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Abstract

We provide a complete thermodynamic solution of a 1D hopping model in the pres-
ence of a random potential by obtaining the density of states. Since the partition
function is related to the density of states by a Laplace transform, the density
of states determines completely the thermodynamic behavior of the system. We
have also shown that the transfer matrix technique, or the so-called dynamic pro-
gramming, used to obtain the density of states in the 1D hopping model may be
generalized to tackle a long-standing problem in statistical significance assessment
for one of the most important proteomic tasks – peptide sequencing using tandem
mass spectrometry data.
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1 Introduction

Important in both fundamental science and numerous applications, optimiza-
tion problems of various degrees of complexity are challenging (see [1] for
an excellent introduction). Optimization conditioned by constraints that may
vary from event to event is of especial theoretical and practical importance. As
a first example, when dealing with a system under a random potential, each
realization of the random potential demands a separate optimization result-
ing in a different ground state. The thermodynamic behavior of such a system
in a quenched random potential crucially depends on the random potential
realized. A similar but practical problem may arise in routing passengers at
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various cities to reach their destinations. In the latter case, the optimal rout-
ing depends on the number of passengers at various locations, the costs from
one location to the others, which likely to vary from time to time. This type of
conditional optimization also occurs in modern proteomics problem, that is,
in the mass spectrometry (MS) based peptide sequencing. In this case, each
tandem MS (MS2) spectrum constitute a different condition for optimization
which aims to find a database peptide or a de novo peptide to best explain
the given MS2 spectrum.

When the cost function of an optimization problem can be expressed as a sum
of independent local contributions, the problem usually can be solved using
the transfer matrix method that is commonly employed in statistical physics.
A well-studied example of this sort in statistical physics is the directed poly-
mer/path in a random medium (DPRM) [2,3,4]. Even when a small non-local
energetics is involved, the transfer matrix approach still proves useful [5]. As
an example, the close relationship between the DPRM problem and MS-based
peptide sequencing, where a small nonlocal energetics is necessary to enhance
the peptide identifications, was sketched in an earlier publication [5] and the
cost value distribution from many possible solutions other than the optimal
one is explored. Indeed, obtaining the cost value distribution from all possible
solutions in many cases is harder than finding the optimal solution alone. In
this paper, we will provide the solution to a generic problem that enables a full
characterization of the peptide sequencing score statistics, instead of just the
optimal peptide. The 1D problem considered is essentially a hopping model in
the presence of a random potential. The solution to this problem may also be
useful in other applications such as in routing of passengers and even internet
traffic.

In what follows, we will first introduce the generic 1D hopping model in a
random potential, followed by its transfer matrix (or dynamic programming)
solution. We then discuss the utility of this solution in the context of MS-based
peptide sequencing, and demonstrate with real example from mass spectrum
in real MS-based proteomics experiments. In the discussion section, we will
sketch the utility of the transfer matrix solution in other context and then
conclude with a few relevant remarks.

2 1D hopping in random potential

Along the x-axis, let us consider a particle that can hop with a set of prescribed
distances {mi}

K
i=1 towards the positive x̂ direction. That is, if the particle is

currently at location x0, it can move to location x0+m1, x0+m2, . . .x0+mK

in the next time step. At each hopping step, the particle will accumulate an
energy −s(x) from location x that it just visited. The score s(x) (negative
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of the on-site potential energy) is assumed positive and may only exist at a
limited number of locations. For locations that s(x) do not exist, we simply
set s(x) = 0 there. The energy of a path starting from the origin specified
by the sequential hopping events p ≡ {mh1

, mh2
, . . . , mhL

} would have visited
locations {x1, x2, . . . , xL} with xi ≡

∑i
j=1mhj

and has energy

Ep(x = xL) ≡ −
L−1∑
i=1

s (xi) ≡ −Sp(x) .

