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Intricate dynamics of a deterministic walk confined in a strip
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Abstract. - We study the dynamics of a deterministic walk confined in a narrow two-dimensional
space randomly filled with point-like targets. At each step, the walker visits the nearest target
not previously visited. Complex dynamics is observed at some intermediate values of the domain
width, when, while drifting, the walk performs long intermittent backward excursions. As the
width is increased, evidence of a transition from ballistic motion to a weakly non-ergodic regime is
shown, characterized by sudden inversions of the drift velocity with a probability slowly decaying
with time, as 1/t at leading order. Excursion durations, first-passage times and the dynamics of
unvisited targets follow power-law distributions. For parameter values below this scaling regime,
precursory patterns in the form of “wild” outliers are observed, in close relation with the presence
of log-oscillations in the probability distributions. We discuss the connections between this model
and several evolving biological systems.

Introduction. – Deterministic walks in disordered
environments have received an increasing attention over
the past years. They describe diffusion processes follow-
ing non-random rules and have applications, among oth-
ers, to the study of the displacements of individuals in
complex landscapes. Examples are human travels [1, 2],
human displacements in a city [3], movement patterns of
hunter-gatherer [4] or foraging animals [5].

From a given position, the next site visited by a purely
deterministic walker is assigned from a given set of rules
and not stochastically. These walks still have probabilistic
and fluctuating features if the environment is random or
heterogeneous. Interesting dynamics have been observed,
such as normal [6] or anomalous diffusion [7], behaviors
analogous to that of the Lorentz gas [8], cycles with power-
law distributed periods [1, 9] or Lévy-like step length dis-
tributions [10, 11]. Complex behavior can emerge from
very simple rules, e.g, when each individual step optimizes
a given cost function. Some properties of deterministic
walks have also been used as tools to process large data
sets in galaxy surveys [12], thesaurus graphs [13] or for
pattern recognition [14].

In many situations, in particular biological, the deter-
ministic walker itself changes the medium, which intro-
duces memory [8]. An important case is the self-avoiding
walk (SAW), which can be implemented to model biolog-
ical systems with negative feedbacks that tend to avoid

past behaviors. A simple example is that of a foraging an-
imal relying on mental maps to navigate an environment
composed of food patches that are not revisited after they
have been depleted [5]. In a different context, the brain
activity has been modeled by random walks keeping mem-
ory of their complete history in order to avoid persistent
patterns; recent memory loss producing pathological rep-
etitions, like in the Alzheimer’s disease [15]. In evolution-
ary ecology, the well-known Red-Queen principle assumes
that any organism must constantly evolve in order to pre-
vent its predators or preys to adapt to an otherwise pre-
dictable behavior. Similar considerations can apply to the
dynamics of technological innovations [16]. Freund and
Grassberger introduced some time ago a self-avoiding de-
terministic walk model in disordered two-dimensional do-
mains, mimicking evolving organisms in phenotype land-
scapes [7]. These kinds of models are very difficult to han-
dle analytically; they are firstly dynamical and usually not
equivalent to canonical SAWs [17].

Here, we study a minimal model of a deterministic walk
with a SAW constraint (in the infinite memory limit) and
confined in a nearly one dimensional random medium. In
an evolutionary context, whereas SAWs can be justified by
natural selection, organisms also have developmental con-
straints due to limited phenotypic variability [18]. Simi-
larly, the development of human artifacts is restricted by
design limits. We model this important constraint by a
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narrow random medium where the walker can evolve with-
out bounds only in one direction. In narrow landscapes,
the model exhibits very rich dynamical features not ob-
served in unbounded ones, such as intermittent behavior,
scaling laws, discrete scale invariance and very large events
(outliers). A discussion of these results is then presented.

Model description. – Consider a two-dimensional
strip of width l and infinite length along the horizontal
direction. The strip is randomly filled with fixed point-
like targets with uniform number density ρ0, representing,
say, food patches for a foraging animal or phenotypes for
an evolving species. The only control parameter is the re-

duced domain width, defined as δ = l/l0, with l0 = ρ
−1/2
0

the characteristic distance between neighboring targets.
At time t = 0, a walker is located at some target with
coordinates (x0, y0), taken as the origin. Two rules of mo-
tion are then recursively applied: the walker (i) moves to
the nearest available target, (ii) does not visit a previ-
ously visited target. When the new target is reached, t is
updated to t+ 1.

