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Intrigued by a recent Belle result for a large direct CP asymmetry in B0 →
D+D−, we study the effects of a b̄ → ūud̄ quark transition by combining
the asymmetry information with rates and asymmetries in isospin-related
decays. Arguing for a hierarchy among several contributions to these decays,
including an exchange amplitude which we estimate, we present tests for
factorization of the leading terms, and obtain an upper bound on the ratio
of b̄ → ūud̄ and b̄ → c̄cd̄ amplitudes. We prove an approximate ∆I = 1/2
amplitude relation for B → DD̄, and an approximate equality between CP
asymmetries in B0 → D+D− and B+ → D+D̄0. Violations of these relations
by Belle measurements, at 1.8σ and 3.6σ respectively, if confirmed, would
indicate a possible New Physics contribution in b̄ → ūud̄. Applying flavor
SU(3), we extend this study to a total of ten processes including ∆S = 0
decays involving final Ds and initial Bs mesons, and ∆S = 1 decays of B and
Bs mesons into pairs of charmed pseudoscalar mesons. The decays Bs → DD̄
provide useful information about a small exchange amplitude, responsible
for a decay rate difference between B+ → D+D̄0 and B0 → D+D−. A
method for determining the weak phase γ, based on CP asymmetries in
B0(t) → D+D− and the decay rate for Bs → D+

s D
−
s or B+(0) → D+

s D̄
0(D−),

is shown to involve high sensitivity to SU(3) breaking.

PACS codes: 12.15.Hh, 12.15.Ji, 13.25.Hw, 14.40.Nd

1 Introduction

Accurate measurements of the weak phase β ≡ arg(V ∗
tbVtd/V

∗
cbVcd), sin 2β = 0.680 ±

0.025, cos 2β > 0 [1], have provided a precision test for the Cabibbo-Kobayashi-Maskawa
[2,3] framework and for the Kobayashi-Maskawa mechansim of CP violation. The accu-
racy of this test relies on the pure dominance by a single weak phase of a few b̄ → c̄cs̄

1On sabbatical leave from the Physics Department, Technion, Haifa 32000, Israel.
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Decay mode BaBar Belle Average
B0 → D+D− B 2.8± 0.4± 0.5 1.97± 0.20± 0.20 2.11± 0.31

ACP −0.11 ± 0.22± 0.07 0.91± 0.23± 0.06 0.37± 0.17
S −0.54 ± 0.34± 0.06 −1.13± 0.37± 0.09 −0.75± 0.26

B+ → D+D̄0 B 3.8± 0.6± 0.5 3.85± 0.31± 0.38 3.84± 0.42
ACP −0.13 ± 0.14± 0.02 0.00± 0.08± 0.02 −0.03± 0.07

B0 → D0D̄0 B < 0.6 (90% c. l.) < 0.43 (90% c. l.) < 0.43 (90% c. l.)
B0 → D+

s D
−
s B < 1.0 (90% c. l.) < 0.36 (90% c. l.) < 0.36 (90% c. l.)

Table I: Charge-averaged branching ratios B in units of 10−4 and CP asymmetries ACP , S
in B → DD̄, from Refs. [10–13]. Also included are upper limits on B(B0 → D+

s D
−
s ) [14,

15].

processes including B0 → J/ψKS [4, 5]. This implies a mixing-induced asymmetry,
S = sin 2β, and a vanishingly small direct CP asymmetry, as confirmed experimentally,
ACP = −0.012± 0.020 [1].

The decay B0 → D+D− is dominated by b̄ → c̄cd̄, but involves a smaller non-
negligible amplitude from b̄ → ūud̄ carrying a different weak phase. The second ampli-
tude introduces hadronic uncertainties in predictions for the asymmetries S and ACP

in this process. Early model-independent estimates of the ratio of the two amplitudes
contributing to this process vary from a few percent to upper bounds of about 0.2 [4,6] or
0.3 [7]. A more recent model-dependent calculation finds 0.03 [8]. Values larger than 0.3
may be obtained in extensions of the Standard Model [9]. The two asymmetries depend
also on the strong phase difference between the b̄→ c̄cd̄ and b̄→ ūud̄ amplitudes [4].

Asymmetries in B0 → D+D−, measured by the BaBar and Belle collaborations,
are quoted in the upper part of Table I. The table also includes branching ratios for
B0 → D+D−, B+ → D+D̄0, B0 → D0D̄0, a direct CP asymmetry measured for B+ →
D+D̄0 [10–13], and upper limits on B(B0 → D+

s D
−
s ) measured by BaBar [14] and

Belle [15]. The BaBar asymmetries in B0 → D+D− [10] are consistent with ACP =
0, S = − sin 2β, showing no evidence for a b̄ → ūud̄ term in the decay amplitude. In
contrast, the Belle asymmetry measurements [11], which fluctuate outside the physical
region, A2

CP +S2 ≤ 1, deviate substantially from the above nominal values, indicating a
sizable b̄→ ūud̄ amplitude. The direct asymmetry ACP measured by Belle is nonzero at
a level higher than 3σ. Its central value indicates the possibility of a second amplitude
larger than permitted in the Cabibbo-Kobayashi-Maskawa (CKM) framework.

A major goal of this paper, largely intrigued by the Belle results, is to study carefully
the dynamics and CKM structure of the B0 → D+D− decay amplitude and of decay
amplitudes for the two isospin-related processes, B+ → D+D̄0 and B0 → D0D̄0. In
references [8] and [16] these processes have been stated to originate in a ∆I = 1/2
effective Hamiltonian implying an isospin triangle relation among the three amplitudes.
It will be shown that, while ∆I = 1/2 is not a property of the effective Hamiltonian,
an approximate ∆I = 1/2 rule is expected to hold for the three decay amplitudes and
should be tested experimentally. Applying flavor SU(3) to the above processes, we will
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extend our study to include strangeness-conserving decays involving final Ds and initial
Bs mesons, and strangeness-changing decays of B and Bs mesons into pairs of charmed
pseudoscalar mesons.

In Section 2 we study the asymmetries measured by BaBar and Belle in B0 → D+D−

in terms of two parameters, the ratio r of b̄ → ūud̄ and b̄ → c̄cd̄ amplitudes and their
relative strong phase δ. Section 3 introduces expressions for the amplitudes of the three
processes B0 → D+D−, B0 → D0D̄0 and B+ → D+D̄0 in terms of isospin amplitudes.
We identify circumstances under which an isospin triangle relation between these ampli-
tudes can be violated by a (small) ∆I = 3/2 contribution. Section 4 studies B → DD̄
decays and two other SU(3) related ∆S = 0 decays of B0 and Bs in terms of graphical
contributions, while Section 5 extends this study to corresponding strangeness changing
decays of B0, B+ and Bs. Section 6 discusses a hierarchy among graphical amplitudes,
presenting tests of factorization for the dominant terms. In Section 7 we discuss briefly
consequences of this hierarchy on a theoretical upper limit on r, illuminating an inconsis-
tency between the CP asymmetries measured by Belle in B0 → D+D− and B+ → D+D̄0.
Section 8 discusses a way for determining the weak phase γ by combining information
from asymmetries in B0 → D+D− and decay rates of corresponding ∆S = 1 decays
to charm-anticharm, while Section 9 concludes. An Appendix provides a dictionary be-
tween graphical amplitudes and SU(3) reduced matrix elements of four-quark operators
appearing in the effective Hamiltonian.