In general, there can be more than one path terminated at the same point.
Treating each path as a state with energy given by Ep, one ends up having
the following recursion relation for the partition function Z(x) ≡

∑
p e

−βEp(x)

Z(x) =
K∑
i=1

eβs(x−mi)Z(x−mi) , (1)

where β = 1/T plays the role of inverse temperature (with kB = 1 chosen).
If one were only interested in the best score terminated at point x, it will be
given by the zero temperature limit β → ∞ and the recursion relation may be
obtained by taking the logarithm on both sides of (1) and divided by β then
taking β → ∞ limit to reach

Sbest(x) = max
1≤i≤K

{s(x−mi) + Sbest(x−mi)} , (2)

where Sbest(x) records the best path score among all paths reaching position
x. This update method, also termed dynamic programming, records the lowest
energy and lowest energy path reaching a given point x. The lowest energy
among all possible at position x is simply −Sbest(x) and the associated path
can be obtained by tracing backwards the incoming steps. It is interesting to
observe that one can also obtain the worst score at each position via dynamical
programming

Sworst(x) = min
1≤i≤K

{s(x−mi) + Sworst(x−mi)} . (3)

The full thermodynamic characterization demands more information than the
ground state energy. In principle, one may obtain the full partition function
using eq. (1) evaluated at various temperatures. This procedure, however,
hinders analytical property such as determination of the average energy

〈E〉 ≡ −
∂ lnZ

∂β
.
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A better starting point may be achieved if one can obtain the density of states
D(E). In this case, we have

Z ≡
∫

dEe−βED(E)

〈E〉=

∫
dEe−βEED(E)∫
dEe−βED(E)

.

Note that if the ground energy Egrd of the system is bounded from below,
the partition function is simply a Laplace transform of a modified density of
states given by

Z = e−βEgrd

∞∫

0

dEe−βED̃(E)

where D̃(E) ≡ D(E − Egrd) and

〈E〉 = Egrd +

∫∞

0 dEe−βEED̃(E)∫∞

0 dEe−βED̃(E)

This implies that the density of states D(E) together with the ground state
energy Egrd determine all the thermodynamic behavior of the system. In the
next section, we will explain how to obtain the density of states using the
dynamical programming technique as well as how to extend this approach
to more complicated situations that will be useful in characterizing the score
statistics in MS-based peptide sequencing.

3 Obtaining the Density of States

The density of states is related to the energy histogram in a simple way. The
number of states between energies E and E + η (with η ≪ 1) is given by
D(E)η. If we happen to use η as the energy bin size for energy histogram,
the count C(E) in the bin with energy E is simply D(E)η and the density
of states D(E) = C(E)/η. For simplicity, we will assume that the all the
on-site energies −s(x) are integral multiple of η. This implies that each path
energy/score is also an integral multiple of η. In the following subsections, we
will use score density of states instead of energy density of states.
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3.1 The Simplest Case and its Application

We denote by C(x,N) the number of paths reaching position x with score
Nη. With this notation, we can easily write down the recursion relation for
C(x,N) as follows

C(x,N) =
K∑
i=1

C(x−mi, N −
s(x−mi)

η
) . (4)

This recursion relation allows us to compute the density of states in the same
manner as computing the partition function (1) except that we need to have
an additional dimension for score at each position x. As an even simpler ap-
plication of this recursion relation, suppose that one is only interested in the
number of paths reaching position x, one may sum over the energy part on
both side of (4) and arrives at

C(x) =
∑
i

C(x−mi), (5)

which enables a very speedy way to compute the total number of paths reach-
ing position x. In the context of de novo peptide sequencing [6], this number
corresponds to the total number of ⁀all possible de novo peptides within a given
small mass range. Although simply obtained, this number may be useful for
providing rough statistical assessment in de novo peptide sequencing.

3.2 The More Realistic Case

In general, one may wish to associate with each hop an energy h or one may
wish to introduce some kind of score normalization based on the number of
hopping steps. This is indeed the case when applying this framework to MS-
based peptide sequencing where a peptide length factor adding or multiplying
to the overall raw score is a common practice. In this case, it becomes impor-
tant to keep track the number of hops made in each path. We may further
categorize the counter C(x,N) into

∑
L C(x,N, L). That is, we may separate

the paths with different number of steps from one another and arrive at a
finer counter C(x,N, L) which records the number of paths reaching position
x with score Nη and with L hopping steps.

