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Abstract

Within a light-cone quantum-chromodynamics dipole formalism based on the Green

function technique, we study nuclear shadowing in deep-inelastic scattering at small

Bjorken xBj ∼< 0.01. Such a formalism incorporates naturally color transparency and

coherence length effects. Calculations of the nuclear shadowing for the q̄q Fock compo-

nent of the photon are based on an exact numerical solution of the evolution equation

for the Green function, using a realistic form of the dipole cross section and nuclear den-

sity function. Such an exact numerical solution is unavoidable for xBj ∼> 10−4, when a

variation of the transverse size of the q̄q Fock component must be taken into account.

The eikonal approximation, used so far in most other models, can be applied only at

high energies, when xBj ∼< 10−4 and the transverse size of the q̄q Fock component is

”frozen” during propagation through the nuclear matter. At xBj ≤ 0.01 we find quite a

large contribution of gluon suppression to nuclear shadowing, as a shadowing correction

for the higher Fock states containing gluons. Numerical results for nuclear shadowing

are compared with the available data from the E665 and NMC collaborations. Nuclear

shadowing is also predicted at very small xBj corresponding to LHC kinematical range.

Finally the model predictions are compared and discussed with the results obtained from

other models.
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1 Introduction

Nuclear shadowing in deep-inelastic scattering (DIS) off nuclei is usually studied via nuclear
structure functions. In the shadowing region of small Bjorken xBj ∼< 0.01 the structure function
F2 per nucleon turns out to be smaller in nuclei than in a free nucleon (see the review [1], for
example). This affects then the corresponding study of nuclear effects, mainly in connection
with the interpretation of the results coming from hadron-nucleus and heavy ion experiments.

Nuclear shadowing, intensively investigated during the last two decades, can be treated
differently depending on the reference frame. In the infinite momentum frame of the nucleus it
can be interpreted as a result of parton fusion [2, 3, 4, 5], leading to a reduction of the parton
density at low Bjorken xBj . In the rest frame of the nucleus, however, this phenomenon looks
like nuclear shadowing of the hadronic fluctuations of the virtual photon, and occurs due to
their multiple scattering inside the target [6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18]. Although
these two physical interpretations are complementary, the one based on the rest frame of the
nucleus is more intuitive and straightforward.

The dynamics of nuclear shadowing in DIS is controlled by the effect of quantum coherence,
which results from the destructive interference of amplitudes for which the interaction takes
place on different bound nucleons. Taking into account the |q̄q〉 Fock component of the photon,
quantum coherence can be characterized by the lifetime of the q̄q fluctuation, which in turn
can be estimated by relying on the uncertainty principle and Lorentz time dilation as,

tc =
2 ν

Q2 +M2
q̄q

, (1)

where ν is the photon energy, Q2 is photon virtuality andMq̄q is the effective mass of the q̄q pair.
This is usually called coherence time, but we also will use the term coherence length (CL), since
light-cone kinematics is assumed, lc = tc. The CL is related to the longitudinal momentum
transfer by qc = 1/lc. Notice that for higher Fock states containing gluons |q̄qG〉, |q̄q2G〉, ... ,
the corresponding effective masses are larger than Mq̄q. Consequently, these fluctuations have a
shorter coherence time than the lowest |q̄q〉 state. The effect of CL is naturally incorporated in
the Green function formalism, which has been already applied to DIS, Drell-Yan pair production
[19, 17, 18], and vector meson production [20, 21] (see also the next Section).

In the present paper nuclear shadowing in DIS will be treated using again the Green function
approach. Such a quantum mechanical treatment requires to solve the evolution equation for
the Green function. Usually, for simplicity this equation is set up in a such way as to obtain
the Green function in an analytical form (see [19, 17], for example), which requires, however,
to implement several approximations into a rigorous quantum-mechanical approach, like a
constant nuclear density function (36) and a specific quadratic form (35) of the dipole cross
section. The solution obtained in a such way is the harmonic oscillator Green function [22]
(see also Eq. (16)), usually used for calculation of nuclear shadowing [19, 17, 23]. Then the
question about the accuracy of the predictions for nuclear shadowing using such approximations
naturally arises.

In the process of searching for the corresponding answer, in 2003 the evolution equation for
the Green function was solved numerically for the first time in ref. [18]. This allowed to exclude
any additional assumptions and avoid supplementary approximations, which caused theoretical
uncertainties. The corresponding predictions for nuclear shadowing in DIS at small xBj , based
on the exact numerical solution of the evolution equation for the Green function [18], showed
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quite a large difference in comparison with approximate calculations [19, 17] obtained within
the harmonic oscillator Green function approach, in the kinematic region when lc ∼< RA (RA is
the nuclear radius). However, no comparison with data was performed using this path integral
technique based on an exact numerical solution of the two-dimensional Schrödinger equation
for the Green function. This is one of the main goals of the present paper. Such a comparison
with data provides a better baseline for future studies of the QCD dynamics, not only in DIS
off nuclei but also in further processes occurring in lepton (proton)-nucleus interactions and in
heavy-ion collisions.

The calculations of nuclear shadowing in DIS off nuclei presented so far within the light-
cone (LC) Green function approach [19, 17, 18] were performed assuming only q̄q fluctuations
of the photon, and neglecting higher Fock components containing gluons and sea quarks. The
effects of higher Fock states are included in the energy dependence of the dipole cross section,
σq̄q(~r, s)

1. However, as soon as nuclear effects are considered, these Fock states |q̄qG〉, |q̄q2G〉
..., lead to gluon shadowing (GS), which for simplicity has been neglected so far when the model
predictions were compared with experimental data. The contribution of the gluon suppression
to nuclear shadowing represents a shadowing correction for the multigluon higher Fock states.
It was shown in ref. [24] that GS becomes effective at small xBj ∼< 0.01. The present available
experimental data cover the shadowing region ∼ 0.0001 ∼< xBj ∼< 0.01, and therefore the
contribution of GS to the overall nuclear shadowing should be included. This is a further goal
of the present paper.

Different (but equivalent) descriptions of GS are known, depending on the reference frame.
In the infinite momentum frame of the nucleus it looks like fusion of gluons, which overlap in the
longitudinal direction at small xBj , leading to a reduction of the gluon density. In the rest frame
of the nucleus the same phenomenon looks as a specific part of Gribov’s inelastic corrections
[25]. The lowest order inelastic correction related to diffractive dissociation γ∗N → X N [26]
contains PPR and PPP contributions (in terms of the triple-Regge phenomenology, see [27]).
The former is related to quark shadowing, while the latter, the triple-Pomeron term, corresponds
to gluon shadowing. Indeed, only diffractive gluon radiation can provide the MX dependence
dσdd/dM

2

X ∝ 1/M2

X of the diffractive dissociation cross section. In terms of the light-cone
QCD approach the same process is related to the inclusion of higher Fock components, |q̄q nG〉,
containing gluons [28]. Such fluctuations might be quite heavy compared to the simplest |q̄q〉
fluctuation, and therefore have a shorter lifetime (see Eq. (1)), and need higher energies to be
relevant.

Calculations of the GS contribution to nuclear suppression have been already performed
within the light-cone QCD approach, for both coherent and incoherent production of vector
mesons [20, 21], and also for production of Drell-Yan pairs [17]. They showed (except for
the specific case of incoherent production of vector mesons) that GS is a non-negligible effect,
especially for heavy nuclear targets at small and medium values of photon virtualities Q2 ∼< a
few GeV2 and at large photon energies ν. This is another reason to include the effect of GS
for the calculation of nuclear shadowing, especially for making more realistic comparison of the
predictions with experimental data.

Notice also that by investigating shadowing in the region of small xBj ∼< 0.01 we can safely
omit the nuclear antishadowing effect assumed to be beyond the shadowing dynamics [8, 9].

The paper is organized as follows. In the next Section 2 we present a short description of the

1Here ~r represents the transverse separation of the q̄q photon fluctuation and s is the center of mass energy

squared.
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light-cone dipole phenomenology for nuclear shadowing in DIS, together with the Green function
formalism. In Section 3 we discuss how gluon shadowing modifies the total photoabsorption
cross section on a nucleus. In Section 4 numerical results are presented and compared with
experimental data, and also with the results from other models, in a broad range of xBj . Finally,
in Section 5 we summarize our main results and discuss the possibility of future experimental
evidence of the GS contribution to the overall nuclear shadowing in DIS at small values of xBj .

