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Abstract

We propose a novel neutrino mixing pattern in terms of only two small

integers 1 and 2 together with their square roots and the imaginary number

i. This ansatz is referred to as the “tetra-maximal” mixing because it can

be expressed as a product of four rotation matrices, whose mixing angles are

all π/4 in the complex plane. It predicts θ12 = arctan(2 −
√
2) ≈ 30.4◦,

θ13 = arcsin[(
√
2 − 1)/(2

√
2)] ≈ 8.4◦, θ23 = 45◦ and δ = 90◦ in the standard

parametrization, and the Jarlskog invariant of leptonic CP violation is found

to be J = 1/32. These results are compatible with current data and can

soon be tested in a variety of neutrino oscillation experiments. Implications

of the tetra-maximal neutrino mixing on the decays of doubly-charged Higgs

bosons H±± → l±α l
±
β (for α, β = e, µ, τ) are also discussed in the triplet seesaw

mechanism at the TeV scale, which will be explored at the upcoming LHC.
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1 Recent solar [1], atmospheric [2], reactor [3] and accelerator [4] neutrino exper-
iments have convincingly verified the hypothesis of neutrino oscillation, a pure quantum
phenomenon which can naturally occur if neutrinos are massive and lepton flavors are mixed.
The mixing of lepton flavors is described by a 3× 3 unitary matrix V , whose nine elements
are commonly parametrized in terms of three rotation angles and three CP-violating phases.
Defining three unitary rotation matrices in the complex (1,2), (1,3) and (2,3) planes as

O12(θ12, δ12) =







c12 ŝ∗12 0
−ŝ12 c12 0
0 0 1





 ,

O13(θ13, δ13) =







c13 0 ŝ∗13
0 1 0

−ŝ13 0 c13





 ,

O23(θ23, δ23) =







1 0 0
0 c23 ŝ∗23
0 −ŝ23 c23





 , (1)

where cij ≡ cos θij and ŝij ≡ eiδij sin θij (for 1 ≤ i < j ≤ 3), we can write out the standard
parametrization of V advocated by the Particle Data Group [5] and in Ref. [6]:

V = O23(θ23, 0)⊗O13(θ13, δ)⊗ O12(θ12, 0)⊗ Pν

=







c12c13 s12c13 s13e
−iδ

−s12c23 − c12s13s23e
iδ c12c23 − s12s13s23e

iδ c13s23
s12s23 − c12s13c23e

iδ −c12s23 − s12s13c23e
iδ c13c23





Pν , (2)

in which Pν = Diag{eiρ, eiσ, 1} is a diagonal phase matrix which contains two non-trivial
Majorana phases of CP violation. A global analysis of current neutrino oscillation data
yields 30◦ < θ12 < 38◦, 36◦ < θ23 < 54◦ and θ13 < 10◦ at the 99% confidence level [7], but
three phases of V remain entirely unconstrained. The on-going and forthcoming neutrino
oscillation experiments will measure θ13 and δ. On the other hand, the neutrinoless double-
beta decay experiments will help to probe or constrain ρ and σ.

The observed pattern of neutrino flavor mixing is certainly far beyond the imagination
of many people. For instance, the tri-maximal neutrino mixing proposed by Cabibbo [8],

VC =

√

1

3







1 1 1
1 ω ω2

1 ω2 ω





 (3)

with ω = ei2π/3 being a complex cube-root of unity (i.e., ω3 = 1), used to be a vivid ansatz
in illustration of both large flavor mixing and maximal CP violation in the lepton sector;
but it has been ruled out by current experimental data on neutrino oscillations. A simple
modification of VC,

VHPS = VC ⊗O13(π/4, π)

= Ql











√

2

3

√

1

3
0

−
√

1

6

√

1

3

√

1

2
√

1

6
−
√

1

3

√

1

2











Qν (4)
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with Ql = Diag{1, ω, ω2} and Qν = Diag{1, 1, i}, which has been proposed by Harrison,
Perkins and Scott [9] and referred to as the tri-bimaximal neutrino mixing matrix 1, turns
out to be favored in today’s neutrino phenomenology. To generate the non-vanishing mixing
angle θ13 and non-trivial CP-violating phases, however, slight corrections to VHPS have to be
introduced [11]. So far a lot of interest has been paid to the tri-bimaximal mixing pattern and
its viable variations, which can be realized in a number of neutrino mass models incorporated
with certain flavor symmetries and (or) seesaw mechanisms [12].