It is rather easy to write down the recursion relation obeyed by this fine

5



counter

C(x,N, L) =
K∑
i=1

C(x−mi, N −
s(x−mi)

η
, L− 1) . (6)

This recursion relation allows us to renormalize the raw score based on the
number of steps taken. For example, for RAId DbS [7], a database search
method we developed, we divide the raw score obtained by 2(L − 1) for any
peptide (path) of L amino acids (hopping steps) to get better sensitivity in
peptide identification.

In principle, the recursion relations given by (4-6) are all one-dimensional up-
dates. The only difference is the internal structure of counters at each position
x. For (5), the counter is just an integer and has no further structure. For (4),
the counter at each position has a 1D structure indexed by the score. For
(6), the counter at each position x has a 2D structure indexed by both the
score and the number of hopping steps. This means that in terms of solving
the problem using dynamical programming, it is always a 1D dynamical pro-
gramming with different degrees of internal structure that may lengthen the
execution time when shifting from the simplest case (5) to the more compli-
cated case (6). Obviously at each position x, there is an upper bound and
a lower bound for score and also for the number of hopping steps accumu-
lated. We shall call them Sbest(x), Sworst(x), Lmax(x) and Lmin(x) respectively.
The first two quantities may be obtained by eqs. (2) and (3) respectively. We
provide the recursions for the two latter quantities below

Lmax(x) = max
1≤i≤K

{Lmax(x−mi)}+ 1 , (7)

Lmin(x) = min
1≤i≤K

{Lmin(x−mi)}+ 1 . (8)

Eqs. (2-3) and (7-8) provides the ranges for both the scores and the number
of cumulative hopping steps at each position x via simple dynamic program-
ming. As we will discuss later, this information enables a memory-efficient
computations of score histograms.

4 Application in MS-based Peptide Sequencing

In this section, we focus on an important subject in modern biology – using
MS data to identify the numerous peptides/proteins involved in any given
biological process. Because of the peptide mass degeneracies and the limited
measurement accuracy for the peptide mass-to-charge ratio, using MS2 spectra
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is more effective in peptide identifications. In a MS2 setup, a selected peptide
with its mass identified by the first spectrometer is fragmented by noble gas,
and the resulting fragments are analyzed by a second mass spectrometer.
Although such MS2-based proteomics approaches promise high throughput
analysis, the confidence level assignment for any peptide/protein identified is
challenging.

The majority of peptide identification methods are so-called database search
approaches. The main idea is to theoretically fragment each peptide in a
database to obtain the corresponding theoretical spectra. One then decides the
degree of similarity between each theoretical spectrum and the input query
spectrum using a scoring function. The candidate peptides from the database
are ranked/chosen according to their similarity scores to the query spectrum.
Although one may assign relative confidence levels among the candidate pep-
tides via various (empirical) means, an objective, standardized calibration
exists only recently [8]. In our earlier publications [5,9], we proposed to tackle
this difficulty by using a de novo sequencing method to provide an objective
confidence measure that is both database-independent and takes into account
spectrum-specific noise. In this paper, we will provide concrete algorithms for
such purpose.

To begin, consider a spectrum σ with parent ion mass range [w − δ, w + δ],
we denote by Π(w, δ) the set of all “possible” peptides with masses in this
range. Given a peptide π from Π(w, δ), the associated quality score S(π, σ)
is defined by a prescribed scoring system. The score distribution of S(π, σ)
within Π(w, δ) provides naturally a likelihood measure for any given peptide
π to the the correct one.

However, as described earlier [5], this seemingly straightforward idea faces two
difficulties in terms of implementations. First, unlike the DPRM problem for
which the function to be optimized is defined without ambiguity, the choice
of the scoring function is somewhat empirical because the parameters used
in the scoring must be trained using a training data set. Further, because of
different instruments and experimental setups, it seems impossible to design a
scoring system such that the correct peptide for each spectrum has the highest
score among all possible peptides; the application of a given scoring function
to general cases may require a leap of faith. Second, even after the scoring
function is chosen, it is not known how to find the peptide πo that maximizes
S(π, σ) as well as the score distribution pdf(S) within Π(w, δ) other than by
the generally impractical procedure of examining all members of Π(w, δ).