2 Light-cone dipole approach to nuclear shadowing

In the rest frame of the nucleus the nuclear shadowing in the total virtual photoabsorption
cross section σγ∗A

tot (xBj , Q
2) (or in the structure function FA

2
(xBj , Q

2)) can be decomposed over
different Fock components of the virtual photon. Then the total photoabsorption cross section
on a nucleus can be formally represented in the form

σγ∗A
tot (xBj , Q

2) = A σγ∗N
tot (xBj , Q

2)−∆σtot(xBj , Q
2) , (2)

where
∆σtot(xBj , Q

2) = ∆σtot(q̄q) + ∆σtot(q̄qG) + ∆σtot(q̄q2G) + · . (3)

Here the Bjorken variable xBj is given by

xBj =
Q2

2mN ν
≈ Q2

Q2 + s
, (4)

where s is the γ∗-nucleon center of mass (c.m.) energy squared, mN is mass of the nucleon,
and σγ∗N

tot (xBj , Q
2) in (2) is total photoabsorption cross section on a nucleon

σγ∗N
tot (xBj , Q

2) =
∫

d2r
∫

1

0

dα
∣∣∣Ψq̄q(~r, α,Q

2)
∣∣∣
2

σq̄q(~r, s) . (5)

In this last expression σq̄q(~r, s) is the dipole cross section, which depends on the q̄q transverse
separation ~r and the c.m. energy squared s, and Ψq̄q(~r, α,Q

2) is the LC wave function of the q̄q
Fock component of the photon, which depends also on the photon virtuality Q2 and the relative
share α of the photon momentum carried by the quark. Notice that xBj is related to the c.m.
energy squared s via Eq. (4). Consequently, hereafter we will write the energy dependence of
variables in subsequent formulas also via an xBj-dependence whenever convenient.

The total photoabsorption cross section on a nucleon target (5) contains two ingredients.
The first ingredient is given by the dipole cross section σq̄q(~r, s), representing the interaction of
a q̄q dipole of transverse separation ~r with a nucleon [29]. It is a flavor independent universal
function of ~r and energy, and allows to describe various high energy processes in an uniform way.
It is also known to vanish quadratically σq̄q(r, s) ∝ r2 as r → 0, due to color screening (property
of color transparency [29, 30, 31]), and cannot be predicted reliably because of poorly known
higher order perturbative QCD (pQCD) corrections and nonperturbative effects. However,
it can be extracted from experimental data on DIS and structure functions using reasonable
parametrizations, and in this case pQCD corrections and nonperturbative effects are naturally
included in σq̄q(r, s).

There are two popular parameterizations of σq̄q(~r, s): GBW presented in [32], and KST
proposed in [24]. Detailed discussions and comparison of these two parametrizations can be
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found in refs. [23, 20, 18]. Whereas the GBW parametrization cannot be applied in the non-
perturbative region of Q2, the KST parametrization gives a good description of the transition
down to the limit of real photoproduction, Q2 = 0. Because we will study the shadowing region
of small xBj ∼< 0.01, where available experimental data from the E665 and NMC collaborations
cover small and moderate values of Q2 ∼< 2÷ 3GeV2, we will prefer the latter parametrization.

The KST parametrization [24] has the following form, which contains an explicit dependence
on energy,

σq̄q(r, s) = σ0(s)

[
1− exp

(
− r2

R2
0(s)

)]
. (6)

The explicit energy dependence in the parameter σ0(s) is introduced in a such way that it
guarantees that the correct hadronic cross sections is reproduced,

σ0(s) = σπ p
tot (s)

(
1 +

3R2

0
(s)

8 〈r2ch〉π

)
, (7)

where σπ p
tot (s) = 23.6 (s/s0)

0.079+1.432 (s/s0)
−0.45mb, which contains the Pomeron and Reggeon

parts of the πp total cross section [33], and R0(s) = 0.88 (s/s0)
−λ/2 fm, with λ = 0.28 and where

s0 = 1000GeV2 is the energy-dependent radius. In Eq. (7) 〈r2ch〉π = 0.44 fm2 is the mean pion
charge radius squared. The form of Eq. (6) successfully describes the data for DIS at small xBj

only up to Q2 ≈ 10GeV2. Nevertheless, this interval of Q2 is sufficient for the purpose of the
present paper, which is focused on the study of nuclear shadowing at small xBj ∼< 0.01 in the
kinematic range Q2 ∼< 4 GeV2 covered by available E665 and NMC data.
However, as we will present the predictions for nuclear shadowing at very small xBj down to
10−7 accesible by the prepared experiments at LHC and at larger values of Q2 ∼> 10 GeV2, we
will use also the second GBW parametrization [32] of the dipole cross section.

The second ingredient of σγ∗N
tot (xBj , Q

2) in (5) is the perturbative distribution amplitude
(“wave function”) of the q̄q Fock component of the photon. For transversely (T) and longitu-
dinally (L) polarized photons it has the form [34, 35, 10]:

ΨT,L
q̄q (~r, α,Q2) =

√
NC αem

2 π
Zq χ̄ ÔT,L χK0(ǫ r) (8)

where χ and χ̄ are the spinors of the quark and antiquark respectively, Zq is the quark charge,
NC = 3 is the number of colors, and K0(ǫr) is a modified Bessel function with

ǫ2 = α (1− α)Q2 +m2

q , (9)

where mq is the quark mass. The operators ÔT,L read,

ÔT = mq ~σ · ~e+ i (1− 2α) (~σ · ~n) (~e · ~∇r) + (~σ × ~e) · ~∇r , (10)

ÔL = 2Qα(1− α) (~σ · ~n) . (11)

Here ~∇r acts on the transverse coordinate ~r, ~e is the polarization vector of the photon, ~n is a unit
vector parallel to the photon momentum, and ~σ is the three vector of the Pauli spin-matrices.

The distribution amplitude Eq. (8) controls the transverse q̄q separation with the mean
value

〈r〉 ∼ 1

ǫ
=

1√
Q2 α (1− α) +m2

q

. (12)

5



For very asymmetric q̄q pairs with α or (1 − α) ∼< m2

q/Q
2 the mean transverse separation

〈r〉 ∼ 1/mq becomes huge, since one must use current quark masses within pQCD. A pop-
ular recipe to fix this problem is to introduce an effective quark mass meff ∼ ΛQCD, which
represents the nonperturbative interaction effects between the q and q̄. It is more consistent
and straightforward, however, to introduce this interaction explicitly through a phenomenology
based on the light-cone Green function approach, and which has been developed in [24].

The Green function Gq̄q(~r2, z2; ~r1, z1) describes the propagation of an interacting q̄q pair
between points with longitudinal coordinates z1 and z2 and with initial and final separations
~r1 and ~r2. This Green function satisfies the two-dimensional Schrödinger equation,

i
d

dz2
Gq̄q(~r2, z2; ~r1, z1) =

[
ǫ2 −∆r2

2 ν α (1− α)
+ Vq̄q(z2, ~r2, α)

]
Gq̄q(~r2, z2; ~r1, z1) , (13)

with the boundary condition

Gq̄q(~r2, z2; ~r1, z1)|z2=z1 = δ2(~r1 − ~r2) . (14)

In Eq. (13) ν is the photon energy and the Laplacian ∆r acts on the coordinate r.
We start with the propagation of a q̄q pair in vacuum. The LC potential Vq̄q(z2, ~r2, α) in (13)

contains only the real part, which is responsible for the interaction between the q and q̄. For the
sake of simplicity we use an oscillator form of this potential. Although more realistic models
for the real part of the potential are available [36, 37], however, solution of the corresponding
Schrödinger equation for the light-cone Green function is a challenge. Analytic solution has
been known so far only for the oscillator potential. Otherwise one has to solve the Schrödinger
equation numerically, which needs a dedicated study.

On the other hand, important is the mean q̄q transverse separation which is fitted to diffrac-
tion data. Any form of the potential must comply with this condition. The same restriction
is imposed on the quark-gluon Fock states. The mean quark-gluon separation, which matters
for shadowing, is fixed by high-mass diffraction data and should not be much affected by the
choice of a model for the potential.