The medium can be made one(two)-dimensional in the
limit δ ≪ 1 (δ ≫ 1), respectively. We will focus here
on values of δ of O(1), typically in the range (2, 5), such
that the walker has a some vertical degree of freedom but
a practically one-dimensional motion on large scales, de-
scribed by its horizontal coordinate x(t). In the simula-
tions, the medium is a rectangle of area unity containing
N targets and of width l = δ/

√
N . Each run start near

the middle of the domain and is stopped before the walker
reaches the lateral vertical walls.

Trajectories. – In the one dimensional case (δ ≪ 1),
the targets are randomly distributed on a line and the
motion is simply ballistic. After a possible short tran-
sient, the walker breaks the right-left symmetry and al-
ways moves to the nearest target to its right (or left) so
that x(t) is a sum of same-sign independent random vari-
ables with Poisson distribution. The 2d case (δ ≫ 1) is
sometime called the “tourist walk” [1, 2]: the trajectories
are not very different from 2d random walks, although
slightly superdiffusive [19].

For the cases δ = O(1) of interest here, the situation
is quite different and trajectories exhibit a rich structure.
As shown in fig. 1 at δ = 4.1, the motion is on aver-
age ballistic due to the confining effect of the horizontal
walls. The numerically calculated root-mean-square dis-
placement 〈x(t)2〉1/2 follows a linear behavior with time
(not shown here). Note that the walker horizontal veloc-
ity x(t) − x(t − 1) often changes sign: the walker per-
forms many “backward excursions” while drifting along
the strip. These excursions, that were observed in a pre-
liminary study of the model [10], can be explained qual-
itatively. A walker drifting, say, toward the left does not
necessarily visit all the targets of a given neighborhood
on its way and may ignore some targets. From time to
time, rules (i) and (ii) make the walker turn back and
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Fig. 1: Space-time diagram of a trajectory with δ = 4.1 (x is
in unit of l0).

visit these unvisited targets toward the right, until it ends
up in a region depleted of available targets. In that case,
a single step can brings the walker back to the unexplored
region located to the left.

Unexpectedly, backward excursions of all sizes can be
observed in fig. 1a. Whereas most excursions are short,
some can be of order 102− 103× l0, e.g. near t = 9300. A
close up of fig. 1a (inset b) reveals further details and sug-
gests that the trajectory is fractal. In [10,11], it was found
that these intermittent backward excursions can lead to
“Lévy-like” distributions for the distance separating suc-
cessively visited targets, of the form ℓ−(1+µ), with µ ≃ 1
at δ = 4 [11].

Additionally, the sign of the drift velocity can change
suddenly at large t (e.g. at t ≈ 600 and t ≈ 5000 in
fig. 1a). Such inversions happen during a backward ex-
cursion, at some point when the closest unvisited target
is located, say, to the right of x0 for a trajectory that was
previously drifting toward the left. Obviously, inversions
can not occur in the 1d ballistic limit of the model. We
investigate below the possible existence of a transition be-
tween different dynamical regimes as δ is varied.

Inversion probability and first-passage times.

– We define the explored interval at time t as
[xmin(t), xmax(t)], where xmin(t) (xmax(t)) is the coordi-
nate of the leftmost (rightmost) visited target after t steps,
respectively. A inversion (say, from right to left) occurs
during the tth step if xmin(t)−xmin(t−1) < 0 and if there
exists a time t′ < t such that xmax(t

′)− xmax(t
′ − 1) > 0

and such that xmin(t”) − xmin(t” − 1) = xmax(t”) −
xmax(t”− 1) = 0 for t′ < t” < t.

We then define Pinv(t) as the probability that an inver-
sion (to the left or right) occurs during the tth step, and
P0(t) as the probability that the walker crosses x0 during
the tth step. In the random walk language, P0 is analo-
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Fig. 2: Probability that the drift velocity changes its sign at
time t, as a function of t and for various strip widths. The
probabilities are calculated from 8 104 independent random
media.

gous to the probability of presence at the origin. If motion
is essentially ballistic between two inversions, a trajectory
crosses its origin at large times only during an inversion:
Pinv and P0 have the same asymptotic behavior.

In Figure 2, the numerically computed Pinv(t) decays
very slowly with time for several O(1) values of the strip
width δ. In domains as narrow as δ = 1.5, after an initial
steep decay, Pinv(t) exhibits a surprising fat tail. At the
larger value δ = 4.1, Pinv(t) can be well fitted by the
simple inverse power-law c/t, with c a constant. The same
curves are reploted in Figure 3 as tPinv(t) versus t: for
δ = 4.1, the curve remains remarkably constant during
almost 6 decades, while strong corrections to scaling are
present below and above that parameter value (δ = 3 and
5). Very similar results are obtained for P0(t).