2 Ratio of b̄→ ūud̄ and b̄→ c̄cd̄ terms in B0 → D+D−

We start our discussion by translating the B0 → D+D− asymmetries, measured sepa-
rately by BaBar and Belle, into values of the ratio r of b̄→ ūud̄ and b̄→ c̄cd̄ amplitudes
and the relative strong phase δ between these amplitudes. Denoting

A(B0 → D+D−) = Ac + Au e
i(δ+γ) = Ac

[

1 + r ei(δ+γ)
]

, (r ≡ Au/Ac) ,

A(B̄0 → D+D−) = Ac + Au e
i(δ−γ) = Ac

[

1 + r ei(δ−γ)
]

,

λD+D− ≡ e−2iβA(B̄
0 → D+D−)

A(B0 → D+D−)
, (1)

one has [4]

S(D+D−) ≡ 2Im(λD+D−)

1 + |λD+D− |2 = −sin 2β + 2r cos δ sin(2β + γ) + r2 sin 2(β + γ)

1 + 2r cos δ cos γ + r2
,

ACP (D
+D−) ≡ |λD+D− |2 − 1

|λD+D−|2 + 1
=

2r sin δ sin γ

1 + 2r cos δ cos γ + r2
. (2)

Keeping only linear terms in r,

S(D+D−) ≃ − sin 2β − 2r cos 2β cos δ sin γ ,

ACP (D
+D−) ≃ 2r sin δ sin γ , (3)

3
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Figure 1: χ2 plots in the (r cos δ, r sin δ) plane assuming β = 21.5◦, γ = 68◦. The red, blue
and green curves show constraints following from B0 → D+D− asymmetries measured
by BaBar, Belle and their averages. In each case the most inside, intermediate and most
outside curves represent bounds at 68%, 90% and 95% confidence levels. Red and green
points describe solutions corresponding to central values of the BaBar asymmetries and
the averaged asymmetries.

implies

r ≈
√

[(S + sin 2β)/ cos 2β]2 + A2
CP

2 sin γ
. (4)

Consider the measured asymmetries and the current values of β and γ, β = (21.5±
1.0)◦ [1], γ = (67.6+2.8

−4.5)
◦ [17] (see also [18,19]). Using this information, the approximation

(3) and (4), or the precise expressions (2), determine r and δ. The resulting errors in r
and δ are dominated by the errors in the measured asymmetries. Taking central values
for the asymmetries and values β = 21.5◦, γ = 68◦, Eq. (4) implies central values around
r = 0.1 (BaBar) and r = 0.6 (Belle). In both cases the error in r is about 0.2. The
central value of r for Belle, for which the linear approximations (3) involve non-negligible
quadratic corrections, should be considered with care because this value of r is based on
non-physical values of the asymmetries obeying A2

CP + S2 > 1.
In order to study the implications of the asymmetries on the pair of parameters

(r, δ), we have performed a two dimensional χ2 analysis for these two parameters using
the asymmetry measurements and assuming β = 21.5◦, γ = 68◦. In Fig. 1 we plot the
resulting contours in the (r cos δ, r sin δ) plane for χ2 = 2.30, 4.61, 5.99, corresponding
to 68%, 90%, 95% confidence levels. The red, blue and green curves show constraints
following from the asymmetries measured by BaBar, Belle and their averages. In each
case the innermost, intermediate and outermost curves describe bounds at 68%, 90% and
95% confidence levels. The red and green points are solutions corresponding to central
values of the BaBar asymmetries and the averaged asymmetries. We do not show a
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central Belle point because the central values of the Belle asymmetries lie outside the
physical region.

The Belle two-parameter boundary curve for 90% confidence level contains a point
with closest distance to the origin, r = 0.29, δ = 82◦. The point on this curve with
smallest δ has δ = 37◦, r = 0.87. (Note that the values r = 0.29 and δ = 37◦ are lower
than the 90% confidence level lower limits on these separate single variables.) Thus,
the Belle data alone would provide evidence for a sizable r and for a large strong phase
difference δ. We note, however, that the BaBar and Belle regions of 90% confidence level
do not overlap. In order to draw firm conclusions about r and δ one should therefore
wait for better agreement between the asymmetries measured by the two collaborations.

3 Isospin amplitudes in B → DD̄

The low energy effective Hamiltonian governing B0 → D+D−, B0 → D0D̄0 and B+ →
D+D̄0 involves two CKM factors V ∗

cbVcd and V ∗
ubVud, both of order λ3 (λ = |Vus| =

0.2258 ± 0.0010 [17]). Each of these factors multiplies a combination of four quark
operators with coefficients given by calculable Wilson coefficients Ci [20],

Heff =
GF√
2

[

V ∗
cbVcd

2
∑

i=1

CiOc
i + V ∗

ubVud
2

∑

i=1

CiOu
i + (V ∗

cbVcd + V ∗
ubVud)

10
∑

k=3

CkOk

]

. (5)

The current-current operators Oc
i and Ou

i (i = 1, 2) have flavor dependence (b̄c)(c̄d)
and (b̄u)(ūd), respectively. Thus, while the first pair of operators are pure ∆I = 1

2
,

the second pair involves both ∆I = 1
2
and ∆I = 3

2
. The QCD penguin operators Ok

(k = 3− 6) with flavor structure (b̄d) are pure ∆I = 1/2, while the electroweak penguin
operators Ok ∼ (b̄d)

∑

q eq(q̄q) (k = 7 − 10, q = u, d, s, c), which depend on the quark
charges eq, involve both ∆I = 1/2 and ∆I = 3/2. Thus, in contrast to statements
made in Refs. [8] and [16], the effective Hamiltonian underlying B → DD̄ decays is not
pure ∆I = 1/2. It contains an additional ∆I = 3/2 component, also when neglecting
electroweak penguin contributions which have very small Wilson coefficients [20].

The final DD̄ states consist of I = 0 and I = 1. This implies a total of three
isospin amplitudes, A0, 1

2

, A1, 1
2

and A1, 3
2

, where the two subscripts denote I(DD̄) and

∆I, respectively. Neglecting very small electroweak penguin contributions, the ∆I = 3/2
amplitude A1, 3

2

occurs in association with a CKM factor V ∗
ubVud but not with V ∗

cbVcd.

The three physical B → DD̄ decay amplitudes can be written in terms of the three
isospin amplitudes,

A+− ≡ A(B0 → D+D−) =
1

2
A0, 1

2

+
1

2
A1, 1

2

+
1

2
A1, 3

2

,

A00 ≡ A(B0 → D0D̄0) = −1

2
A0, 1

2

+
1

2
A1, 1

2

+
1

2
A1, 3

2

,

A+0 ≡ A(B+ → D+D̄0) = A1, 1
2

− 1

2
A1, 3

2

. (6)

These relations can be inverted,

A0, 1
2

= A+− − A00 ,
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A1, 1
2

=
1

3
(A+− + A00 + 2A+0) ,

A1, 3
2

=
2

3
(A+− + A00 −A+0) . (7)

While ∆I = 1/2 is not a property of the low energy effective Hamiltonian, we will
argue below that |A1, 3

2

| ≪ |A0, 1
2

|, |A1, 1
2

| is a reasonable assumption which should be

tested experimentally. Neglecting the ∆I = 3/2 amplitude, one obtains an approximate
triangle relation [8, 16],

A+− + A00 = A+0 . (8)

A potential proof for a nonzero ∆I = 3/2 amplitude would be a violation of (8). This
happens when the amplitude triangle does not close, for instance when |A+−|+ |A00| <
|A+0|.