ReVq̄q(z2, ~r2, α) =
a4(α) ~r2

2

2 ν α(1− α)
, (15)

one can solve then two-dimensional Schrödinger equation (13) analytically, and the solution is
given by the harmonic oscillator Green function [38]

Gq̄q(~r2, z2; ~r1, z1) =
a2(α)

2 π i sin(ω∆z)
exp

{
i a2(α)

sin(ω∆z)

[
(r2

1
+ r2

2
) cos(ω ∆z) − 2 ~r1 · ~r2

]}

×exp

[
− i ǫ2∆z

2 ν α (1− α)

]
, (16)

where ∆z = z2 − z1, and

ω =
a2(α)

ν α(1− α)
. (17)

The shape of the function a(α) in Eq. (15) will be discussed below.
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The probability amplitude to find the q̄q fluctuation of a photon at the point z2 with
separation ~r, is given by an integral over the point z1 where the q̄q is created by the photon
with initial separation zero,

ΨT,L
q̄q (~r, α) =

i Zq
√
αem

4π E α(1− α)

z2∫

−∞

dz1
(
χ̄ ÔT,Lχ

)
Gq̄q(~r, z2; ~r1, z1)

∣∣∣
r1=0

. (18)

The operators ÔT,L are defined by Eqs. (10) and (11), and here they act on the coordinate ~r1.
If we write the transverse part as

χ̄ ÔTχ = χ̄ mc ~σ · ~e χ+ χ̄ [i (1− 2α) (~σ · ~n)~e+ (~σ × ~e)] χ · ~∇r = E + ~F · ~∇r , (19)

then the distribution functions read,

ΨT
q̄q(~r, α) = Zq

√
αem

[
E Φ0(ǫ, r, λ) + ~F ~Φ1(ǫ, r, λ)

]
, (20)

ΨL
q̄q(~r, α) = 2Zq

√
αemQα(1− α) χ̄ ~σ · ~n χΦ0(ǫ, r, λ) , (21)

where

λ =
2 a2(α)

ǫ2
. (22)

The functions Φ0,1 in Eqs. (20) and (21) are defined as

Φ0(ǫ, r, λ) =
1

4π

∞∫

0

dt
λ

sh(λt)
exp

[
− λǫ2r2

4
cth(λt)− t

]
, (23)

~Φ1(ǫ, r, λ) =
ǫ2~r

8π

∞∫

0

dt

[
λ

sh(λt)

]2
exp

[
− λǫ2r2

4
cth(λt)− t

]
, (24)

where sh(x) and cth(x) are the hyperbolic sine and hyperbolic cotangent, respectively.
Note that the q̄ − q interaction enters in Eqs. (20) and (21) via the parameter λ defined in

Eq. (22). In the limit of vanishing interaction λ → 0 (i.e. Q2 → ∞, α is fixed, α 6= 0 or 1)
Eqs. (20) - (21) produce the perturbative expressions of Eq. (8).

With the choice a2(α) ∝ α(1 − α), the end-point behavior of the mean square interquark
separation is 〈r2〉 ∝ 1/α(1− α), which contradicts the idea of confinement. Following [24] we
fix this problem via a simple modification of the LC potential,

a2(α) = a2
0
+ 4a2

1
α(1− α) . (25)

The parameters a0 and a1 were adjusted in [24] to data on total photoabsorption cross section
[39, 40], diffractive photon dissociation, and shadowing in nuclear photoabsorption reaction.
The results of our calculations vary within only 1% when a0 and a1 satisfy the relation,

a2
0

= v1.15 (0.112)2 GeV2

a2
1

= (1− v)1.15 (0.165)2 GeV2 , (26)

where v takes any value 0 < v < 1. In view of this insensitivity of the observables we fix the
parameters at v = 1/2. We checked that this choice does not affect our results beyond a few
percent uncertainty.
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The matrix element (5) contains the LC wave function squared, which has the following
form for T and L polarizations, in the limit of vanishing interaction between q̄ and q,

∣∣∣ΨT
q̄q(~r, α,Q

2)
∣∣∣
2

=
2NC αem

(2π)2

Nf∑

f=1

Z2

f

[
m2

f K0(ǫ, r)
2 + [α2 + (1− α)2] ǫ2K1(ǫ r)

2
]
, (27)

and
∣∣∣ΨL

q̄q(~r, α,Q
2)
∣∣∣
2

=
8NC αem

(2π)2

Nf∑

f=1

Z2

f Q
2 α2(1− α)2K0(ǫ r)

2 , (28)

where K1 is the modified Bessel function,

K1(z) = − d

dz
K0(z) . (29)

If one includes the nonperturbative q̄− q interaction, the perturbative expressions (27) and
(28) should be replaced by:

∣∣∣ΨT
npt(~r, α,Q

2)
∣∣∣
2

= 2NC αem

Nf∑

f=1

Z2

f

[
m2

f Φ
2

0
(ǫ, r, λ) + [α2 + (1− α)2] |~Φ1(ǫ, r, λ) |2

]
, (30)

and
∣∣∣ΨL

npt(~r, α,Q
2)
∣∣∣
2

= 8NC αem

Nf∑

f=1

Z2

f Q
2 α2(1− α)2Φ2

0
(ǫ, r, λ) . (31)

Notice that in the LC formalism the photon wave function contains also higher Fock states
|q̄q〉, |q̄qG〉, |q̄q2G〉, etc., but its effect can be implicitly incorporated into the energy dependence
of the dipole cross section σq̄q(~r, s), as is given in Eq. (5). The energy dependence of the dipole
cross section is naturally included in the realistic KST parametrization Eq. (6).

Now we will continue with our discussion of DIS on nuclear targets, and will study the
propagation of a q̄q pair in nuclear matter. Some work has already been done in this direction.
In fact, the derivation of the formula for nuclear shadowing, keeping only the first shadowing
term in Eq. (2), ∆σtot(xBj , Q

2) = ∆σtot(q̄q), can be found in [41]. This term represents the
shadowing correction for the lowest q̄q Fock state, and has the following form

∆σtot(xBj , Q
2) =

1

2
Re

∫
d2b

∫ ∞

−∞
dz1 ρA(b, z1)

∫ ∞

z1
dz2 ρA(b, z2)

∫
1

0

dα A(z1, z2, α) , (32)

with

A(z1, z2, α) =
∫
d2r2 Ψ∗

q̄q(~r2, α, Q
2) σq̄q(r2, s)

∫
d2r1 Gq̄q(~r2, z2; ~r1, z1) σq̄q(r1, s) Ψq̄q(~r1, α, Q

2) .

(33)
When nonpertubative interaction effects between the q̄ and q are explicitly included, one should
replace in Eq. (33) Ψq̄q(~r, α,Q

2) =⇒ Ψnpt(~r, α,Q
2) and Ψ∗

q̄q(~r, α,Q
2) =⇒ Ψ∗

npt(~r, α,Q
2).

In Eq. (32) ρA(b, z) represents the nuclear density function defined at the point with longi-

tudinal coordinate z and impact parameter ~b.
The shadowing term ∆σtot(xBj , Q

2) = ∆σtot(q̄q) in (2) is illustrated in Fig. 1. At the point
z1 the initial photon diffractively produces the q̄q pair (γ∗N → q̄qN) with transverse separation
~r1. The q̄q pair then propagates through the nucleus along arbitrary curved trajectories, which
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Figure 1: A cartoon for the shadowing term ∆σtot(xBj , Q
2) = ∆σtot(q̄q)

in (2). Propagation of the q̄q pair through the nucleus is described by
the Green function Gq̄q(~r2, z2; ~r1, z1), which results from the summation
over different paths of the q̄q pair.

are summed over, and arrives at the point z2 with transverse separation ~r2. The initial and
final separations are controlled by the LC wave function of the q̄q Fock component of the
photon Ψq̄q(~r, α,Q

2). During propagation through the nucleus the q̄q pair interacts with bound
nucleons via the dipole cross section σq̄q(r, s), which depends on the local transverse separation
~r. The Green function Gq̄q(~r2, z2; ~r1, z1) describes the propagation of the q̄q pair from z1 to z2.

Describing the propagation of the q̄q pair in a nuclear medium, the Green function
Gq̄q(~r2, z2; ~r1, z1) satisfies again the time-dependent two-dimensional Schrödinger equation (13).
However, the potential in this case acquires in addition an imaginary part. This imaginary part
of the LC potential Vq̄q(z2, ~r2, α) in Eq. (13) is responsible for the attenuation of the q̄q photon
fluctuation in the medium, and has the following form

ImVq̄q(z2, ~r, α) = −σq̄q(~r, s)

2
ρA(b, z2) . (34)

As was already mentioned above, the analytical solution of Eq. (13) is known only for the
harmonic oscillator potential Vq̄q(r) ∝ r2. Consequently, in order to keep such an analytical
solution one should also use a quadratic approximation for the imaginary part of Vq̄q(z2, ~r2, α),
i.e.

σq̄q(r, s) = C(s) r2 , (35)

and uniform nuclear density

ρA(b, z) = ρ0 Θ(R2

A − b2 − z2) . (36)

In this case the solution of Eq. (13) has the same form as Eq. (16), except that one should
replace ω =⇒ Ω and a2(α) =⇒ b(α), where

Ω =
b(α)

να(1− α)
=

√
a4(α)− i ρA(b, z) ν α (1− α)C(s)

ν α (1− α)
. (37)
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The determination of the energy dependent factor C(s) in Eq. (35) and the mean nuclear
density ρ0 in Eq. (36) can be realized by the procedure described in [17, 23, 18], and will be
discussed below.

