numeri estimation of the integrals. Minimizing the error in a1 determines

the optimal range of values of the oupling onstant at whih the integrals should be omputed. We are able to obtain

an auray of the order of ∆Σ/mf ≈ 10−6
whih means that using 0.001 . g . 0.006 we obtain an error in the result

for a1 of order ∆a1 ≈ 0.02 (see Fig. 3).

0 0.001 0.002 0.003 0.004 0.005 0.006 0.007
Value of the coupling constant.

0.000

0.005

0.010

0.015

0.020

0.025

0.030

A
pp

ro
xi

m
at

ed
 e

rr
or

 in
 a

1.

∆a
1
 (estimate)

FIG. 3: The error in a1 as a funtion of the oupling onstant.

In Figs. 4 and 5 we have plotted the numeri results for Σ(mf )/mf and (Σ(mf )−mf )/mf ·2π/g = a1+O(g) along
with the best �t (least-square) urve. The best �t results for a1 are

aQED
1 = −1.427± 0.02, (31)

aQCD
1 = 1.867± 0.02 (Nf = 2, Nc = 3).
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0 0.001 0.002 0.003 0.004 0.005 0.006 0.007
e (QED), g (QCD)

0.998

0.999

1

1.001

1.002

1.003

1.004

Σ(
 m

f )
 / 

m
f

Numeric data (QED)
Numeric data (QCD)
Linear fit (QED)
Linear fit (QCD)

FIG. 4: The numeri results for Σ(mf )/mf along with the best �t urve.

FIG. 5: The numeri results for 2π/g(Σ(mf ) −mf )/mf . The dots are the result of the numeri omputations, the solid lines

orrespond to the numeri estimate for a1 and the gray regions orrespond to the estimated errors as de�ned in Eq. (30).

V. DISCUSSION AND CONCLUSIONS

The alulation of dispersion relations for soft quantities at next-to-leading order in the hard thermal loop e�etive

theory is extremely di�ult. Real quantities are partiularly hard to obtain. Our results for the next-to-leading

fermion mass in QED and QCD are given in Eqn (11).

It was pointed out in [11℄ that the subleading orretion to the 1-loop HTL ontribution (alulated by expanding

to next order in the ratio of the soft external momentum to the hard loop momentum) is gauge dependent and of
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order ∼ e3 ln(1/e)T . There is a ontribution of the same order from 2-loop diagrams where one loop momentum

is of order T and the other loop momentum ontributes a log term oming from an integral of the form

∫

dp 1
p →

ln(phard/psoft) ∼ ln(1/e). In [12℄ it was shown that the sum of these two ontributions is gauge independent (in the

lass of ovariant gauges). Both of these ontributions ontribute to the oe�ient a2 in Eqn. (29) and are formally

inluded in the integrals given in this paper, whih orrespond to the diagrams in Fig. 1. The gauge independene of

the result in [12℄ suggests that the full ontribution at order g3 ln 1/g might be ontained in these diagrams.
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