In order to illustrate such a possibility consider the Belle measurements for B → DD̄.
We define

|A+−| = 102
√

B(B0 → D+D−) [1−ACP (B0 → D+D−)] ,

|A+0| = 102
√

B(B+ → D+D̄0)
[

1−ACP (B+ → D+D̄0)
]

(τ0/τ+) ,

|A00| = 102
√

B(B0 → D0D̄0)
[

1− ACP (B0 → D0D̄0)
]

. (9)

Using the Belle values for CP-averaged branching ratios and CP asymmetries given in
Table I, and a ratio of B+ and B0 lifetimes [1] τ+/τ0 = 1.071± 0.009, we find

|A+−| = 0.42± 0.56 , |A+0| = 1.90± 0.14 , |A00| < 0.57 (1σ) . (10)

The small magnitude of A+− follows from the large positive CP asymmetry measured
by Belle, implying observing mostly B̄0 decays into D+D− with only a few B0 decays
into this final state. The upper bound on |A00| is obtained from a 1σ upper limit on
B(B0 → D0D̄0). We have assumed that the CP asymmetry in B0 → D0D̄0 is not large
and negative (in Section 7 we will argue for a vanishingly small asymmetry), and we
have neglected possible correlations between errors in branching ratio and asymmetry
measurements in the other two modes. We note that the triangle (8) does not close for
central values of the measured amplitudes (10), and allowing for deviations from these
values up to 1.8σ .

In contrast, the triangle relation holds well when using the central values of the
BaBar measurements. A critical test for the closure of the amplitude triangle requires a
reduction in errors and a better agreement between BaBar and Belle.

4 ∆S = 0 decays into DD̄ using graphical amplitudes

Useful expressions for amplitudes in B → DD̄ using flavor SU(3), which can be gen-
eralized to B0 → D+

s D
−
s and Bs → D+D−

s , are in terms of graphical contributions
representing the flow of isospin and flavor SU(3) in these decays [21]. This includes
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a (color-favored) tree amplitude T involving V ∗
cbVcd, penguin and penguin-annihilation

amplitudes P and PA with u, c and t-quark loops, exchange amplitudes Ec and Eu

involving V ∗
cbVcd and V ∗

ubVud, and an annihilation amplitude Au involving V ∗
ubVud. The

amplitude Ec is associated with popping a pair of uū or dd̄ out of the vacuum, while
Eu and Au involve cc̄ popping. At this point we neglect very small electroweak penguin
contributions to which we return in the next section.

The graphical amplitudes have well-defined isospin properties. The two graphical
amplitudes Eu and Au involve both ∆I = 1/2 and ∆I = 3/2, while all other amplitudes
are pure ∆I = 1/2 by construction. We will show below that the ∆I = 3/2 amplitude
consists solely of the combination Eu + Au. This combination is thus responsible for a
potential violation of the amplitude triangle relation (8).

We denote

P = V ∗
ubVud pu + V ∗

cbVcd pc + V ∗
tbVtdpt = V ∗

cbVcd pct + V ∗
ubVud put , (pij ≡ pi − pj) , (11)

absorbing the first term in the tree amplitude by defining,

V ∗
cbVcd tc ≡ T + V ∗

cbVcd pct . (12)

Similarly, writing

PA = V ∗
ubVud pau+V

∗
cbVcd pac+V

∗
tbVtdpat = V ∗

cbVcd pact+V
∗
ubVud paut , (paij ≡ pai−paj) ,

(13)
the first term is absorbed in Ec,

V ∗
cbVcd ec ≡ Ec + V ∗

cbVcd pact . (14)

Other terms involving the CKM factor V ∗
ubVud are

Eu ≡ V ∗
ubVud eu , Au ≡ V ∗

ubVud au . (15)

Using these definitions with a shorthand notation, pu ≡ put, pau ≡ paut, we find:

a. A(B0 → D+D−) = V ∗
cbVcd (tc + ec) + V ∗

ubVud (pu + pau) ,

b. A(B0 → D0D̄0) = V ∗
cbVcd (−ec) + V ∗

ubVud (−pau − eu) ,

c. A(B+ → D+D̄0) = V ∗
cbVcd (tc) + V ∗

ubVud (pu + au) ,

d. A(B0 → D+
s D

−
s ) = V ∗

cbVcd (ec) + V ∗
ubVud (pau) ,

e. A(Bs → D+D−
s ) = V ∗

cbVcd (tc) + V ∗
ubVud (pu) . (16)

The minus sign in the amplitude involving a D0 follows from our convention, D0 ≡
−cū [21].

The five physical amplitudes depend on the four combinations, V ∗
cbVcd tc + V ∗

ubVud pu,
V ∗
cbVcd ec+V

∗
ubVud pau, V

∗
ubVud eu, V

∗
ubVud au. This equals the number of independent SU(3)

reduced matrix elements describing ∆S = 0 B and Bs decays to pairs of charmed
pseudoscalar mesons, 〈1||3||3〉, 〈8||3||3〉, 〈8||6||3〉, 〈8||15||3〉 (see Appendix A). Consequently
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the five decay amplitudes are not mutually independent. They obey one triangle relation
in the SU(3) symmetry limit,

A(B0 → D+
s D

−
s ) + A(Bs → D+D−

s ) = A(B0 → D+D−) . (17)

The parameters r and δ studied in Section 2 can be expressed in terms of graphical
amplitudes,

r =
|V ∗

ubVud|
|V ∗

cbVcd|
|pu + pau|
|tc + ec|

, δ = arg
(

−pu + pau
tc + ec

)

, (18)

and the isospin amplitudes defined in section 3 are given by

A0, 1
2

= V ∗
cbVcd (tc + 2ec) + V ∗

ubVud (pu + 2pau + eu) ,

A1, 1
2

= V ∗
cbVcd tc +

1

3
V ∗
ubVud (3pu − eu + 2au) ,

A1, 3
2

= −2

3
V ∗
ubVud (eu + au) . (19)

The last relation confirms our statement above that the ∆I = 3/2 amplitude involves
only the combination Eu + Au.

5 ∆S = 1 B and Bs decays into charm-anticharm

The parametrization (16) of ∆S = 0 decays into charm-anticharm in terms of flavor
SU(3) graphical amplitudes can be extended to ∆S = 1 CKM-favored decays of B and
Bs mesons, which are governed by b̄ → c̄cs̄. U-spin reflection symmetry d ↔ s implies
expressions similar to Eqs. (16) for corresponding U-spin related amplitudes [22], in
which one replaces V ∗

cbVcd by V ∗
cbVcs and V ∗

ubVud by V ∗
ubVus. Since U-spin transforms

B0 ↔ Bs, D
± ↔ D±

s while keeping B+, D0 and D̄0 invariant, one has:

a. A(Bs → D+
s D

−
s ) = V ∗

cbVcs (tc + ec) + V ∗
ubVus (pu + pau) ,

b. A(Bs → D0D̄0) = V ∗
cbVcs (−ec) + V ∗

ubVus (−pau − eu) ,

c. A(B+ → D+
s D̄

0) = V ∗
cbVcs (tc) + V ∗

ubVus (pu + au) ,

d. A(Bs → D+D−) = V ∗
cbVcs (ec) + V ∗

ubVus (pau) ,

e. A(B0 → D+
s D

−) = V ∗
cbVcs (tc) + V ∗

ubVus (pu) . (20)