Investigating nuclear shadowing in DIS one can distinguish between two regimes, depending
on the value of the coherence length:

(i) We start with the general case when there are no restrictions for lc. If lc ∼ RA one has to
take into account the variation of the transverse size r during propagation of the q̄q pair through
the nucleus, which is naturally included using a correct quantum-mechanical treatment based on
the Green function formalism presented above. The overall total photoabsorption cross section
on a nucleus is given as a sum over T and L polarizations, σγ∗A = σγ∗A

T + ǫ′ σγ∗A
L , assuming that

the photon polarization ǫ′ = 1. If one takes into account only the q̄q Fock component of the
photon, the full expression after summation over all flavors, colors, helicities and spin states
becomes [42]

σγ∗A(xBj , Q
2) = Aσγ∗N(xBj , Q

2)−∆ σ(xBj , Q
2)

= A
∫

d2r
∫

1

0

dα σq̄q(r, s)

(∣∣∣ΨT
q̄q(~r, α,Q

2)
∣∣∣
2

+
∣∣∣ΨL

q̄q(~r, α,Q
2)
∣∣∣
2

)

− NC αem

(2π)2

Nf∑

f=1

Z2

f Re
∫

d2b
∫ ∞

−∞
dz1

∫ ∞

z1
dz2

∫
1

0

dα
∫

d2r1

∫
d2r2

× ρA(b, z1) ρA(b, z2) σq̄q(r2, s) σq̄q(r1, s)

×
{[

α2 + (1− α)2
]
ǫ2

~r1 · ~r2
r1 r2

K1(ǫ r1)K1(ǫ r2) (38)

+
[
m2

f + 4Q2 α2 (1− α)2
]
K0(ǫ r1)K0(ǫ r2)

}
Gq̄q(~r2, z2; ~r1, z1) .

Here
∣∣∣ΨT,L

q̄q (~r, α,Q2)
∣∣∣
2

are the absolute squares of the LC wave functions for the q̄q fluctuation

of T and L polarized photons, summed over all flavors, and with the form given by Eqs. (27)
and (28), respectively.

If one takes into account the nonperturbative interaction effects between q̄ and q of the
virtual photon the expression for σγ∗A(xBj , Q

2) Eq. (38) takes the following form:

σγ∗A
npt (xBj , Q

2) = Aσγ∗N
npt (xBj , Q

2)−∆ σnpt(xBj , Q
2)

= A
∫

d2r
∫

1

0

dα σq̄q(r, s)

(∣∣∣ΨT
npt(~r, α,Q

2)
∣∣∣
2

+
∣∣∣ΨL

npt(~r, α,Q
2)
∣∣∣
2

)

− NC αem

Nf∑

f=1

Z2

f Re
∫

d2b
∫ ∞

−∞
dz1

∫ ∞

z1
dz2

∫
1

0

dα
∫

d2r1

∫
d2r2

× ρA(b, z1) ρA(b, z2) σq̄q(r2, s) σq̄q(r1, s)

×
{[

α2 + (1− α)2
]
~Φ1(ǫ , r1, λ) · ~Φ1(ǫ , r2, λ) (39)

+
[
m2

f + 4Q2 α2 (1− α)2
]
Φ0(ǫ , r1, λ) Φ0(ǫ , r2, λ)

}
Gq̄q(~r2, z2; ~r1, z1) .

where
∣∣∣ΨT,L

npt (~r, α,Q
2)
∣∣∣
2

are now given by Eqs. (30) and (31), respectively.
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(ii) The CL is much larger than the mean nucleon spacing in a nucleus (lc ≫ RA), which is
the high energy limit. Correspondingly, the transverse separation r between q̄ and q does not
vary during propagation through the nucleus (Lorentz time dilation). In this case the eikonal
formula for the total photoabsorption cross section on a nucleus can be obtained as a limiting
case of the Green function formalism. Indeed, in the high energy limit ν → ∞, the kinetic term
in Eq. (13) can be neglected and the Green function reads

Gq̄q(b; ~r2, z2; ~r1, z1)|ν→∞ = δ(~r2 − ~r1) exp

[
−1

2
σq̄q(r2, s)

∫ z2

z1
dz ρA(b, z)

]
. (40)

Including nonperturbative interaction effects between q̄ and q, after substitution of the expres-
sion (40) into Eq. (39), one arrives at the following results:

σγ∗A
npt (xBj , Q

2) = 2
∫

d2b
∫

d2r
∫

1

0

dα
{
1− exp

[
−1

2
σq̄q(r, s) TA(b)

] }

× 2NC αem

Nf∑

f=1

Z2

f

{[
α2 + (1− α)2

] ∣∣∣~Φ1(ǫ , r, λ)
∣∣∣
2

(41)

+
[
m2

f + 4Q2 α2 (1− α)2
]
Φ2

0
(ǫ , r, λ)

}
,

where
TA(b) =

∫ ∞

−∞
dz ρA(b, z) (42)

is the nuclear thickness calculated with the realistic Wood-Saxon form of the nuclear density,
with parameters taken from [43].

At the photon polarization parameter ǫ′ = 1 the structure function ratio FA
2
/FN

2
is related

to nuclear shadowing R(A/N and can be expressed via a ratio of the total photoabsorption
cross sections

FA
2
(xBj , Q

2)

FN
2 (xBj , Q2)

= AR(A/N) =
σγ∗A
T (xBj , Q

2) + σγ∗A
L (xBj , Q

2)

σγ∗N
T (xBj , Q2) + σγ∗N

L (xBj , Q2)
, (43)

where the numerator on the right-hand side (r.h.s.) is given by Eq. (39), whereas the denomi-
nator can be expressed as the first term of Eq. (39) divided by the mass number A.

As we already mentioned above, an explicit analytical expression for the Green function
Gq̄q(~r2, z2; ~r1, z1) (16) can be found only for the quadratic form of the dipole cross section (35),
and for uniform nuclear density function (36). It was shown in refs. [19, 23, 17, 18] that such
an approximation gives results of reasonable accuracy, especially at small xBj ∼< 10−4 and
for heavy nuclei. Nevertheless, it can be even more precise if one considers the fact that the
expression (41) in the high energy limit can be easily calculated using realistic parametrizations
of the dipole cross section (see Eq. (6) for the KST parametrization and ref. [32] for the GBW
parametrization) and a realistic nuclear density function ρA(b, z) [43]. Consequently, one needs
to know the full Green function only in the transition region from non-shadowing (xBj ∼ 0.1)
to a fully developed shadowing given when coherence length lc ≫ RA, which corresponds to
xBj ∼< 10−4 depending on the value of Q2. Therefore, the value of the energy dependent factor
C(s) in Eq. (35) can be determined by the procedure described in refs. [17, 23, 20]. According
to this procedure, the factor C(s) is adjusted by demanding that calculations employing the
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approximation (35) reproduce correctly the results for nuclear shadowing in DIS based on the
realistic parametrizations of the dipole cross section Eq. (6) in the limit lc ≫ RA, when the
Green function takes the simple form (40). Consequently, the factor C(s) is fixed by the relation

∫
d2 b

∫
d2 r

∣∣∣Ψq̄q(~r, α,Q
2)
∣∣∣
2 {

1− exp
[
−1

2
C(s) r2 TA(b)

] }

∫
d2 r

∣∣∣Ψq̄q(~r, α,Q2)
∣∣∣
2

C(s) r2

=

∫
d2 b

∫
d2 r

∣∣∣Ψq̄q(~r, α,Q
2)
∣∣∣
2 {

1− exp
[
−1

2
σq̄q(r, s) TA(b)

] }

∫
d2 r

∣∣∣Ψq̄q(~r, α,Q2)
∣∣∣
2

σq̄q(r, s)
. (44)

Correspondingly, the value ρ0 of the uniform nuclear density (36) is fixed in an analogous way
using the following relation

∫
d2 b

[
1− exp

(
−σ0 ρ0

√
R2

A − b2
) ]

=
∫

d2 b

[
1− exp

(
−1

2
σ0 TA(b)

)]
, (45)

where the value of ρ0 was found to be practically independent of the cross section σ0, when this
changed from 1 to 50mb [17, 23]. Such a procedure for the determination of the factors C(s)
and ρ0 was applied also in refs. [20, 21], in the case of incoherent and coherent production of
vector mesons off nuclei.