The salient feature of VHPS is that its entries are all formed from small integers (0, 1,
2 and 3) and their square roots, which are often suggestive of discrete flavor symmetries
in the language of group theories. Then a natural question is whether one can construct
a different but viable neutrino mixing pattern with fewer small integers. We find that the
answer to this phenomenologically interesting question is affirmative: we may just use two
small integers 1 and 2 together with their square roots and the imaginary number i to build
a neutrino mixing matrix which is compatible with current neutrino oscillation data. This
new pattern, which will be referred to as the “tetra-maximal” neutrino mixing, predicts

θ12 = arctan



2



1−
√

1

2







 ≈ 30.4◦ ,

θ13 = arcsin





1

2



1−
√

1

2







 ≈ 8.4◦ ,

θ23 = 45◦ , (5)

and δ = 90◦ together with ρ = σ = −90◦. Since θ13 is large and δ is maximal, the Jarlskog
invariant of leptonic CP violation [13] turns out to be J = 1/32, which can give rise to
appreciable effects of CP or T violation in long-baseline neutrino oscillations. Thus the
tetra-maximal neutrino mixing scenario is easily testable in a variety of neutrino oscillation
experiments in the near future.

2 Now let us describe how to construct the new neutrino mixing matrix in terms of
1, 2 and i. We notice that the tri-maximal mixing pattern VC can be decomposed as

VC = P ′
l ⊗O23(π/4, π/2)⊗ O13(θ

′
13, 0)⊗ O12(π/4, 0) , (6)

where P ′
l = Diag{1,−iω2, ω} and θ′13 = arctan(

√

1/2) ≈ 35.3◦. Therefore, the tri-bimaximal
neutrino mixing matrix VHPS arises from a product of four rotation matrices in the complex
plane: three of them involve the rotation angle π/4, and the fourth involves the rotation
angle θ′13 6= π/4. The unique value of θ′13 given above is crucial to assure that Eq. (6) can
successfully reproduce the form of VC in Eq. (3) and then the form of VHPS in Eq. (4).
Indeed, one happens to obtain θ12 = θ′13 from VHPS. This mysterious angle has a simple

1Note that this pattern is quite similar to the democratic neutrino mixing pattern [10], although

their consequences on θ12 and θ23 are quite different.
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geometric explanation [14]: it corresponds to the angle formed by two unequal diagonals
from the same vertex of a cube.

But here we consider the possibility of θ′13 = π/4. In this case, we construct a new
neutrino mixing pattern in terms of four rotation matrices whose mixing angles are all π/4:

V = Pl ⊗O23(π/4, π/2)⊗ O13(π/4, 0)⊗ O12(π/4, 0)⊗ O13(π/4, π)

=
1

2











1 +
√

1

2
1 1−

√

1

2

−
√

1

2

[

1− i
(

1−
√

1

2

)]

1− i
√

1

2

√

1

2

[

1 + i
(

1 +
√

1

2

)]

−
√

1

2

[

1 + i
(

1−
√

1

2

)]

1 + i
√

1

2

√

1

2

[

1− i
(

1 +
√

1

2

)]











, (7)

where Pl = Diag{1, 1, i}. It is clear that V only contains two small integers 1 and 2 together
with their square roots and the imaginary number i. Because the mixing angle in each of
the four rotation matrices of V is π/4, this neutrino mixing matrix can be referred to as the
“tetra-maximal” neutrino mixing pattern. Some discussions about the phenomenological
consequence of V are in order.

1. Comparing between Eqs. (2) and (7), we can easily obtain the values of three neutrino
mixing angles as already listed in Eq. (5). It is also straightforward to calculate the
Jarlskog invariant of CP violation from Eq. (7):

J = Im
(

Ve2Vµ3V
∗
e3V

∗
µ2

)

=
1

32
. (8)

On the other hand, we obtain J = c12s12c
2
13s13c23s23 sin δ = sin δ/32 from Eq. (2)

with the help of Eq. (5). We are therefore left with sin δ = 1 or equivalently δ = π/2.
Note that the maximal value of J can only be achieved from the unrealistic tri-
maximal neutrino mixing pattern VC; i.e., Jmax = 1/(6

√
3). We find that leptonic

CP violation in the tetra-maximal mixing case is about one third of Jmax (namely,
J /Jmax = 3

√
3/16 ≈ 32.5%).