We note that while both V ∗
cbVcd and V ∗

ubVud in (16) are of order λ3, the factors V ∗
cbVcs

and V ∗
ubVus in (20) are order λ2 and λ4 respectively. More precisely, one has

−V
∗
cbVcd
V ∗
cbVcs

=
V ∗
ubVus
V ∗
ubVud

=
λ

1− λ2/2
. (21)

This implies that in the U-spin symmetry limit CP rate differences in the five U-spin pairs
of corresponding ∆S = 0 and ∆S = 1 decays, such as B0 → D+D− and Bs → D+

s D
−
s ,

have equal magnitudes but opposite signs [22],

Γ(B̄s → D+
s D

−
s )− Γ(Bs → D+

s D
−
s ) = −[Γ(B̄0 → D+D−)− Γ(B0 → D+D−)] . (22)
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Decay mode: B0 → D+
s D

− B+ → D+
s D̄

0 Bs → D+
s D

−
s

Branching ratio: 79± 7 [15, 24, 25] 109± 18 [24, 25] 94+44
−42 [26]

Table II: Charged averaged branching ratios in units of 10−4 for ∆S = 1 B and Bs

decays into charm-anticharm.

Since the rates of ∆S = 1 decays are about λ−2 larger than those of ∆S = 0 decays, the
CP asymmetries in the former are expected to be about λ2 smaller than in the latter.
The case of Eq. (22) has been discussed in Ref. [23]. Similar CP rate difference relations
hold between the other four pairs of processes. An SU(3) triangle relation analogous to
(17) holds for ∆S = 1 decays,

A(Bs → D+D−) + A(B0 → D+
s D

−) = A(Bs → D+
s D

−
s ) . (23)

So far we have neglected electroweak penguin contributions in both ∆S = 0 and
∆S = 1 decays. This is justifiable in the first case by very small Wilson coefficients
associated with electroweak penguin operators [20] multiplying a CKM factor V ∗

tbVtd of
the usual order λ3. However, electroweak penguin terms in strangeness-changing decays
involve a CKM factor V ∗

tbVts ∼ O(λ2), much larger than terms involving V ∗
ubVus ∼ O(λ4)

which are kept in (20). Thus, for consistency one must keep also electroweak penguin
terms in ∆S = 1 decays.

In general, there are four types of diagrams describing electroweak penguin (EWP)
contributions, corresponding to the above-mentioned four SU(3) reduced matrix ele-
ments. The four diagrams may be associated with a color-suppressed EWP amplitude
PC
EW , an EWP-exchange amplitude PEEW (c) associated with cc̄ popping, and two EWP-

annihilation amplitudes, PAEW and PAEW (c), associated with uū, dd̄, ss̄ popping and
cc̄ popping, respectively. We neglect the two EWP amplitudes involving cc̄ popping for a
reason discussed in Section 6. Using V ∗

tbVtd(s) = −V ∗
cbVcd(s)−V ∗

ubVud(s), the remaining two
EWP amplitudes, PC

EW and PAEW , may be absorbed in the following way in definitions
of four amplitudes occurring in (16) and (20) without changing these ten equations:

tc−
2

3
PC
EW → tc , ec−

2

3
PAEW → ec , pu−

2

3
PC
EW → pu , pau−

2

3
PAEW → pau . (24)

We conclude this section by quoting in Table II branching ratios for three of the five
processes occurring in Eqs. (20), including a very recent measurement of B(Bs → D+

s D
−
s )

by the CDF Collaboration [26].

6 Expected hierarchy among graphical amplitudes

6.1 ∆S = 1 decays

6.1.1 Ratio of two CKM factors

Consider first the five ∆S = 1 amplitudes (20) for B and Bs decays into pairs of
charmed pseudoscalar mesons. Each amplitude involves a dominant term with a CKM

9



factor V ∗
cbVcs and a much smaller term involving V ∗

ubVus. The CKM suppression of the
second amplitude, which is often being neglected, is [17]:

|V ∗
ubVus|

|V ∗
cbVcs|

= (0.40± 0.05)λ2/(1− λ2) = 0.021± 0.003 . (25)

6.1.2 The amplitudes tc and ec

The large CKM factor V ∗
cbVcs multiplies two amplitudes, a dominant term tc and a smaller

exchange contribution ec accompanied by an EWP-annihilation contribution PAEW [see
(24)]. The latter two terms are suppressed by ΛQCD/mB as they involve the interaction
of a light spectator quark. Thus, we expect the two decay modes Bs → D+D− and
Bs → D0D̄0 governed by ec to have branching ratios much smaller [27] than those quoted
in Table II for B0 → D+

s D
−, B+ → D+

s D̄
0 and Bs → D+

s D
−
s which are dominated by

tc. The corresponding small ratios of branching ratios, e.g. B(Bs → D+D−)/B(B0 →
D+

s D
−), would determine |ec/tc|2.

A reasonable although not precise estimate for |ec/tc| may proceed as follows. Con-
sider the two processes B0 → D−π+ and B0 → D−

s K
+, both of which originate in

the quark subprocess b̄ → c̄ud̄. While the first decay is governed by a color-favored
tree amplitude with a small exchange contribution, the second one obtains only a con-
tribution from an exchange amplitude. Drawing a parallel between these amplitudes
and the corresponding amplitudes in b̄ → c̄cs̄, and using [25] B(B0 → D−π+) =
(26.8± 1.3)× 10−4,B(B0 → D−

s K
+) = (2.8± 0.5)× 10−5, we estimate

|ec|
|tc + ec|

∼
√

√

√

√

B(B0 → D−
s K

+)

B(B0 → D−π+)
= 0.102± 0.009 . (26)

In this crude approximation this would imply

0.093± 0.008 ≤ |ec|
|tc|

≤ 0.114± 0.010 . (27)

We note three corrections which may affect this estimate:

1. The amplitude ec includes by definition a term PAEW (both terms require an in-
teraction of the spectator quark), while no such term contributes to B0 → D−

s K
+.

2. The exchange amplitude in B0 → D−
s K

+ involves ss̄ popping in a c̄u system,
whereas ec is described by uū or dd̄ popping in a c̄c system.

3. B0 → D−π+ is dominated by a purely a color-favored tree amplitude, while tc
involves also a smaller penguin term pct. See discussion below.

These three differences are expected to affect (27) by a factor which is hard to estimate.
In our discussion below we will make a conservative assumption based on measure-

ments for ∆S = 0 decays,

|ec|
|tc|

≈
√

√

√

√

B(B0 → D0D̄0)

B(B+ → D+D̄0)

τ+
τ0

≤ 0.3 . (28)
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This upper bound is obtained from the branching ratios quoted in Table I for B0 →
D0D̄0 and B+ → D+D̄0, for which 1σ upper and lower limits are used. The two
processes B0 → D0D̄0 and B+ → D+D̄0 are dominated by ec and tc, respectively, while
smaller contributions involving V ∗

ubVud have been neglected. (See discussion below.)
It would be useful to compare the bound (28) and the crude estimate (27) with direct
measurements of |ec/tc| in ratios of branching ratios for ∆S = 1 decays including B(Bs →
D+D−)/B(B+ → D+

s D̄
0) and B(Bs → D0D̄0)/B(B0 → D+

s D
−). Using the averaged

measured B(B+ → D+D̄0) in Table I to normalize |tc|2, Eq. (27) would imply B(B0 →
D+

s D
−
s ) = (4.0+1.8

−1.4)× 10−6, about an order of magnitude smaller than the current upper
limit on this branching ratio (see Table I.)