In order to remove the above mentioned uncertainties the evolution equation for the Green
function was solved numerically for the first time in ref. [18]. Such an exact solution can be
performed for arbitrary parametrization of the dipole cross section and for realistic nuclear
density functions, although the nice analytical form for the Green function is lost in this case.

In the process of numerical solution of the Schrödinger equation (13) for the Green function
Gq̄q(~r2, z2; ~r1, z1) with the initial condition (14), it is much more convenient to use the following
substitutions [18]

g0(~r2, z2; z1, λ) =
∫

d2r1Φ0(ǫ , r1, λ) σq̄q(r1, s)Gq̄q(~r2, z2; ~r1, z1) , (46)

and

~r2
r2

g1(~r2, z2; z1, λ) =
∫

d2r1 ~Φ1(ǫ , r1, λ) σq̄q(r1, s)Gq̄q(~r2, z2; ~r1, z1) . (47)

After some algebra with Eq. (13) these new functions g0(~r2, z2; z1, λ) and g1(~r2, z2; z1, λ) can
be shown to satisfy the following evolution equations

i
d

dz2
g0(~r2, z2; z1, λ) =

{
1

2µq̄q

[
ǫ2 − ∂2

∂ r22
− 1

r2

∂

∂ r2

]
+ Vq̄q(z2, ~r2, α)

}
g0(~r2, z2; z1, λ) (48)

and

i
d

dz2
g1(~r2, z2; z1, λ) =

{
1

2µq̄q

[
ǫ2 − ∂2

∂ r22
− 1

r2

∂

∂ r2
+

1

r22

]
+ Vq̄q(z2, ~r2, α)

}
g1(~r2, z2; z1, λ) ,

(49)
with the boundary conditions

g0(~r2, z2; z1, λ)|z2=z1 = Φ0(ǫ , r2, λ) σq̄q(r2, s) (50)
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and
g1(~r2, z2; z1, λ)|z2=z1 = Φ̃1(ǫ , r2, λ) σq̄q(r2, s) , (51)

where Φ̃1(ǫ , r, λ) is connected with ~Φ1(ǫ , r, λ) by the following relation:

~Φ1(ǫ , r, λ) =
~r

r
Φ̃1(ǫ , r, λ) . (52)

In Eqs. (48) and (49) the quantity

µq̄q = ν α (1− α) (53)

plays the role of the reduced mass of the q̄q pair.
Now the expression (39) for total photoabsorption cross section on a nucleus reads

σγ∗A
npt (xBj , Q

2) = Aσγ∗N
npt (xBj , Q

2)−∆ σ(xBj , Q
2)

= A
∫

d2r
∫

1

0

dα σq̄q(r, s)

(∣∣∣ΨT
npt(~r, α,Q

2)
∣∣∣
2

+
∣∣∣ΨL

npt(~r, α,Q
2)
∣∣∣
2

)

− 3αem

Nf∑

f=1

Z2

f Re
∫

d2b
∫ ∞

−∞
dz1

∫ ∞

z1
dz2

∫
1

0

dα
∫

d2r2

× ρA(b, z1) ρA(b, z2) σq̄q(r2, s)

×
{[

α2 + (1− α)2
]
Φ̃1(ǫ , r2, λ) g1(~r2, z2; z1, λ) (54)

+
[
m2

f + 4Q2 α2 (1− α)2
]
Φ0(ǫ , r2, λ) g0(~r2, z2; z1, λ)

}
.

Notice that this equation explicitly includes nonperturbative interaction effects between q̄ and
q. Details of the algorithm for the numerical solution of Eqs. (48) and (49) can be found in
ref. [18].

Finally we would like to emphasize that the q̄q Fock component of the photon represents the
highest twist shadowing correction [17], and vanishes at large quark masses as 1/m2

f . This does
not happen for higher Fock states containing gluons, which lead to GS. Therefore GS represents
the leading twist shadowing correction [24, 44]. Moreover, a steep energy dependence of the
dipole cross section σq̄q(r, s) (see Eq. (6)) especially at smaller dipole sizes r causes a steep
energy rise of both corrections.

3 Gluon shadowing

In the LC Green function approach [19, 17, 20, 21, 18] the physical photon |γ∗〉 is decomposed
into different Fock states, namely, the bare photon |γ∗〉0, plus |q̄q〉, |q̄qG〉, etc. As we mentioned
above the higher Fock states containing gluons describe the energy dependence of the photoab-
sorption cross section on a nucleon, and also lead to GS in the nuclear case. However, these
fluctuations are heavier and have a shorter coherence time (lifetime) than the lowest |q̄q〉 state,
and therefore at small and medium energies only the |q̄q〉 fluctuations of the photon matter.
Consequently, GS, which is related to the higher Fock states, will dominate at higher energies,
i.e. at small values of xBj ∼< 0.01. Since we will study the shadowing region of xBj ∼< 0.01 and
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the available experimental data reach values of xBj down to ∼ 10−4, we will include GS in our
calculations and show that it is not a negligible effect. Besides, no data for gluon shadowing
are available and one has to rely on calculations.

In the previous Section 2 we discussed the nuclear shadowing for the |q̄q〉 Fock component of
the photon. It is dominated by the transverse photon polarizations, because the corresponding
photoabsorption cross section is scanned at larger dipole sizes than for the longitudinal photon
polarization. The transverse q̄q separation is controlled by the distribution amplitude Eq. (8),
with the mean value given by Eq. (12). Contributions of large size dipoles come from the
asymmetric q̄q fluctuations of the virtual photon, when the quark and antiquark in the photon
carry a very large (α → 1) and a very small fraction (α → 0) of the photon momentum, and
vice versa. The LC wave function for longitudinal photons (28) contains a term α2 (1 − α)2,
which makes considerably smaller the contribution from asymmetric q̄q configurations than
for transversal photons (see Eq. (27)). Consequently, in contrast to transverse photons, all q̄q
dipoles from longitudinal photons have a size squared ∝ 1/Q2 and the double-scattering term
vanishes as ∝ 1/Q4. The leading-twist contribution for the shadowing of longitudinal photons
arises from the |q̄qG〉 Fock component of the photon because the gluon can propagate relatively
far from the q̄q pair, although the q̄-q separation is of the order 1/Q2. After radiation of the
gluon the pair is in an octet state, and consequently the |q̄qG〉 state represents a GG dipole.
Then the corresponding correction to the longitudinal cross section is just gluon shadowing.

The phenomenon of GS, just as for the case of nuclear shadowing discussed in the Introduc-
tion, can be treated differently depending on the reference frame. In the infinite momentum
frame this phenomenon looks similar to gluon-gluon fusion, corresponding to a nonlinear term
in the evolution equation [45]. This effect should lead to a suppression of the small-xBj gluons
also in a nucleon, and lead to a precocious onset of the saturation effects for heavy nuclei.
Within a parton model interpretation, in the infinite momentum frame of the nucleus the gluon
clouds of nucleons which have the same impact parameter overlap at small xBj in the longitu-
dinal direction. This allows gluons originated from different nucleons to fuse, leading to a gluon
density which is not proportional to the density of nucleons any more. This is gluon shadowing.

The same phenomenon looks quite different in the rest frame of the nucleus. It corresponds
to the process of gluon radiation and shadowing corrections, related to multiple interactions
of the radiated gluons in the nuclear medium [28]. This is a coherence phenomenon known
as the Landau-Pomeranchuk effect, namely the suppression of bremsstrahlung by interference
of radiation from different scattering centers, demanding a sufficiently long coherence time of
radiation, a condition equivalent to a small Bjorken xBj in the parton model.

Although these two different interpretations are not Lorentz invariant, they represent the
same phenomenon, related to the Lorentz invariant Reggeon graphs. It was already discussed
in detail in refs. [20, 46] that the double-scattering correction to the cross section of gluon
radiation can be expressed in Regge theory via the triple-Pomeron diagram. It is interpreted
as a fusion of two Pomerons originated from different nucleons, 2 IP → IP, which leads to a
reduction of the nuclear gluon density GA.

Notice that in the hadronic representation such a suppression of the parton density cor-
responds to Gribov’s inelastic shadowing [25], which is related to the single diffraction cross
section. In particular, GS corresponds to the triple-Pomeron term in the diffractive dissociation
cross section, which enters the calculations of inelastic corrections.