2. To figure out two Majorana CP-violating phases ρ and σ, we may redefine the phases
of three charged-lepton fields and three neutrino fields such that Ve1, Ve2, Vµ3 and Vτ3

in Eq. (7) become real and positive while δ = π/2 properly appears in the other five
elements of V . This exercise will yield ρ = σ = −π/2. A more straightforward way
to determine ρ and σ is to calculate the effective mass of the neutrinoless double-beta
decay by using Eqs. (2) and (5),

〈m〉ββ =
∣

∣

∣m1c
2
12c

2
13e

2iρ +m2s
2
12c

2
13e

2iσ +m3s
2
13e

−2iδ
∣

∣

∣

=
1

4

∣

∣

∣

∣

∣

∣

∣

m1



1 +

√

1

2





2

e2iρ +m2e
2iσ +m3



1 +

√

1

2





2

e−2iδ

∣

∣

∣

∣

∣

∣

∣

, (9)

and compare this result with the one which can be directly obtained from Eq. (7). We
see no interference or cancellation in the latter procedure, and thus we simply arrive
at ρ = σ = −δ from Eq. (9). Namely, ρ = σ = −π/2.
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3. The off-diagonal asymmetries of V , which may serve as a simple description of the
geometric structure of V [15], are found to be

A1 ≡ |Ve2|2 − |Vµ1|2 = |Vµ3|2 − |Vτ2|2 = |Vτ1|2 − |Ve3|2 = −1

4





1

4
+

√

1

2



 ,

A2 ≡ |Ve2|2 − |Vµ3|2 = |Vµ1|2 − |Vτ2|2 = |Vτ3|2 − |Ve1|2 = −1

4





1

4
−

√

1

2



 , (10)

which are about Ve1-Vµ2-Vτ3 and Ve3-Vµ2-Vτ1 axes of V , respectively. More explicitly,
A1 ≈ −0.24 and A2 ≈ +0.11. Hence V looks more symmetric about its Ve3-Vµ2-Vτ1

axis. The fact of A1 6= A2 6= 0 in the tetra-maximal mixing case implies that all the six
unitarity triangles of V in the complex plane are different from one another, although
their areas are all equal to J /2 = 1/64.

4. The tetra-maximal neutrino mixing pattern shows an apparent µ-τ flavor symmetry,
|Vµi| = |Vτi| (for i = 1, 2, 3), as one can directly see from Eq. (7). This result has an
interesting implication on the flavor distribution of ultrahigh-energy cosmic neutrinos
at neutrino telescopes. Given the canonical source of cosmic neutrinos, where the
neutrino flavor composition is

φe : φµ : φτ = 1 : 2 : 0 (11)

due to the pion-muon decay chain arising from energetic pp or pγ collisions [16], the
condition of θ23 = π/4 and δ = π/2 will lead to an exact neutrino flavor democracy at
a terrestrial neutrino telescope [17]:

φT
e : φT

µ : φT
τ = 1 : 1 : 1 . (12)

Note that such a result can also be obtained from the tri-bimaximal neutrino mixing
pattern VHPS, which provides the condition of θ13 = 0 and θ23 = π/4 [18].

In short, the relatively large values of θ13 and J predicted by this tetra-maximal neutrino
mixing scenario makes it easily testable in the forthcoming long-baseline (reactor and accel-
erator) neutrino oscillation experiments.

3 In the basis where the mass eigenstates of three charged leptons coincide with their
flavor eigenstates, one may reconstruct the Majorana neutrino mass matrix M by using the
neutrino mixing matrix V and three neutrino masses mi (for i = 1, 2, 3):

M = V







m1 0 0
0 m2 0
0 0 m3





V T . (13)

Taking account of the tetra-maximal neutrino mixing pattern given in Eq. (7), we find that
Meτ = M∗

eµ and Mττ = M∗
µµ hold. Namely,

5



M =







Mee Meµ M∗
eµ

Meµ Mµµ Mµτ

M∗
eµ Mµτ M∗

µµ





 . (14)