The first difficulty can be alleviated by validating high scoring de novo pep-
tides via database searches [9] and is not the main focus of the current paper.
Note that a partial solution to the second problem via iterative mapping when
nonlocal score contributions exist is provided earlier [5]. Here we tackle the

7



second problem head on when the scoring function used does not contain
nonlocal contribution other than a final renormalization with respect to the
peptide length. Our algorithms contains two parts: computer memory alloca-
tions and dynamical programming update. Prior to discussing these two parts,
however, we first address the important issue of choosing a good mass unit.

4.1 Choosing a Good Mass Unit

The goal here is to choose a mass unit ∆ and expresses the molecular mass
of each amino acid as an integral multiple of this unit. For example, one may
choose ∆ to be 0.1 Dalton (Da), and round the molecular mass of each amino
acid to be an integral multiple of 0.1 Da. Once a mass unit is chosen, all the
masses under consideration are integral multiples of this unit. It turns out
that different choices of the mass unit leads to different maximum cumula-
tive mass error. As a specific example, consider using ∆ = 0.1 Da as the mass
unit. The mass of Alanine, with true mass 71.03711538 Da, is now represented
as 710∆. This molecular mass expression is 0.03711538 Da smaller than the
true molecular mass of Alanine. When this happens, the integral mass rep-
resentation has a mass smaller than the true mass, and we call such type
of mass error a down-error. Now the amino acid Tryptophan with molecular
mass 186.07931613 Da will be assigned an integral mass of 1861∆, which has
an extra of (0.1 − 0.07931613) Da compared to the true mass. We call this
type of mass error the up-error.

The ratio of the mass error to the real molecular mass when multiplied by
3000 Da provides the cumulative maximum error that can be induced by a
single amino acid at 3, 000 Da mass. For a fixed mass unit, we went over this
mass error analysis for each of the twenty amino acids and documented the
largest up-error and down-error. The larger one between the maximum up-
error and the maximum down-error is called the max-error. To search for best
mass units that minimize the max-error at 3, 000 Da, we went over all possible
mass unit ranging from 0.005 Da to 1.005 Da in step of 10−6 Da. Interestingly
enough, we found a discrete list of mass units that have smaller max-error
compared to their nearby mass units. These numerically found magic mass
units are summarized in table 1.

Once a mass unit is chosen, all the amino acid masses are effectively integers.
To obtain the score histogram of all de novo peptides when queried by a
spectrum σ with parent molecular mass w (with N- and C- terminal groups
of the peptide stripped away), we first construct a mass array where index
k corresponds a molecular mass k∆. To encode all possible peptides with
molecular mass up to w, we need to have an array of size w/∆+1. Apparently,
when a larger mass unit is used, the size of the mass array is smaller and thus
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Table 1
A list of best mass units in Da. The abbreviation “m.u.e.” stands for “maximum
up-error,” while “m.d.e.” stands for “maximum down-error.” The maximum up-
error, maximum down-error, and max-error are evaluated in extrapolation to 3, 000
Da as described in the text. The abbreviation “a.a.w.m.u.” stands for “amino acid
with maximum up-error,” while “a.a.w.m.d.” stands for “amino acid with maximum
down-error.”

mass unit m.u.e. a.a.w.m.u. m.d.e. a.a.w.m.d. max-error

0.006070 0.041980 Tryptophan 0.037455 Cysteine 0.041980

0.007300 0.041495 Methionine 0.061276 Asparagine 0.061276

0.017540 0.094183 Cysteine 0.121977 Proline 0.121977

0.021500 0.199585 Arginine 0.182283 Asparagine 0.199585

0.054470 0.453793 Asparagine 0.347792 Alanine 0.453793

0.065400 0.553492 Lysine 0.536989 Alanine 0.553492

0.109450 0.908287 Proline 0.900898 Lysine 0.908287

0.110300 0.962781 Histidine 0.858742 Lysine 0.962781

0.110320 0.960176 Aspartate 0.907801 Histidine 0.960176

0.500208 0.980357 Cysteine 0.983149 (Iso)Leucine 0.983149

1.000416 0.980357 Cysteine 0.983149 (Iso)Leucine 0.983149

reduces computation time. However, as one may see from table 1, the larger
mass unit is also accompanied by a larger max-error and might not be preferred
when high mass accuracy is the first priority.