Despite that the walker crosses less frequently the origin
than a 1d random walker (where P0(t) ∼ t−1/2), the return
probability at large times in narrow strips (δ ≪ t) remains
very high instead of being exponentially small as for usual
ballistic motion (e.g., a 1d random walker with a bias).

Contrary to random walks, sign changes in x(t) are
abrupt and not strongly correlated to the evolution of x(t)
during the preceding steps (see Fig. 1). It is therefore use-
ful to make a connection between this result and a simpler
two-state stochastic problem consisting of a walker moving
ballistically on a line with two possible velocities, v and
−v. Starting in one state, the walker change its velocity
in the time interval [t, t+1] with probability pinv(t), that
is given. It is well known that if pinv(t) decays faster than
1/t, there is a finite probability that the walker remains
indefinitely in a same state (v or −v) after reaching this
state. If pinv(t) decays as 1/t or slower, the probability
that the walker remains in a same state forever is zero.
The behavior of the system is non-ergodic in the former
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Fig. 3: Same data as in fig. 2, reploted as tPinv(t) vs. t. Inset:
details of tPinv(t) for δ = 4 (◦), 4.1 (△), 4.2 (•).

case, as the left-right symmetry is asymptotically broken,
while it is weakly non-ergodic 1 or ergodic in the latter
case. Obviously, the above two-state problem only pro-
vides an approximate description of our model and makes
sense only in the regime where inversions are abrupt.
We investigate more in details the possibility of a non-

ergodic/weakly non-ergodic transition as the strip width δ
is increased across some critical value δc where Pinv(t) ≃
c/t. Making an analogy between the behavior of Pinv (or
P0) and that of a correlation function near a critical point,
for δ slightly below δc one may look for a standard scaling
form: Pinv(t) ≃ t−1g(t/τ(δ)), with g(x) a scaling function
rapidly decaying to zero at large x and τ(δ) a diverging
timescale as δ → δc. The inset of Fig. 3 displays tPinv(t)
vs. t for different values of δ near 4.1 and shows that the
above ansatz does not hold.
Interestingly, the probability exhibits an unusual behav-

ior instead. First, the different curves can not be rescaled
onto a single curve. Second, a pure power-law behavior
was never obtained for Pinv(t) (nor P0(t)) for the values of
δ considered in this study. Intricate corrections to scaling
in the form of logarithmic oscillations are observed. Log-
oscillations have been observed in a variety of systems and
are a manifestation of the phenomenon of discrete scale in-
variance [21]. The log-oscillations have a large period, of
order 2 ln 10, which complicates the observation of several
periods: we can not conclude whether they converge to-
ward a finite amplitude or are amplified. However, the
amplitude of the oscillations is minimum at δc ≃ 4.1.
The leading 1/t decay of Pinv at δc is probably not a

coincidence. From a renormalization group (RG) perspec-
tive, the model has a trivial attracting fixed point, δ∗ = 0,
corresponding to simple ballistic motion in very narrow

1In this context, weakly non-ergodic means that both states al-
ways remain accessible to the walker, although the time interval
between two visits diverges asymptotically [20].
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Fig. 4: a) Probability distribution P1(t) of the first-passage
time at δ = 4.1 (△). Opposite side: probability distribution
P (∆t) of the time intervals between two consecutive zeros of
Nu(t) for δ = 4.1 (◦) and δ = 2.45 (•). P1(t) and P (∆t) are
obtained from 8 104 and 103 independent runs respectively.
b) Probability distribution of the excursion duration (τ ≥ 2).
Lines are guides to the eye.

strips. The 1/t law indicates that δc should lie at the
boundary of the basin of attraction of that fixed point.
Besides, the increasing corrections from power-law behav-
ior for δ slightly above δc (see Fig. 3 at δ = 5) suggest that
RG trajectories above δc flow towards an other attracting
fixed point (that could be δ∗ = ∞). This argument sup-
ports the idea that the transition is not a cross-over and
that δc might be a non trivial repelling fixed point.

An other possibility is that the walk may become
asymptotically ballistic without inversions after extremely
large times, unreachable with standard numerical meth-
ods. In this case, the results above would describe a very
long transient preceding an asymptotic regime of limited
practical relevance.

Other insights into inversion processes can be gained
from the distribution P1(t) of first-passage times. The
first-passage time is defined here as the step number when
the walker crosses for the first time x0. As shown in figure
4a, a t−α law with α ≃ 3/2 holds remarkably well over
nearly 6 decades in the vicinity of δc. As for Pinv (and
P0), log-oscillations were detected in P1 at (and near) δc.