6.1.3 The ratio |V ∗
cbVcdpct/T | in tc

The amplitude tc consists of a combination of a genuine color-favored tree amplitude and
a smaller loop-suppressed penguin amplitude, pct, with t and c quarks in the loop [see
Eq. (12)]. It is difficult to obtain a good estimate for the ratio of these two amplitudes,
the sum of which contributes to both ∆S = 0 and ∆S = 1 decays. A QCD loop
factor [αs(mb)/12π] ln(m

2
t/m

2
c) characterizing the suppression of V ∗

cbVcdpct relative to T
(or a typical Wilson coefficient for penguin operators [20]) is of order five percent. A
dynamical enhancement by a factor of four to six relative to a QCD loop factor has been
measured for the penguin-to-tree ratio in B0 → π+π− [28,29]. We will permit a similar
enhancement in B0 → D+D−, thus allowing |V ∗

cbVcdpct| to be at most as large as 0.3|T |,

|V ∗
cbVcdpct|
|T | ≤ 0.3 . (29)

6.1.4 Factorization of (Vcs/Vcd)T in B0 → D+
s D

− and B+ → D+
s D̄

0

The tree amplitude is expected to factorize within a reasonable approximation into
a product of a B → D form factor and the Ds meson decay constant. While this
approximation cannot be justified by the heavy b quark limit of QCD (which can only
be applied when a B meson decays into two energetic mesons [30,31]), it holds to leading
order in 1/Nc in the large Nc limit [32]. Early factorization tests of this kind, implicitly
neglecting a pct contribution, have been proposed and studied in Ref. [33, 34].

We will now update a factorization test for (Vcs/Vcd)T in B0 → D+
s D

− and B+ →
D+

s D̄
0 by relating the branching ratios for these two processes given in Table II to the

above quoted branching ratio for B0 → D−π+. The latter has been accounted rather
well by factorization [31], up to a small contribution from an exchange amplitude. The
dominant contributions of the isosinglet amplitudes (Vcs/Vcd)T and V ∗

cbVcspct to the decay
rates of B+ → D+

s D̄
0 and B0 → D+

s D
− are expected to be equal in the isospin symmetry

limit. Thus we will use the weighted average of these two branching ratios, correcting
B(B+ → D+

s D̄
0) by the lifetime ratio τ0/τ+:

B̃(B → D+
s D̄) = (82.4± 6.5)× 10−4 . (30)
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This implies the following ratio of measured branching ratios,

B̃(B → D+
s D̄)

B(B0 → D−π+)
= 3.07± 0.28 . (31)

Assuming factorization for the processes in the numerator and denominator and
taking Vcs/Vud = 1, one would expect this ratio to be given by [34]

B̃(B → D+
s D̄)

B(B0 → D−π+)
=
f 2
Ds

f 2
π

F 2
V (ωDs

)

F 2
V (ωπ)

[(1 +
√
ζD)

2 − ζDs
]2

[(1 +
√
ζD)2 − ζπ]2

pDs

pπ
, (32)

where

ωx ≡ m2
B +m2

D −m2
x

2mBmD

, ζx ≡ m2
x

m2
B

. (33)

Here fDs
, fπ and pDs

, pπ are corresponding decay constants and momenta in the B
meson rest frame, while FV is the B → D vector form factor. Taking a linear form
factor [35], FV (ω) = FV (1)[1 − (0.69 ± 0.14)(ω − 1)], and using [36] fπ = 130.4 ± 0.2
MeV, fDs

= 273± 10 MeV, with meson masses and momenta in the B rest frame listed
in Ref. [25], one finds

B̃(B → D+
s D̄)

B(B0 → D−π+)
= 4.42+0.74

−0.57 . (34)

Comparing the factorization calculation with the experimental ratio (31) we note
that the factorization result is on the high side, showing a discrepancy of 2.1σ relative
to experiment. We do not expect a very good agreement here because of two corrections,
each of which may be about 30% in amplitude:

1. A penguin term V ∗
cbVcspct contributing to the numerator but not to the denom-

inator. As mentioned, this term could be as large as 0.3T and could interfere
destructively with T , leading to a ratio smaller than (34) by up to a factor of two.

2. Nonfactorizable 1/Nc corrections to T contributing to both numerator and denom-
inator. These terms are also expected to lead to corrections around 30% in the
amplitude.

6.2 ∆S = 0 decays

6.2.1 Ratio of two CKM factors

We now turn to the ∆S = 0 decay amplitudes given in Eqs. (16). These amplitudes
involve the two CKM factors V ∗

cbVcd and V ∗
ubVud which are of comparable order λ3, with

a ratio [17]
|V ∗

ubVud|
|V ∗

cbVcd|
= 0.40± 0.05 . (35)

In the U-spin symmetry limit these CKM factors multiply the same hadronic amplitudes
occurring in ∆S = 1 decays. The somewhat larger CKM factor V ∗

cbVcd multiplies a
dominant term tc and an exchange contribution ec which is expected to be much smaller.
This leads to a large suppression of B(B0 → D0D̄0) and B(B0 → D+

s D
−
s ) relative to

B(B0 → D+D−),B(B+ → D+D̄0) and B(Bs → D+D−
s ) [27, 37].
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6.2.2 Factorization of T in B0 → D+D− and B+ → D+D̄0

The hadronic amplitude V ∗
cbVcdtc consists of a dominant term T , which is factorizable in

the large Nc limit, and a sub-dominant term V ∗
cbVcdpct, which may be as large as about

0.3T . Using notations as above, factorization of T implies that the contribution of this
amplitude to the rates for B0 → D+D− and B+ → D+D̄0 are equal and are given by

B(B0 → D+D−)T
B(B0 → D−π+)

=
B(B+ → D+D̄0)T
B(B0 → D−π+)

=
λ2

1− λ2
f 2
D

f 2
π

F 2
V (ωD)

F 2
V (ωπ)

[(1 +
√
ζD)

2 − ζD]
2

[(1 +
√
ζD)2 − ζπ]2

pD
pπ

= 0.136+0.022
−0.018 . (36)

We have used a value [36] fD = 205.8± 8.9 MeV. Using the measured branching ratio,
B(B0 → D−π+) = (26.8± 1.3)× 10−4, this implies

B(B0 → D+D−)T = B(B+ → D+D̄0)T = (3.64+0.62
−0.52)× 10−4 . (37)

This result is in agreement, well within 1σ, with the branching ratios measured by
BaBar and Belle for B+ → D+D̄0. It deviates from the BaBar and Belle measurements
of B(B0 → D+D−) by 1.0σ and 2.8σ, respectively. (See Table I.) As we mentioned,
deviations at this level are expected due to a term V ∗

cbVcdpct and 1/Nc corrections.

6.2.3 The amplitude pu and the smaller terms, pau, eu, au

The CKM factor V ∗
ubVud in ∆S = 0 decay amplitudes multiplies four hadronic terms,

pu, pau, eu and au. The QCD penguin amplitude pu ≡ put, involving t and u quarks in
the loop, is expected to have a magnitude comparable to that of pct multiplying V ∗

cbVcd.
Since we anticipate |V ∗

cbVcdpct| ≤ 0.3|T | Eq. (35) implies

|V ∗
ubVudpu|

|V ∗
cbVcdtc|

≃ |V ∗
cbVcdpct|

|T + V ∗
cbVcdpct|

|V ∗
ubVud|

|V ∗
cbVcd|

≤ 0.3

1− 0.3

|V ∗
ubVud|

|V ∗
cbVcd|

= 0.2 . (38)

This upper bound assumes a worst-case scenario of destructive interference between T
and V ∗

cbVcdpct in tc, as indicated by the factorization prediction (34) which is larger than
the corresponding experimental ratio (31).