4.2 Efficient Memory Allocation

The basic idea of our algorithm is to encode all possible peptides in the mass
array by linking pointers, analogous to the consecutive hopping steps in the
1D hopping model. For an amino acid a, let n(a) represents its corresponding
integer mass in unit of ∆. For a peptide made of [a1, a2, . . . , aM ], it will have
a hopping trajectory in the molecular array given by [0, x1, x2, . . . , xM ] with
xi≥1 ≡

∑i
j=1 n(aj). Let us also denote xM by xF to indicate that it is the

terminating point of the path. Apparently, all possible peptides with molecular
masses equal to xF∆ will all have corresponding hopping paths starting at the
origin and terminating at xF . Through appropriate pointer linking, one may
therefore encode all possible peptides with molecular mass xF∆ in a one-
dimensional mass array.
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For a given spectrum σ, depending on the score function used, one may cal-
culate local score contributions at each mass index. This step is done once
only for the whole mass array, and need not be repeated for each candidate
peptide. In a typical MS2 experimental spectrum, there always exists some
level of parent ion mass uncertainty. Once the size of the mass uncertainty
is specified, we only need to examine de novo peptides whose corresponding
hopping paths terminating at a few consecutive mass indices. This indicates
that some of the mass indices of the aforementioned mass array may not even
be used in this context. Below we describe how to efficiently obtain relevant

mass indices and only allocate computer memories for those masses.

Assume that the possible terminating points are F1, F2, . . . , Fk with Fj+1 =
Fj + 1. The update rules described in Eqs. (2-3), (5), and (7-8) will also be
used at this stage. The following pseudocode describes our algorithm.

Initialize the mass index = 0 entry

Sbest = Sworst = Lmax = Lmin = 0; C=1;

REMARK: Max aa is the maximum number of amino acids considered

for (aa index = 0; aa index < Max aa; aa index ++) {

label occupancy of n(aa index);

at n(aa index) attach a pointer back to 0;

update Sbest, Sworst, Lmax, Lmin, C at n(aa index);

}

for (mass index = 1; mass index <= Fk; mass index ++){

if (mass index occupied ?) {

for (aa index = 0; aa index < Max aa; aa index ++) {

label occupancy of (mass index + n(aa index));

at mass index+n(aa index) attach a pointer to mass index;

update Sbest, Sworst, Lmax, Lmin, C at (mass index + n(aa index));

}

}

}

for (mass index = Fk ; mass index >= F1; mass index --){

backtrack all possible paths → final occupied entries;

}

The last step in the algorithm above identifies relevant mass indices, mass indices
that will be traversed by the hopping paths of all peptides with molecular
masses in the range [F1∆, Fk∆]. We only need to allocate computer memory
associated with those sites. For each of these relevant sites, we also know the
values of Sbest, Sworst, Lmax, Lmin, and the total number of peptides reaching
that site through the algorithm above. One may therefore allocate a 2D array
of size (Sbest(i)−Sworst(i))/η×(Lmax(i)−Lmin(i)) for each relevant mass index
i for later use.
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4.3 Main Algorithm and some Results

Once memory allocation for relevant mass indices is done, we can efficiently
go through those relevant sites to obtain the 2D score histogram that we
mentioned. In the pseudocode below, update is performed using eq. (6). We
now demonstrate the very simple main algorithm

Initialize all the fine counters C(x,N,L) = 0

except C(x = 0, N = 0, L = 0)=1;

for (aa index = 0; aa index < Max aa; aa index ++) {

update C(x,N,L) at x =n(aa index);

}

for (mass index in ascendingly ordered relevant mass indices){

for (aa index = 0; aa index < Max aa; aa index ++) {

update C(x,N,L) at x =(mass index + n(aa index));