This exponent value can be qualitatively explained with
the help of the simple two-state approximation described
above, where the probability that the velocity changes
its sign for the first time at time t reads: p1(t) =

pinv(t) exp[−
∫ t

0 pinv(t
′)dt′]. If pinv ≃ c/t at large times,

then p1(t) ∼ t−α with α = 1 + c. The numerical value of
c calculated from Pinv at δ = 4.1 yields α ≃ 1.33. This
value is close to, but lower than the observed 3/2. There-
fore, inversion events are not independent but probably
long-range correlated. It is actually surprising (and most
likely coincidental) that the first-passage exponent is close
to the simple value of the 1d random walk [22].

Backward excursions and unvisited sites. – We
now come back to the description of backward excursions,
that are much more frequent than inversion events. The
probability distribution of excursion durations, Pe(τ), can
be obtained from the sizes of the time intervals when
xmin(t) or xmax(t) remains constant. As shown in figure
4b, in the vicinity of δc this distribution is also well fitted
by a power-law behavior, Pe(τ) ∼ τ−β , with β ≃ 2.7. This
distribution has finite first moment but infinite variance.
On average, the walker remains “trapped” in an excur-
sion during a finite number of steps, but its progression
is quite intermittent. For strip widths well below δc, ex-
cursions are still observed and Pe(τ) remains fairly broad,
although it can no longer be fitted with a power-law. Gen-
erally speaking, backward excursions tend to restore the
right-left symmetry of the system. For this reason they
are reminiscent of the effect of thermal fluctuations on a
broken symmetry phase in equilibrium.

An other quantity of interest related to excursion dy-
namics is the number of unvisited sites in the explored
interval [xmin(t), xmax(t)], denoted as Nu(t). As shown in
figure 5a, for values of δ below δc, Nu(t) displays cycles of
irregular durations analogous to oscillations in excitable
systems. The cycles are composed of (i) a slowly increas-
ing part on average and (ii) a fast decay down to zero.
This behavior reflects the fact that a small fraction of sites
are left as unvisited while the walker is drifting in the dis-
ordered medium, leading to an increase in Nu(t). These
sites can be visited later, in a long backward excursion,
leading to an “avalanche-type” relaxation of Nu(t). (Note
that many smaller excursions also occur during the ascend-
ing part of Nu(t).) The distribution of the time intervals
∆t between two successive zeros of Nu(t) is displayed in
figure 4a. One expects P (∆t) and the first-passage time
distribution P1(t) to have the same asymptotic behavior,
as observed. At δ = 4.1, one finds P (∆t) ∼ (∆t)−3/2,
implying that 〈∆t〉 = ∞: Nu(t) grows asymptotically un-
bounded. In the transition region, the walker is therefore
unable to visit all the targets of the explored interval at
large time (it is “inefficient”). Below δc, the distribution
P (∆t) decays faster (figure 4a) and the evolution of Nu(t)
seems to have a characteristic cut-off period. In figure
5a, where δ is well below δc, this characteristic time is still
very long (∼ 104). Large avalanches, where Nu drops from
about 600 to 0, are present.

The walker is a priori “efficient” below δc, since it reg-
ularly leaves no sites as unvisited (fig. 5a). However,
this behavior is not persistent on very large time-scales,
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Fig. 5: Number of unvisited targets Nu(t) as a function of t,
at early (a) and late (b) times, for a same trajectory below the
transition region (δ = 2.45).

as shown in figure 5b. Surprisingly, at a given time that
can be of order 106 or more, Nu(t) does not come back
to zero and starts to oscillate above a finite value. This
happens when a large excursion fails to visit some of the
unvisited targets left behind. After such an incomplete
excursion, 〈∆t〉 obviously starts to grow with time. This
behavior is observed in a whole range of parameter values
below δc, down to about δ ∼ 1.30. The walk is therefore
efficient during a finite time, until a “catastrophic” event
with very large ∆t occurs.
One can draw an analogy between these “outliers” and

very large earthquakes or financial crisis in other contexts
[23,24]: their magnitude can not be explained from a sim-
ple extrapolation of the distribution P (∆t), as displayed
in fig. 4a, to larger arguments. Here, outliers are unusual
precursory patterns of the power-law distribution (in sharp
contrast with common critical phenomena) and can be at-
tributed to the presence of log-oscillations in P (∆t): As
noticeable in figure 4a, after an initial steeper decay, the
distribution for δ = 2.45 < δc very closely approaches the
critical curve for a range of values around ∆t1 ∼ 5 103,
before decaying fast again. Although computational limi-
tations do not allow to observe more log-periods, it is very
likely that the next oscillation can reach (or even cross)
the critical distribution, for some values ∆t2 ≫ ∆t1 (see
figure 3 for a similar behavior at δ = 3). Therefore, the
emergence of very large intervals of order ∆t2 between the
zeros of Nu becomes as probable as at δc. This explains
qualitatively the time series of figures 5a-b, composed of
many intervals of order 103 − 104 followed by a single one
of much larger size, precursor of the critical regime with
diverging 〈∆t〉.
Discussion. – We have shown that a simple self-