The other three amplitudes, pau, eu and au, involving an interaction of a spectator
quark, are expected to be suppressed by ΛQCD/mB. For instance, the weak annihilation
amplitude au factorizes at leading order in 1/Nc,

au =
GF√
2
(C1 +

C2

Nc

)〈0|b̄γµ(1− γ5)u|B+〉〈D+D̄0|ūγµd|0〉+O(1/N2
c ) . (39)

The |0〉 → |D+D̄0〉 matrix element of the I = 1 vector current is parameterized by one
form factor,

〈D+(pD)D̄
0(pD̄)|ūγµd|0〉 = f

(I=1)
+ (q2)(pD − pD̄)µ . (40)
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Combining the two factors in Eq. (39), one finds that the leading term in au is propor-
tional to the isospin breaking D meson mass difference which is negligibly small,

au =
GF√
2
(C1 +

C2

Nc

)fBf
(I=1)
+ (m2

B)(m
2
D+ −m2

D0) +O(1/N2
c ) . (41)

This implies that au is dominated by nonfactorizable contributions including initial state
gluon emission.

Since pau is also suppressed by a QCD loop factor, and eu and au are suppressed by
requiring a popping of a heavy cc̄ pair, we will assume

|pau|, |eu|, |au| ≪ |pu| . (42)

Thus, in the subsequent analysis we will neglect these very small amplitudes. [For the
same argument, the interaction of a spectator quark and cc̄ popping, we have neglected
in Section 5 the two EWP contributions, PEEW (c) and PAEW (c).]

7 Reiterating B → DD̄ decays and a bound on r

Neglecting the very small amplitudes in (42), Eqs. (16) (18) and the last of Eqs. (19)
become:

a. A(B0 → D+D−) = V ∗
cbVcd (tc + ec) + V ∗

ubVud pu ,

b. A(B0 → D0D̄0) = −V ∗
cbVcd ec ,

c. A(B+ → D+D̄0) = V ∗
cbVcd tc + V ∗

ubVud pu ,

d. A(B0 → D+
s D

−
s ) = V ∗

cbVcd ec ,

e. A(Bs → D+D−
s ) = V ∗

cbVcd tc + V ∗
ubVud pu , (43)

r =
|V ∗

ubVud|
|V ∗

cbVcd|
|pu|

|tc + ec|
, δ = arg

(

− pu
tc + ec

)

, A1, 3
2

= 0 . (44)

Using the two upper limits (28) and (38) we find

r ≤ 0.3 . (45)

We consider this a conservative upper bound, as it allows for a worst-case scenario of
two destructive interference terms in the denominator of r and for a large enhancement
of the penguin amplitude in its numerator.

We will now discuss the rate and asymmetry measurements in B → DD̄ in light of
the expressions (43), which are expected to hold to a very good approximation. First, we
note that CP asymmetries in B0 → D0D̄0 and B0 → D+

s D
−
s vanish in this approximation

because the amplitudes for these processes involve a single CKM factor V ∗
cbVcd. [This

justifies the discussion below Eq. (10 ).] The decay rates for these two processes, which
are dominated by an amplitude ec, are equal in the SU(3) limit. A small decay rate
difference between B0 → D0D̄0 and B0 → D+

s D
−
s is expected due to two effects working

in opposite directions, uū versus ss̄ popping on the one hand and exclusive production
of D0D̄0 versus D+

s D
−
s on the other.
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Second, as mentioned, neglecting eu and au leads to ∆I = 1/2 in B → DD̄ implying
the triangle amplitude relation (8). This relation was shown to be violated at 1.8σ by
branching ratios and asymmetries measured by Belle. The Standard Model ∆I = 3/2
amplitude eu + au is too small to account for an observable violation.

The Belle asymmetries by themselves also show two unexpected features (see Table
I), which are not shared by the BaBar measurements:

1. The above upper bound on r and the second Eq. (2) imply a theoretical upper
limit on the direct asymmetry in B0 → D+D−,

|ACP (B
0 → D+D−)| ≤ 2r

1 + r2
≤ 0.55 . (46)

The value measured by Belle is larger than this upper limit by 1.5σ.

2. The asymmetries in B0 → D+D− and B+ → D+D̄0 are expected to be equal, up
to second order corrections from an interference of the small amplitudes ec and pu.
In contrast to this expectation, the Belle asymmetry in B0 → D+D− is positive
and large while the one in B+ → D+D̄0 is very small. The difference between the
two asymmetries involves a statistical significance of 3.6σ. The Standard Model
interference of ec and pu and the amplitude pau, which we neglected in (43a), are
too small to account for this large difference between the two CP asymmetries.

8 Determining γ

The amplitude for B0 → D+D− given in (16a) or (43a) and a suitably chosen ∆S = 1
amplitude in (20) provide a sufficient number of observables for determining the weak
phase γ in the flavor SU(3) limit. This method has been proposed in Refs. [23] and [37].
Here we wish to recapitulate this method, showing that the determination of γ in this
way is very sensitive to uncertainties in SU(3) breaking.

The two asymmetries S(D+D−) and ACP (D
+D−) are given in Eqs. (2) in terms of

the three parameters r, δ and γ. We are assuming β = (21.5±1.0)◦. A third equation for
these parameters is provided by the ratio of CP-averaged decay rates for B0 → D+D−

and its U spin counterpart Bs → D+
s D

−
s . Alternatively, one may use instead of the

latter process the decay mode B0 → D+
s D

− or B+ → D+
s D̄

0. In this case one would
have to estimate the effect of the exchange amplitude ec contributing to B0 → D+D−

but not to the latter two ∆S = 1 decay processes. [See discussion above including the
upper bound (28).]

Focusing our attention on the U spin pair B0 → D+D− and Bs → D+
s D

−
s , we define

an experimentally measured ratio of CP-averaged decay rates,

R ≡
(

Vcs
Vcd

)2 Γ̄(B0 → D+D−)

Γ̄(Bs → D+
s D

−
s )

=
1− λ2

λ2
B(B0 → D+D−)

B(Bs → D+
s D

−
s )

τs
τ0
, (47)

where [1] τs/τ0 = 0.939 ± 0.021 is the ratio of Bs and B0 lifetimes. Neglecting the
second term in (20a) suppressed by the tiny CKM factor (25), and introducing an SU(3)
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breaking parameter ξ for the ratio of tc+ec amplitudes in Bs → D+
s D

−
s and B0 → D+D−,

one obtains:
ξ2R = 1 + 2r cos δ cos γ + r2 . (48)

Thus, for a given value of ξ, the three observables S(D+D−), ACP (D
+D−) and R in

Eqs. (2) and (48) enable a determination of r, δ and γ up to discrete ambiguities.
In order to obtain an analytic solution for γ, and to overcome two of its four discrete

ambiguities, it is convenient to introduce another observable in B0 → D+D− [38] (see
also [37]),

D ≡ 2Re(λD+D−)

1 + |λD+D−|2 , (49)

obeying with the two asymmetries,

A2
CP + S2 +D2 = 1 . (50)

Expressing the new observable in terms of r, δ and γ,

D =
cos 2β + 2r cos δ cos(2β + γ) + r2 cos 2(β + γ)

1 + 2r cos δ cos γ + r2
, (51)

we note that this quantity is positive for β = (21.5± 1.0)◦, r ≤ 0.3 [as required by (45)],
and for arbitrary values of δ and γ. This information on the sign of D, which remains
undetermined by the two asymmetries using (50), avoids two discrete ambiguities in γ.