}

}

We now define the final 2D counter

Y (N,L) ≡
k∑

i=1

C(Fi, N, L) . (9)

Apparently, in the 1D hopping model when allowing k consecutive termi-
nating points, the resulting density of states D(E) can now be expressed as
D(E = −Nη) =

∑
L Y (N,L)/η. If one were interested in normalizing the final

score in a path-length dependent manner, one will has the following generic
transformation

H(E) =
∑
L

∫
dE ′Y (E ′ = −Nη, L)

η
δ (E − f(E ′, L)) (10)

where f(E ′, L) is a generic length-normalized energetic function that takes
the raw energy E ′ with L hopping steps and turn them into a new energy
f(E ′, L), and

∫
dE ′ → η

∑
N is understood.

Using a real experimental MS2 spectrum of parent ion mass 2254.7 ± 3.0
Da and a raw scoring function (RAId DbS [7] raw score without divided by
2(L− 1) with L being the peptide length), we obtained a 2D score histogram.
From this 2D score histogram, we can compute the average peptide length
〈L〉 as well. We then transform the 2D score histogram using two different f
functions. In the first case, f(E ′, L) = E ′/2(〈L〉 − 1), meaning that one just
divides the score by a constant given by 2(〈L〉−1). In the second case, we use
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Figure 1. Score histograms for raw score and RAId DbS score. Note that the two
histogram cross each other at large score regime, indicating that the raw score
function might not be as effective as the RAId DbS score, see text for details.

the RAId DbS scoring function where f(E ′, L) = E ′/2(L − 1). In Figure 1,
we show the two resulting score histograms along with the fits to theoretical
distribution function [7]. As one may see from the figure, both histograms are
well fitted by the theoretical distribution function over at least 15 order of
magnitudes. There is difference, however, in the histograms obtained. In the
first case, where the score is merely divided by the average length, we have a
wider score distribution than that of the second case. This implies that a high
scoring hit out of the first type of scoring function will have a larger P -value
than that of the second type. This is perfectly reasonable because when using
the first type of raw scoring, very long peptides which by random chances are
more likely to hit on fragment peaks in the mass spectrum are less penalized
than the shorter peptides. As a consequence, one anticipates more false long
peptides out of the first type of scoring method than that of the second scoring
method. Therefore, one should assign a larger P -value to the former case and
a smaller P -value to the latter case. It is apparently important to be able to
obtain score histograms of the second scoring method. However, this can only
be achieved if one keeps the length information in the dynamical programming
update, see eq. (6).

5 Discussion, Summary, and Outlook

Our method may also be extended to other applications. In the case of passen-
ger routings, the x-axis actually represents time. The local score may be viewed
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as the additional cost that may vary for different stops. Once the problem is
laid out, the 2D histogram obtained from our solution indicates the number of
equivalent routes in terms of additional costs and the total number of stops.
This problem should be interesting in its own right.

In this paper, we developed a new approach to obtain the density of states of
a 1D hopping problem in random potential. We have extended the simplest
case scenario and have shown that we can apply this method to provide a
complete score histogram for MS-based peptide sequencing problem. This im-
portant information may be used for a more objective statistical significance
assignment in peptide identification. Our algorithm may also serve as a speedy
de novo algorithm. If one is only interested in getting the best scoring pep-
tide with length normalized score, one only needs to keep track of Sbest(x, L).
Furthermore, it is straightforward to include in our de novo algorithm post-
translationally modified amino acids. The effect is simply an enlargement of
the alphabet. That is, instead of having 20 amino acids, we will simply have
more allowed masses but without needing to change any part of the algorithm.

In the near future, we would like to build a web application that allows the
users to obtain information of interest. For example, a user might be interested
in knowing: given a parent ion molecular mass and a mass error tolerance,
how many de novo peptides can there be? Furthermore, we plan to provide
users with the full score histogram when a query spectrum is provided and a
scoring method is chosen. Our approach, founded on statistical physics, can
easily address this type of questions to provide useful information for biological
researches.
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