Such a specific texture of M , which can give rise to the maximal CP-violating phase in
neutrino oscillations (i.e., δ = ±π/2), is possible to result from a certain flavor symmetry
and its breaking mechanism [19]. Here we focus our interest on the magnitudes of |Mαβ|2,
because they can in principle be determined from a number of lepton-number-violating
processes in a given model. After a straightforward calculation, we obtain

|Mee|2 =
1

16

[

17 + 12
√
2

4
m2

1 +m2
2 +

17− 12
√
2

4
m2

3

+
(

3 + 2
√
2
)

m1m2 +
1

2
m1m3 +

(

3− 2
√
2
)

m2m3

]

,

|Meµ|2 =
1

16

[

7 + 4
√
2

8
m2

1 +
3

2
m2

2 +
7− 4

√
2

8
m2

3

−3 + 2
√
2

2
m1m2 −

1

4
m1m3 −

3− 2
√
2

2
m2m3

]

,

|Mµµ|2 =
1

16

[

33− 20
√
2

16
m2

1 +
9

4
m2

2 +
33 + 20

√
2

16
m2

3

−9− 10
√
2

4
m1m2 −

15

8
m1m3 −

9 + 10
√
2

4
m2m3

]

,

|Mµτ |2 =
1

16

[

33− 20
√
2

16
m2

1 +
9

4
m2

2 +
33 + 20

√
2

16
m2

3

+
15− 6

√
2

4
m1m2 +

17

8
m1m3 +

15 + 6
√
2

4
m2m3

]

. (15)

It is then easy to verify

∑

α

|Mαα|2 +
∑

α6=β

|Mαβ |2 =
3

∑

i=1

m2
i , (16)

where α and β run over e, µ and τ . Since the absolute mass scale of mi is unknown, we
consider three special patterns of the neutrino mass spectrum allowed by current neutrino
oscillation data: (1) normal hierarchy with m1 ≈ 0; (2) inverted hierarchy with m3 ≈ 0; and
(3) near degeneracy with m1 ≈ m2 ≈ m3. Taking ∆m2

21 = 8.0 × 10−5 eV2 and |∆m2
32| =

2.5× 10−3 eV2 [7] as typical inputs, we are then able to calculate |Mαβ|2 for three different
neutrino mass hierarchies by using Eq. (15). Our numerical results for |Mαβ|2 are listed
in TABLE I. Note that 〈m〉ββ ≡ |Mee|, the effective mass of the neutrinoless double-beta
decay, is found to be 3.3 × 10−3 eV (normal hierarchy), 4.8 × 10−2 eV (inverted hierarchy)
or m1 (near degeneracy) in this tetra-maximal neutrino mixing ansatz.

The origin of M is of course model-dependent. For simplicity, we assume that M results
from the triplet seesaw mechanism [20]. By introducing an SU(2)L Higgs triplet ∆ into the
standard model, we can write out the following renormalizable Yukawa interaction term:

6



−L∆ =
1

2
lLY∆∆iσ2l

c
L + h.c. , (17)

where

∆ ≡
(

H− −
√
2 H0√

2 H−− −H−

)

. (18)

Note that ∆ can also couple to the standard-model Higgs doublet H and thus violate lepton
number by two units [21]. When the neutral components of H and ∆ acquire their vacuum
expectation values 〈H〉 ≡ v/

√
2 and 〈∆〉 ≡ v∆, respectively, the electroweak gauge symmetry

is spontaneously broken and the resultant Majorana neutrino mass matrix reads M = Y∆v∆.
A clear signature of the triplet seesaw mechanism is the existence of doubly-charged Higgs
bosons H±±. If the mass scale of ∆ is of O(1) TeV, then H±± can be produced at the
LHC via the Drell-Yan process qq̄ → γ∗, Z∗ → H++H−− or through the charged-current
process qq̄′ → W ∗ → H±±H∓. Note that the masses of H±± and H± are expected to be
nearly degenerate in a class of triplet seesaw models [20–22], and thus only H±± → l±α l

±
β (for

α, β = e, µ, τ) and H±± → W±W± decay modes are kinematically open. Note also that the
leptonic channel H±± → l±α l

±
β becomes dominant when v∆ < 1 MeV is taken [22]. Therefore,

we concentrate on the same-sign dilepton events of H±±, which signify the lepton number
violation and serve for the cleanest collider signatures of new physics [23]. The branching
ratio of H−− → l−α l

−
β turns out to be

B(H−− → l−α l
−
β ) =

2

1 + δαβ
· |Mαβ |2

3
∑

i=1

m2
i

, (19)

which is completely determined by the values of mi and V . Taking account of Eq. (15), we
can estimate the magnitude of B(H−− → l−α l

−
β ) for three special patterns of the neutrino mass

spectrum chosen above. Our numerical results are listed in TABLE II. The measurement
of these lepton-number-violating decay modes at the LHC will help test the tetra-maximal
neutrino mixing scenario and distinguish it from other neutrino mixing patterns [24] in the
TeV-scale triplet seesaw mechanism.