There are still very few numerical evaluations of gluon shadowing in the literature, all of
them done in the rest frame of the nucleus, using the idea from ref. [28]. As was discussed
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above gluon shadowing can be identified as the shadowing correction to the longitudinal cross
section coming from the GG dipole representing the |q̄qG〉 Fock component of the photon.
An important point for the evaluation of GS is knowing about the transverse size of this GG
dipole. This size has been extracted in ref. [24] from data for diffractive excitation of the incident
hadrons to the states of large mass, the so called triple-Pomeron region. The corresponding
diffraction cross section (∝ r4) is a more sensitive probe of the mean transverse separation than
the total cross section (∝ r2). Consequently, it was found in ref. [24] that the mean dipole
size of the GG system (radius of propagation of the LC gluons) is rather small , r0 ≈ 0.3 fm
[47]. Such a small quark-gluon fluctuation represents the only known way how to resolve the
long-standing problem of the small size of the triple-Pomeron coupling.

To incorporate the smallness of the size of quark-gluon fluctuations into the LC dipole ap-
proach, a nonperturbative LC potential describing the quark-gluon interaction was introduced
into the Schrödinger equation for the LC Green function describing the propagation of a quark-
gluon system. The strength of the potential was fixed by data on high mass (M2

X) diffraction
pp → pX [24]. This approach allows to extend the methods of pQCD to the region of small
Q2. Since a new semihard scale 1/r0 ∼ 0.65 GeV is introduced, one should not expect a sub-
stantial variation of gluon shadowing at Q2 ∼< 4/r2

0
. Indeed, the calculations performed in [24]

for Q2 = 0 and 4 GeV2, using different techniques, led to about the same gluon shadowing. At
higher Q2 shadowing slowly (logarithmically) decreases, in accordance with the expectations
based on the evolution equation [4], which clearly demonstrates that GS is a leading-twist effect.

In this paper we repeated the calculations [24] of the ratio of the gluon densities in nuclei
and nucleon,

RG(xBj , Q
2) =

GA(xBj , Q
2)

AGN(xBj , Q2)
≈ 1− ∆σtot(q̄qG)

σγ∗A
tot

, (55)

where ∆σtot(q̄qG) is the inelastic correction to the total cross section σγ∗A
tot , related to the

creation of a |q̄qG〉 intermediate Fock state,

∆σtot(q̄qG) = Re

∞∫

−∞

dz2

z2∫

−∞

dz1 ρA(b, z1) ρA(b, z2)
∫

d2x2 d
2y2 d

2x1 d
2y1

∫
dαq

d αG

αG

× F †
γ∗→q̄qG(~x2, ~y2, αq, αG) Gq̄qG(~x2, ~y2, z2; ~x1, ~y1, z1) Fγ∗→q̄qG(~x1, ~y1, αq, αG) . (56)

Here ~x and ~y are the transverse distances from the gluon to the quark and antiquark, respec-
tively, αq is the fraction of the LC momentum of the q̄q carried by the quark, and αG is the
fraction of the photon momentum carried by the gluon. Fγ∗→q̄qG is the amplitude of diffractive
q̄qG production in a γ∗N interaction [24], and it is given by

Fγ∗→q̄qG(~x, ~y, αq, αG) =
9

8
Ψq̄q(αq, ~x− ~y)

[
ΨqG

(
αG

αq

, ~x

)
−Ψq̄G

(
αG

1− αq

, ~y

)]

×
[
σq̄q(x) + σq̄q(y)− σq̄q(~x− ~y)

]
, (57)

where Ψq̄q and Ψq̄G are the LC distribution functions of the q̄q fluctuations of a photon and qG
fluctuations of a quark, respectively.

In the above equation Gq̄qG(~x2, ~y2, z2; ~x1, ~y1, z1) is the LC Green function which describes
the propagation of the q̄qG system from the initial state with longitudinal and transverse
coordinates z1 and ~x1, ~y1, respectively, to the final coordinates (z2, ~x2, ~y2). For the calculation

15



of gluon shadowing one should suppress the intrinsic q̄q separation, i.e. assume ~x = ~y. In this
case the Green function simplifies, and effectively describes the propagation of a gluon-gluon
dipole through a medium.

An important finding of ref. [24] is the presence of a strong nonperturbative interaction
which squeezes the gluon-gluon wave packet and substantially diminishes gluon shadowing. The
smallness of the gluon-gluon transverse separation is not a model assumption, but is dictated
by data for hadronic diffraction into large masses (triple-Pomeron regime), which is controlled
by diffractive gluon radiation.

Figure 2: The ratio of the nucleus-to-nucleon gluon densities as function of
the thickness of the nucleus, L = T (b)/ρ0, at Q

2 = 4 GeV2 and different fixed
values of xBj . Figure is taken from ref. [20].

Further calculational details can be found in [24]. In our case we calculated the gluon
shadowing only for the lowest Fock component containing just one LC gluon. In terms of
the parton model it reproduces the effects of fusion of many gluons to one gluon (in terms of
Regge approach it corresponds to the nIP → IP vertex). Inclusion of higher multigluon Fock
components is still a challenge. However, their effect can be essentially taken into account
by the eikonalization of the calculated RG(xBj , Q

2), as argued in [48]. In other words, the
dipole cross section, which is proportional to the gluon density at small separations, should be
renormalized everywhere, in the form

σq̄q ⇒ RG σq̄q . (58)

Such a procedure makes the nuclear medium more transparent. This could be expected since
Gribov’s inelastic shadowing is known to suppress the total hadron-nucleus cross sections, i.e.
to make nuclei more transparent [29, 49].
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As an illustration of not very strong onset of GS, here we present RG(xBj , Q
2), Eq. (55),

for different nuclear thicknesses TA(b). Using an approximation of constant nuclear density

(see Eq. (36)), TA(b) = ρ0 L, where L = 2
√
R2

A − b2, the ratio RG(xBj , Q
2) is also implicitly a

function of L. An example for the calculated L-dependence of RG(xBj , Q
2) at Q2 = 4 GeV2 is

depicted in Fig. 2 for different values of xBj .
One can expect intuitively from Eq. (58) that GS should always diminish the nuclear cross

sections of various processes in nuclear targets, and that the onset of GS is stronger for heavier
nuclei. However, this is not so for incoherent electroproduction of vector mesons, analyzed in
ref. [20]. The specific structure of the expression for the nuclear production cross section causes
that the cross section of incoherent electroproduction of vector mesons is rather insensitive
to GS. Furthermore, the effect of GS is stronger for light than for heavy nuclear targets, in
contradiction with the standard intuition. Moreover, for heavy nuclei the effect GS can lead
even to a counterintuitive enhancement (antishadowing), as was analyzed in ref. [20]. For the
case of coherent vector meson production γ∗A → V A [20], GS was shown to be a much stronger
effect in comparison with incoherent production, which confirms the expected reduction of the
nuclear production cross section.

Similarly, it was analyzed in ref. [46] that multiple scattering of higher Fock states containing
gluons leads to an additional suppression of the Drell-Yan cross section. In the present paper we
will demonstrate that gluon shadowing also suppresses the total photoabsorption cross section
on a nucleus σγ∗A

tot (xBj , Q
2). Here we expect quite a strong effect of GS in the shadowing region

of small xBj ∼< (0.01÷ 0.001), in the kinematic range of available data corresponding to small
and medium values of Q2 ∼ a few GeV2.

4 Numerical results

As we mentioned above the main goal of this paper is to compare for the first time available
experimental data with realistic predictions for nuclear shadowing in DIS, based on exact
numerical solutions of the evolution equation for the Green function. Such a comparison is
performed for the shadowing region of small xBj ∼< 0.01. As was discussed in the previous
section one should take into account also a contribution of gluon shadowing, which increases the
overall nuclear suppression. The effect of GS was already calculated in ref. [50], but only for the
FC
2
/FD

2
ratio of structure functions. Although the quark shadowing was compute approximately

via longitudinal form factor of the nucleus and assuming only the leading shadowing term, it
was shown that GS is a rather large effect at xBj ∼ 10−4. In the present paper we will also
show that GS is not a negligible effect, and can in principle be detected by the data on the
total photoabsorption nuclear cross section in future experiments.

The predictions for nuclear shadowing based on an exact numerical solution of the evolution
equation was compared in ref. [18] with approximate results obtained using the harmonic os-
cillatory form of the Green function (16). Quite a large discrepancy was found, in the range of
xBj ∼> 0.001, where the variation of the transverse size of the q̄q pair during propagation through
the nucleus becomes important. Such a variation is naturally included in the Green function
formalism and consequently the exact shape of the Green function is extremely important.

We use an algorithm for the numerical solution of the Schrödinger equation for the Green
function, as developed and described in ref. [18]. This gives the possibility of calculating nuclear
shadowing for arbitrary LC potentials Vq̄q(z, ~r, α) and nuclear density functions. Because the
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available data from the E665 [51, 52] and NMC [53, 54] collaborations cover the region of
small and medium values of Q2 ∼< 4 GeV2, we prefer the KST parametrization of the dipole
cross section (6), which is valid down to the limit of real photoproduction. On the contrary,
the second GBW parametrization [32] of the dipole cross section cannot be applied in the
nonperturbative region and therefore we do not use it in our calculations.