avoiding process taking place in a confined Poissonian ran-
dom medium can display complex dynamics and broad
distributions in a wide parameter range. Quenched disor-

der introduces randomness in the model, that otherwise
follows simple deterministic rules. Similar results as re-
ported here should be observed in a semi-infinite strip with
the walker initially located at one end, with the difference
that the walker would drift without inversions.
In ref. [7], the trajectories generated by the Red Queen

rules can be similar to random walks after time scales that
depend strongly on the lattice size and geometry [7]. In
contrast with the Red Queen Walk, where sites can be
revisited after a very long time, our model has infinite
memory, leading to intermittent and complex behavior.
The evolution of single species is known to be intermit-

tent and not gradual, long period of stasis being “punc-
tuated” by burst of rapid biological changes [25]. Such
active periods might be driven by the internal dynamics
of evolution. According to the fossil record, the number
of genera with a lifetime τ follow a power-law N ∼ 1/τβ,
with β ≃ 2 [26]. The Bak-Sneppen model [27] considers
interacting species with high mutation barriers, leading
to self-organized critical states with β = 1.1 [26]. This
evolution is slower than observed because it occurs by col-
lective modes, or avalanches. Changes are easier in our
model (where explicit interactions are ignored), but still
intermittent. The distribution of time-intervals between
successive changes in xmax, for instance, is fitted with an
exponent β = 2.7. One may speculate that phenotypic
restrictions could play a role on the punctuated dynamics
of evolution, in addition to species interactions.
Our system does not become critical in an ordinary

way. At a critical width δc, the inversion probability
of the drift velocity decays as a power law with small
log-periodic corrections. In a first harmonic approxima-
tion [21], Pinv(t) ≃ ct−1[1 + a1 cos(2π ln t/ lnλ)], with
a1 ≪ 1 and λ ≈ 100. This asymptotic regime is nu-
merically hard to reach, as observed in other problems
with log-oscillations [15,30]. The leading term above pre-
cisely represents the law that separates, in analogy with a
two-state stochastic process, asymptotically ballistic (non-
ergodic) trajectories and walks that keep changing direc-
tion indefinitely.
The log-oscillations present in various distribution func-

tions indicate the presence of a hierarchy of time-scales
related to each other by a particular scaling factor λ, such
that P (λt) ≃ λαP (t). These oscillations are often dis-
played by cooperative phenomena taking place on hierar-
chical structures (spin models near criticality [21], contact
processes [28]), or by random walk models with memory
[15,29], among other examples. In ref. [30] log-oscillations
appear in a simple biased 1d random walk model in a
disordered medium containing a small fraction of “slow”
sites, where the walker jumps in the direction opposite to
the bias with a probability close to one. These slow sites
are somehow analogous to our (dynamically generated)
backward excursions. A crucial ingredient leading to log-
oscillations in [30] is spatial discreteness, where clusters
of slow sites trap the walker during a time that increases
exponentially with the cluster size. In our model, no such
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discreteness is apparent. Instead, inversion events are cor-
related in a complicated way: if the strip is sufficiently
narrow, an inversion can not occur in the interval [t1, 2t1]
if an inversion occurred at time t1. The time intervals
separating inversions might introduce a particular scaling
factor, although its precise origin is unclear.
Well below the critical region, the distributions exhibit

log-oscillations of irregular amplitudes whose maxima can
be identified with outliers, that are “wild” precursors of
critical fluctuations. From the above discussion, the char-
acteristic size of these events can be roughly extrapolated
as being of order λn (n = 1, 2...), and as probable as at
criticality. At δc, these specific scales are mixed with all
the others (a1 ≪ 1), in a practically scale invariant distri-
bution. A detailed study the behavior near δc remains to
be done. Correlation functions (e.g. velocity) other than
Pinv might exhibit clearer scaling relations.
In this scenario, it is however clear that outliers exist in

a wide parameter range and do not even require that the
bulk of the distribution follows a power-law. On the con-
trary, they are off-critical events by nature. This property
has to be contrasted with more common views in seismol-
ogy, for instance, where outliers are either considered as
coming from the tail of power-law distributions [31], or, in
a more refined way, as coming from a bump at large sizes
in a otherwise power-law distribution of bulk events [32].
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