Eqs. (2) and (48) and the positivity of D imply the following equation for γ in terms
of ACP , S and ξ2R [37]:

+
√

1−A2
CP − S2 cos 2(β + γ)− S sin 2(β + γ)− 1

cos 2γ − 1
=

1

ξ2R
. (52)

The plus sign in front of the square root follows from the positivity of D.
In order to demonstrate the high sensitivity of determining γ to the value of the

SU(3) breaking parameter ξ, we plot in Fig. 2(a) the dependence of γ on ξ for two sets
of values for ACP , S and R:
(1) BaBar central values, ACP = −0.11, S = −0.54, R = 0.52 (solid curve).
(2) Central values of the averages of BaBar and Belle, ACP = 0.37, S = −0.75, R = 0.39
(dashed curve).
We do not use the Belle central values because they are non-physical, violating the
inequality S2 + A2

CP ≤ 1. Also shown in the plot is a band describing the currently
allowed 1σ range for γ [17], γ = (67.6+2.8

−4.5)
◦. Fig. 2(b) shows values of r corresponding

to solutions for γ for case (1) (solid curve) and (2) (dashed curve). A solution obtained
with too large values of r, r > 1.5 in case (1) and r > 0.6 in case (2), is not shown.

The two curves of γ for case (1) and (2) cross the allowed band for γ at ξ = 1.3
and ξ = 1.7, respectively. This difference in the values of the SU(3) breaking parameter
follows from the large experimental errors in the B0 → D+D− measurements. The
slopes of the two curves at the above points are quite steep, implying in both cases a
high theoretical sensitivity of the determined value of γ to the assumed value of ξ. For
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Figure 2: Behavior of solutions as a function of parameter ξ describing SU(3) violation.
Solid curves denote values obtained using BaBar central values as input; dashed curves
based on BaBar–Belle average central values. (a) Weak phase γ. Horizontal dashed lines
denote HFAG central and ±1σ values of γ. (b) Parameter r = Au/Ac describing ratio of
amplitudes. Horizontal dot-dashed line denotes upper bound r ≤ 0.3 described in text.

instance, the dashed curve increases approximately linearly from γ = 65◦ at ξ = 1.7 to
γ = 105◦ at ξ = 1.6. Thus, assuming perfect measurements for the branching ratio and
asymmetries in B0 → D+D−, an uncertainty of 10◦ in γ would require knowing ξ to
better than 2%. A somewhat lower sensitivity has been noted in the second paper in
Ref. [23].

The parameter ξ, representing SU(3) breaking in the ratio of tc + ec amplitudes in
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Bs → D+
s D

−
s and B0 → D+D− including a small calculable phase space effect, involves

theoretical uncertainties from several sources:

• As mentioned, tc include a dominant tree amplitude, for which the leading term in
a 1/Nc expansion factorizes. SU(3) breaking in the factorizable term is given by
a product of a measured ratio of decay constants [36], fDs

/fD = 1.33± 0.07, and
a ratio of form factors FBs→Ds

(m2
Ds

)/FB→D(m
2
D). The latter ratio is estimated at

∼ 1.05 in a chiral SU(3) perturbation expansion, at leading order in the heavy b
and c quark masses mH [39]. However, a complete analysis of all O(1/mH) terms
shows that simultaneous violation of both chiral and heavy quark symmetries can
be as large as 30% [40]. The form factor ratio can eventually be determined from
B0 → D−ℓ+ν measured in e+e− collisions on the Υ(4S) [35] and Bs → D−

s ℓ
+ν

accessible to the LHCb collaboration working at the LHC. Thus, SU(3) breaking
in the tree amplitude involves nonfactorizable 1/Nc corrections and uncertainties
in ratios of form factors and decay constants combining to a total of at least 30%.

• A penguin contribution V ∗
cbVcdpct in tc is not expected to factorize, which introduces

an uncontrollable SU(3) breaking correction in this contribution at a level of 30%.

• We have already discussed uncertainties in the magnitude of ec. 30% uncertainties
due to SU(3) breaking corrections in this amplitude and in pct mentioned above
translate through (28) and (29) into two uncertainties in SU(3) breaking in tc+ec,
each of which is at a level of 10%.

In view of these combined uncertainties, a precision of 10% in ξ is unachievable. This
implies a very large intrinsic theoretical uncertainty of at least 50◦ in determining γ as
demonstrated in Fig. 2(a).

The origin of the high sensitivity to SU(3) breaking can be traced back to the way
flavor SU(3) symmetry is being applied here for a determination of γ. In this method
an assumption of SU(3) symmetry is used to normalize the dominant amplitude in
B0 → D+D− in terms of the measured amplitude for Bs → D+

s D
−
s . In contrast, the

error in γ introduced by an uncertainty in SU(3) breaking is expected to be small in cases
where a small penguin amplitude in ∆S = 0 decays is normalized by a measurable SU(3)
related ∆S = 1 decay amplitude. Two cases, where this has been demonstrated, are
B0 → π+π− [41], where the penguin amplitude is subdominant, and most prominently
B0 → ρ+ρ− [42] in which the penguin amplitude is very small.

9 Conclusion

We have studied the effect of a small b̄ → ūud̄ amplitude in B → DD̄ decays. While
this amplitude violates ∆I = 1/2, we have argued that this violation is expected to be
very small. Considering the Belle measurements, we pointed out a violation at a level of
1.8σ of a ∆I = 1/2 amplitude relation, and an inconsistency at a level of 3.6σ between
CP asymmetries in B0 → D+D− and B+ → D+D̄0. No such inconsistency has been
observed by the BaBar collaboration. If these discrepancies persist they would have to
be associated with a New Physics contribution to b̄→ ūud̄.
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Using conservative considerations within the CKM framework, we obtained a model-
independent upper bound, r ≡ Au/Ac ≤ 0.3, for the ratio of b̄ → ūud̄ and b̄ → c̄cd̄
amplitudes in B0 → D+D−. This implies an upper limit, |ACP | ≤ 0.55, for the direct
CP asymmetry in this process. The Belle asymmetry is 1.5σ larger than this bound,
while the BaBar measurement is well below this upper limit.

U spin symmetry has been applied for obtaining relations between amplitudes and CP
asymmetries for ∆S = 0 decays of B and Bs to pairs of charm-anticharm mesons and
amplitudes and asymmetries in corresponding ∆S = 1 decays. We have shown that,
while these relations are not useful for a precise determination of γ in B0 → D+D−

in the presence of small uncertainties in SU(3) breaking, they may provide important
information about small contributions to the latter process.