In the process of exact numerical solutions of the evolution equation for the Green function,
the imaginary part of the LC potential (34) contains the corresponding KST dipole cross section
as well. The nuclear density function ρA(b, z) was taken in the realistic Wood-Saxon form, with
parameters taken from ref. [43]. The nonperturbative interaction effects between q̄ and q are
included explicitly via the real part of the LC potential of the form (15), which is supported
also by the fact that the data from E665 and NMC collaborations correspond to very small
values of Q2 ∼< 1 GeV2 in the region of small xBj ∼< 0.004.

We included also the effects of gluon shadowing for the lowest Fock component containing
just one LC gluon. Although the inclusion of higher Fock components with more gluons is
complicated, their effect was essentially taken into account by eikonalization of the calculated
RG(xBj , Q

2) [48], i.e using the renormalization (58).
Nuclear shadowing effects were studied via the xBj- behavior of the ratio of proton structure

functions (43) divided by the mass number A. First we present nuclear shadowing for a lead
target in Fig. 3 at different fixed values of Q2. The thick and thin solid curves represent the
predictions obtained with and without the contribution of gluon shadowing, respectively.

One can see that the onset of GS happens at smaller xBj than the quark shadowing, which
is supported by the fact that higher Fock fluctuations containing gluons are in general heavier
than q̄q and have a shorter coherence length. Fig. 3 demonstrates quite a strong effect of GS
in the range of xBj ∈ (0.01, 0.0001) where the most of available data exist. This is a result of
the suppression of the dipole cross section by the renormalization (58), which can result only
in a reduction of the total photoabsorption cross section on a nuclear target. Besides the effect
of GS is stronger at smaller Q2 because corresponding Fock fluctuations of the photon have a
larger transverse size.

In Fig. 3 we also present, for comparison and by the dotted lines, the approximate predictions
for nuclear shadowing in DIS using constant nuclear density (36) and the quadratic form of
the dipole cross section, σ(r, s) = C(s) r2. The energy dependent factor C(s) is determined by
Eq. (44), and the uniform nuclear density is fixed by the condition (45). One can see that these
approximate predictions overestimate the values of nuclear shadowing obtained by means of
an exact numerical solution of the evolution equation for the Green function. The difference
from the exact calculation (thin solid lines) is not large and rises towards small values of Q2.
The reason is that the quadratic approximation of the dipole cross section cannot be applied
exactly at large dipole sizes. Since the available data from the E665 [51, 52] and NMC [53, 54]
collaborations at smallest values of xBj correspond also to small Q2 ≪ 1 GeV2, one can expect
a larger difference between the exact and approximate results in comparison with what is shown
in Fig. 3 at Q2 = 2 GeV2. Keeping the quadratic form of the dipole cross section, but using
the realistic nuclear density [43], one can obtain the results depicted in Fig. 3 by the dashed
lines. It brings a better agreement with the exact calculations.

At low xBj ∼< 10−4 one should expect a saturation of nuclear shadowing at the level given
by Eq. (41). This is realized only for the dipole cross section, without energy dependence, i.e.
for example for parametrization (35) of the dipole cross section with constant factor C(s) ≈ 3
[19]. However, this is not so for the realistic KST parametrization Eq. (6), where the saturation
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level is not fixed exactly due to energy (Bjorken xBj-) dependence of the dipole cross section
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Figure 3: Nuclear shadowing for lead. Calculations correspond to exact
numerical solution of the evolution equation for the Green function using
the KST [24] parametrization of the dipole cross section and a realistic
nuclear density function of the Woods-Saxon form [43]. The thick and
thin solid curves represent the predictions calculated with and without
contribution of gluon shadowing, respectively. The dotted lines are cal-
culated using a constant nuclear density function (36) and the quadratic
form of the dipole cross section, σ(r, s) = C(s) r2, where the energy de-
pendent factor C(s) is determined by Eq. (44). The dashed curves are
calculated for the same quadratic form of the dipole cross section, but
for the realistic nuclear density function ([43])
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Figure 4: Comparison of the model with experimental data from the
E665 [51, 52] and NMC [53, 54] collaborations. Calculations correspond
to the exact numerical solution of the evolution equation for the Green
function using KST [24] parametrization of the dipole cross section and
a realistic nuclear density function of the Woods-Saxon form [43]. The
solid and dashed curves are calculated with and without the contribution
of gluon shadowing, respectively.

σq̄q(r, s).
In Fig. 4 we present a comparison of the model predictions with experimental data at

small xBj , from the E665 [51, 52] and NMC [53, 54] collaborations. One can see a quite
reasonable agreement with experimental data, in spite of the absence of any free parameters in
the model. Several comments are in order: first, if GS is not taken into account, for the C/D
and Ca/D ratios the nuclear shadowing looks overestimated in comparison with the E665 data
for xBj ∼ 0.01, while it looks in a good agreement for C/D, and a little bit underestimated
for Ca/D in comparison with the NMC data. This is affected by the known incompatibility
of the results from both experiments for the ratios over D. Second, as was discussed in the
previous section, the effect of GS produces an additional nuclear shadowing which rises with
mass number A. Consequently, it leads to a small overestimation of the nuclear shadowing for
the C/D and Ca/D ratios in comparison with the E665 data, but it seems to be a in good
agreement with the NMC data.
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For heavy nuclear targets there is only E665 data for the ratios Xe/D and Pb/D. Fig. 4
shows a reasonable good description of these data, even if the effect of GS is taken into account.
The difference between the solid and dashed lines in Fig. 4 represents quite a large effect of
GS, which was neglected up to the present time in calculations of nuclear shadowing in DIS
[19, 17, 23] assuming that it would be a very small effect in the kinematic range covered by the
available experimental data. On the contrary, looking at Fig. 4 one can see that the effect of GS
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Figure 5: Model predictions for nuclear shadowing for a broad xBj-region down to
10−7 corresponding to LHC kinematical range at three different values of Q2 = 2, 6
and 18 GeV2. Calculations of the nuclear shadowing for the q̄q Fock component of the
photon correspond to the exact numerical solution of the evolution equation for the Green
function using KST [24] parametrization of the dipole cross section and a realistic nuclear
density function of the Woods-Saxon form [43]. The solid and dashed curves are calculated
with and without the contribution of gluon shadowing, respectively.
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Figure 6: The same as Fig.5 but with GBW [32] parametrization of the dipole cross
section.

as an additional nuclear shadowing cannot be neglected and should be included in calculations
already in the region of xBj ∼< 0.01÷0.001. Very large error bars especially at small xBj ∼ 10−4

do not allow to investigate separately the effect of GS, and therefore more exact new data on
nuclear shadowing in DIS at small xBj are very important for further exploratory studies of the
nuclear modification of structure functions and also for gluon shadowing.

For completeness we present also in Figs. 5 and 6 predictions for nuclear shadowing down to
very small xBj = 10−7 accesible by experiments at LHC using two different realistic parametriza-
tions of the dipole cross section, KST [24] and GBW [32]. Again, one can see quite large effect
of GS as a difference between the solid and dashed lines.

Here, we would like to emphasize that at xBj ∼< 10−4 transverse size separations of the
photon fluctuations are “frozen” during propagation through nuclear medium and one can use
the simplified expressions, Eq. (40) and (41) for calculation of nuclear shadowing.
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Finally, we present in Fig. 7 a comparison of the nuclear shadowing calculated using our
model with the results of other models, for Q2 = 3 GeV2 (except the results of ref. [55], which
are at Q2 = 4 GeV2). Notice that the difference between models rises towards small values of
xBj , as a result of the different treatment of various nuclear effects, and absence of relevant
experimental information at such small xBj . At xBj = 10−5 we predict quite a large effect of
GS (compare upper and lower thick solid lines).

In ref. [56] nuclear structure functions were studied using relation with diffraction on nu-
cleons known as Gribov inelastic corrections. The results of these calculations are depicted in
Fig. 7 by dotted curves.

The model presented in [55] employs again a parametrization of hard diffraction at the scale
Q2

0
, which gives nuclear shadowing in terms of Gribov’s corrections similar to ref. [56]. Then

the nuclear suppression calculated at Q2

0
is used as initial condition for Dokshitzer-Gribov-

Lipatov-Altareli-Parisi (DGLAP) [57] evolution. This results are presented in Fig. 7 by dashed
curves.
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The model based on a numerical solution of the non-linear equation for small-xBj evolution
in nuclei was employed in [58]. The result is shown in Fig. 7 by thin solid curve.