4 Motivated by the principle of simplicity, we have proposed a novel neutrino mixing
pattern in terms of only two small integers 1 and 2 together with their square roots and the
imaginary number i. Different from the tri-bimaximal mixing scenario, our tetra-maximal
mixing scenario can accommodate both non-vanishing θ13 and large CP violation. Its explicit
predictions include θ12 = arctan(2 −

√
2) ≈ 30.4◦, θ13 = arcsin[(

√
2 − 1)/(2

√
2)] ≈ 8.4◦,

θ23 = 45◦, δ = 90◦, ρ = σ = −90◦ and J = 1/32, which are compatible with current
data and can soon be tested in a variety of neutrino oscillation experiments. We have also
illustrated possible implications of the tetra-maximal neutrino mixing on collider signatures
by taking account of the TeV-scale triplet seesaw mechanism. In particular, the branching
ratios of leptonic decays of doubly-charged Higgs bosons H±± → l±α l

±
β (for α, β = e, µ, τ)

have been calculated for three special patterns of the neutrino mass matrix. The results are
found to be encouraging and interesting.
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The flavor symmetry behind the tetra-maximal neutrino mixing pattern has to be seen.
It is always possible to build a specific neutrino mass model from which such a flavor mixing
pattern can be derived, although this kind of model building usually relies on some natural
or contrived assumptions. All in all, the tetra-maximal neutrino mixing can shortly be
confronted with a number of precision neutrino experiments and even the LHC. A test of
its many phenomenological consequences is therefore close at hand.

Acknowledgments: This work was supported in part by the National Natural Science
Foundation of China.
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TABLES

TABLE I. The values of |Mαβ|2 (for α, β = e, µ, τ) for three special patterns of the neutrino

mass spectrum: (1) normal hierarchy withm0 ≈ 0; (2) inverted hierarchy withm3 ≈ 0; and (3) near

degeneracy with m1 ≈ m2 ≈ m3, where ∆m2
21 = 8.0×10−5 eV2 and |∆m2

32| = 2.5×10−3 eV2 have

typically been input. Note that |Meτ |2 = |Meµ|2 and |Mττ |2 = |Mµµ|2 hold for the tetra-maximal

neutrino mixing matrix under discussion.

Neutrino mass hierarchy

m1 ≈ 0 m3 ≈ 0 m1 ≈ m2 ≈ m3

|Mee|2 (eV2) 1.11 × 10−5 2.34 × 10−3 m2
1

|Meµ|2 (eV2) 3.21 × 10−5 2.56 × 10−5 0

|Mµµ|2 (eV2) 4.64 × 10−4 5.94 × 10−4 0

|Mµτ |2 (eV2) 7.96 × 10−4 6.46 × 10−4 m2
1

3
∑

i=1

m2
i (eV2) 2.66 × 10−3 4.92 × 10−3 3m2

1

TABLE II. The results of B(H−− → l−α l
−
β ) (for α, β = e, µ, τ) for three special patterns of

the neutrino mass spectrum: (1) normal hierarchy with m0 ≈ 0; (2) inverted hierarchy with

m3 ≈ 0; and (3) near degeneracy with m1 ≈ m2 ≈ m3, where ∆m2
21 = 8.0 × 10−5 eV2,

|∆m2
32| = 2.5× 10−3 eV2 and the tetra-maximal mixing parameters have typically been input.

Neutrino mass hierarchy

m1 ≈ 0 m3 ≈ 0 m1 ≈ m2 ≈ m3

B(H−− → e−e−) 0.42% 47.56% 33.33%

B(H−− → e−µ−) 2.41% 1.04% 0

B(H−− → e−τ−) 2.41% 1.04% 0

B(H−− → µ−µ−) 17.44% 12.07% 0

B(H−− → µ−τ−) 59.85% 26.26% 66.67%

B(H−− → τ−τ−) 17.44% 12.07% 0
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