For instance, the amplitude ec may account for a difference between the decay rates
of B0 → D+D− and B+ → D+D̄0, and for a small difference between CP asymmetries in
these decays. This amplitude dominates the ∆S = 0 decays, B0 → D0D̄0, B0 → D+

s D
−
s ,

and the ∆S = 1 decays Bs → D+D−, Bs → D0D̄0, and may be extracted from branching
ratios of these processes. Using Eq. (27) one would predict B(B0 → D+

s D
−
s ) = (4.0+1.8

−1.4)×
10−6, whereas (28) only implies B(B0 → D+

s D
−
s ) ≤ 3× 10−5, close to the upper limit in

Table I [15]. Similarly, using (30) B̃(B → D+
s D̄) = (82.4 ± 6.5) × 10−4 Eq. (27) would

imply B(Bs → DD̄) = (0.9+0.4
−0.3) × 10−4, while the conservative upper bound (28) leads

to a more modest prediction B(Bs → DD̄) ≤ 7× 10−4.
Thus, a sensitivity of 1×10−4 in B(Bs → D+D−) and B(Bs → D0D̄0), in comparison

with B̃(B → D+
s D̄) = (82.4± 6.5)× 10−4, can be used for obtaining precise information

on the ratio |ec/tc| at a level of 0.1. This precision is considerably more powerful than the
current upper bound (28) obtained from the λ2 suppressed B(B0 → D0D̄0). The above
sensitivity may be achieved at experiments carried by the LHCb collaboration working
at the Large Hadron Collider. More precise measurement of the Cabibbo-favored decay
branching ratio B(Bs → D+

s D
−
s ) than currently available may soon be achieved at the

Tevatron. This would lead to useful information on corrections to U spin symmetry
relating this process and B0 → D+D−.

Acknowledgments: M.G. would like to thank the Enrico Fermi Institute at the Uni-
versity of Chicago for its kind and generous hospitality. We thank Pavel Krokovny,
Shunzo Kumano, Manfred Paulini and Yoshi Sakai for useful communications and Shel-
don Stone for comments about feasibility at LHCb. This work was supported in part
by the United States Department of Energy through Grant No. DE FG02 90ER40560.

A SU(3) operator analysis

In this Appendix we consider relations between the graphical amplitudes defined in
Sections 4 and 5 and a flavor SU(3) analysis for the operators appearing in the low
energy effective Hamiltonian (5). These operators have the following transformation
properties under flavor SU(3). Current-current operators: Oc

1,2 ∼ 3, Ou
1,2 ∼ 3, 6, 15,

QCD penguin operators: O3−6 ∼ 3, electroweak penguin operators: O7−10 ∼ 3, 6, 15.
An explicit SU(3) decomposition of the Hamiltonian can be found e.g. in [43].
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In B̄ → DD̄ decays, the initial and final states transform like 3 and 1, 8, respec-
tively, which implies that all these decay amplitudes can be expressed in terms of four
SU(3) reduced matrix elements 〈1||3||3〉, 〈8||3||3〉, 〈8||6||3〉, 〈8||15||3〉. This agrees with
the counting of independent amplitudes performed in Section 4 in terms of graphical
amplitudes.

The explicit expansion of all ten ∆S = 0 and ∆S = 1 amplitudes in terms of reduced
SU(3) matrix elements can be found, for example, in [44]. The ∆S = 0 amplitudes are

















A(B0 → D+D−)
A(B0 → D0D̄0)
A(B+ → D+D̄0)
A(B0 → D+

s D
−
s )

A(Bs → D+D−
s )

















=





















1√
3

− 1√
6

0 −1
2

− 1√
3

− 1
2
√
6

−1
2

−3
4

0 −1
2

√

3
2

−1
2

3
4

1√
3

1
2
√
6

−1
2

−1
4

0 −1
2

√

3
2

1
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4































〈1||3||3〉d
〈8||3||3〉d
〈8||6||3〉d
〈8||15||3〉d











. (53)

The corresponding ∆S = 1 amplitudes are given by the same transformation matrix,

















A(Bs → D+
s D

−
s )

A(B0
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A(B+ → D+
s D̄
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


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
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









. (54)

The subscript q = d, s on the reduced matrix elements is a reminder that they differ for
∆S = 0, 1 weak Hamiltonians through their dependence on CKM matrix elements.

Comparing these expressions with the graphical expansions (16) and (20), we find
the following relations between SU(3) reduced matrix elements and graphical amplitudes
(for q = d, s):

〈1||3||3〉q = V ∗
cbVcq

1√
3
(tc + 3ec) + V ∗

ubVuq
1√
3
(pu + 3pau + eu) ,

〈8||3||3〉q = −V ∗
cbVcq

1

2
√
6
8tc − V ∗

ubVuq
1

2
√
6
(8pu − eu + 3au) ,

〈8||6||3〉q = V ∗
ubVuq

1

2
(eu − au) ,

〈8||15||3〉q = V ∗
ubVuq

1

2
(eu + au) . (55)

As mentioned in Section 5, electroweak penguin (EWP) contributions introduce four
new graphical amplitudes. This agrees with the above counting of SU(3) reduced matrix
elements. A complete expansion of EWP terms in the ten processes (16) and (20) in
terms of graphical amplitudes defined in Section 5 is:

PEW (B0 → D+D−) = V ∗
tbVtd(

2

3
PC
EW − 1

3
PEEW (c) +

2

3
PAEW − 1

3
PAEW (c)) ,

PEW (B0 → D0D̄0) = V ∗
tbVtd(−

2

3
PAEW − 2

3
PAEW (c)) ,
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PEW (B+ → D+D̄0) = V ∗
tbVtd(

2

3
PC
EW +

2

3
PEEW (c)) ,

PEW (B0 → D+
s D

−
s ) = V ∗

tbVtd(
2

3
PAEW − 1

3
PAEW (c)) ,

PEW (B0
s → D+D−

s ) = V ∗
tbVtd(

2

3
PC
EW − 1

3
PEEW (c)) . (56)

PEW (Bs → D+
s D

−
s ) = V ∗

tbVts(
2

3
PC
EW − 1

3
PEEW (c) +

2

3
PAEW − 1

3
PAEW (c)) ,

PEW (Bs → D0D̄0) = V ∗
tbVts(−

2

3
PAEW − 2

3
PAEW (c)) ,

PEW (B+ → D+
s D̄

0) = V ∗
tbVts(

2

3
PC
EW +

2

3
PEEW (c)) .

PEW (Bs → D+D−) = V ∗
tbVts(

2

3
PAEW − 1

3
PAEW (c)) ,

PEW (B0 → D+
s D

−) = V ∗
tbVts(

2

3
PC
EW − 1

3
PEEW (c)) . (57)

Two of the EWP amplitudes can be related within a very good approximation to the
amplitudes eu and au appearing in Eqs. (16) and (20). Neglecting the EWP operators
O7,8 which have negligibly small Wilson coefficients, SU(3) symmetry implies,

PEEW (c) + PAEW (c) = −3

2

C9 + C10

C1 + C2
(au + eu) ,

PEEW (c) − PAEW (c) =
3

2

C9 − C10

C1 − C2
(au − eu) . (58)

The proof of these relations is based on operator relations between 6 and 15 components
of the EWP part of the effective Hamiltonian and corresponding components of the tree
part (q = d, s) [43, 45],

Hq
EWP (15) = −3

2

C9 + C10

C1 + C2

V ∗
tbVtq

V ∗
ubVuq

Hq
T (15) , Hq

EWP (6) =
3

2

C9 − C10

C1 − C2

V ∗
tbVtq

V ∗
ubVuq

Hq
T (6) .(59)

The first operator relation implies for q = s a relation between ∆I = 1 EWP and tree
amplitudes in B → Kπ decays [46].
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