At very small xBj our model predictions, including the effect of GS, roughly agrees with
those of [56], but lie below the results of other models. If the effect of GS is not taken into
account the situation is substantially different and the corresponding curve (see upper thick
solid line) lies in between the results from other models.

Most models presented above are based on eikonal formulas, which should be used only in the
high energy limit, when the coherence length lc ≫ RA, i.e. at xBj ∼< 10−4. However, they were
applied also in the region when lc ∼< RA. In this transition shadowing region xBj ∈ (0.0001, 0.01)
such approximations lead in general to a larger nuclear shadowing than a realistic situation,
when more exact expressions should be more appropriate (compare Eqs. (39) and (41)). For
this reason, theoretical predictions of most models overestimate nuclear shadowing in the range
of xBj where available experimental data exist.

So far the main source of experimental information on gluon shadowing was DIS on nuclei.
Although it probes only quark distributions, the Q2 dependence of nuclear effects is related via
the evolution equations to the gluon distribution. At the smallest value of xBj = 0.01 reached in
the NMC experiment the gluon suppression factor RG(Sn)/RG(C) = 0.87± 0.05 was obtained
in ref. [59] within the Leading-Log (LL) approximation. This result is somewhat lower that
our expectation RG ∼ 0.98 which can be read out from Fig. 2. However, according to [59]
the next-to-LL corrections at xBj = 0.01 are about 10− 20%, which apparently eliminates the
disagreement with our calculations. Furthermore, the full Leading-Order (LO) DGLAP analysis
of the NMC data [53, 54] in ref. [60], which should not be less accurate than LL calculations, led
to a conclusion that the NMC data are not sensitive to gluon shadowing. Moreover, the recent
Next-to-LO (NLO) analysis by de Florian and Sassot [61] was claimed to be sensitive to gluons.
This analysis found almost no GS at xBj = 0.01 in good agreement with our calculations.

Other possible sources of information about gluon shadowing were considered in refs. [62,
63, 64]. It was proposed in [62] to probe gluons in nuclei by direct photons produced in p− A
collisions in the proton fragmentation region where one can access smallest values of the light-
front momentum fraction variable x2 in nuclei. This, however, should not work, since at large
value of the light-front momentum fraction variable x1 in the proton (i.e. at large Feynman
xF ) one faces the energy sharing problem [65]: it is more difficult to give the whole energy
to one particle in p − A, than in p − p collision. This effect leads to a breakdown of QCD
factorization and to nuclear suppression observed at forward rapidities [65, 66, 67, 68] in any
reaction measured so far, even at low energies, where no shadowing is possible.

An attempt to impose a restriction on GS analyzing the nuclear effects in J/Ψ production
observed in p − A collisions by the E866 experiment [69], was made in [63]. The mechanisms
of J/Ψ production and nuclear effects are so complicated, that it would be risky to rely on
oversimplified models. Indeed, the analysis performed in this paper completely misses the color
transparency effects, which are rather strong [70] and vary throughout the interval of xF studied
in this paper. For this reason the results of the analysis are not trustable.

The new analysis of nuclear parton distribution functions performed in [64] included the
BRAHMS data for high-pT pion production at forward rapidities [71]. As we mentioned above,
hadron production in this kinematic region of large x1 (xF ) is suppressed by multiple parton
interactions [65], rather than by shadowing. Consequently, the results of this analysis are
not trustable either. Moreover, it seems to provide another confirmation for an alternative
dynamics for the suppression observed in the data [71]. Indeed, it was concluded in [64] that
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gluons in lead target are completely terminated at xBj = 10−4 where RG < 0.05 is predicted.
This is cannot be true because in the limit of strong shadowing the gluon ratio has a simple
form RG = πR2

A/(Aσeff ), where σeff is the effective cross section responsible for shadowing.
The strong effect predicted in [64] needs σeff > 150mb.

5 Summary and conclusions

We presented a rigorous quantum-mechanical approach based on the light-cone QCD Green
function formalism which naturally incorporates the interference effects of CT and CL. Within
this approach [19, 41, 17, 18] we studied nuclear shadowing in deep-inelastic scattering at small
Bjorken xBj .

Calculations of nuclear shadowing corresponding to the q̄q component of the virtual photon
performed so far were based only on efforts to solve the evolution equation for the Green function
analytically, and unfortunately an analytical harmonic oscillatory form of the Green function
(16) could be obtained only by using additional approximations, like a constant nuclear density
function (36) and the dipole cross section of the quadratic form (35). This brings additional
theoretical uncertainties in the predictions for nuclear shadowing. In order to remove these
uncertainties we solve the evolution equation for the Green function numerically, which does
not require additional approximations.

In ref. [18] it was found for the first time the exact numerical solution of the evolution
equation for the Green function, using two realistic parametrizations of the dipole cross section
(GBW [32] and KST [24]), and a realistic nuclear density function of the Woods-Saxon form [43].
It was demonstrated that the corresponding nuclear shadowing shows quite large differences
from approximate results [19, 17]. On the other hand, we showed that approximate calculations
corresponding to uniform nuclear density (48) and quadratic dipole cross section (47), but with
energy dependent factor C(s) determined by Eq. (44), bring a better agreement with exact
realistic calculations (see Fig. 3). However, the difference from the exact calculations rises
towards small values of Q2, where available data exist at smallest values of xBj ∼ 10−4. This
confirms the claim that the quadratic approximation of the dipole cross section cannot be
applied at large dipole sizes.

Since the available data from the shadowing region of xBj ∼< 0.01 comes mostly from the
E665 and NMC collaborations, and cover only small and medium values of Q2 ∼< 4 GeV2, we
used only the KST realistic parametrization [24] of the dipole cross section, which is more
suitable for this kinematic region and the corresponding expressions can be applied down to
the limit of real photoproduction. On the other hand, the data obtained at the lower part
of the xBj-kinematic interval correspond to very low values of Q2 < 1 GeV2 (nonperturbative
region). For this reason we include explicitly the nonperturbative interaction effects between
q̄ and q, taking into account the real part of the LC potential Vq̄q (15) in the time-dependent
two-dimensional Schrödinger equation (13).

In order to compare the realistic calculations with data on nuclear shadowing, the effects of
GS are taken into account. The same path integral technique [24] can be applied in this case, and
GS was calculated only for the lowest Fock component containing just one LC gluon. Although
the inclusion of higher Fock components containing more gluons is still a challenge, their effect
was essentially taken into account by eikonalization of the calculated RG(xBj , Q

2) ,using the
renormalization (58). We found quite a large effect of GS, which starts to be important already
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at xBj ∼ 0.01. The effect of GS rises towards small xBj because higher Fock components with
more gluons having shorter coherence time will contribute to overall nuclear shadowing. Such
a situation is illustrated in Fig. 3.

Performing numerical calculations, we find that our model is in reasonable agreement with
existing experimental data (see Fig. 4). Large error bars and incompatibility of the experimental
results from the E665 and NMC collaborations do not allow to study separately the effect of
GS, and therefore more accurate new data on nuclear shadowing in DIS off nuclei at still smaller
xBj ∼< 10−5 are very important for further exploratory studies of GS effects.

Comparison among various models shows large differences for the Pb/nucleon ratio of struc-
ture functions at xBj = 10−5 and Q2 = 3 GeV2 (see Fig. 7), which has a large impact on the
calculation of high-pT particles in nuclear collisions at RHIC and LHC. Such large differences at
small xBj among different models should be testable by the new more precise data on nuclear
structure functions, which can be obtained in lepton-ion collider planned at BNL [72].

In most models presented above the final formulae for nuclear shadowing are based on the
eikonal approximation, which can be used exactly only in the high energy limit, lc ≫ RA.
Consequently, such an approach cannot be really applied in the transition shadowing region,
lc ≈ RA, where xBj ∈ (0.0001, 0.01), because it produces a larger nuclear shadowing than
in a realistic case when more appropriate expressions should be taken into account (compare
Eqs. (39) and (41)).

Concluding, a combination of the exact numerical solution of the evolution equation for the
Green function with the universality of the LC dipole approach based on the Green function
formalism provides us with a very powerful tool for realistic calculations of many processes.
It allows to minimize theoretical uncertainties in the predictions of nuclear shadowing in DIS
off nuclei, which gives the possibility to obtain reliable information about nuclear modification
of the structure functions at low xBj , with an important impact on the physics performed in
heavy ion collisions at RHIC and in lepton-ion interactions planned at BNL.
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