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Abstract. We discuss the problem of proteasomal degradation of proteins. Though

proteasomes are important for all aspects of the cellular metabolism, some details of

the physical mechanism of the process remain unknown. We introduce a stochastic

model of the proteasomal degradation of proteins, which accounts for the protein

translocation and the topology of the positioning of cleavage centers of a proteasome

from first principles. For this model we develop the mathematical description based

on a master-equation and techniques for reconstruction of the cleavage specificity

inherent to proteins and the proteasomal translocation rates, which are a property

of the proteasome specie, from mass spectroscopy data on digestion patterns. With

these properties determined, one can quantitatively predict digestion patterns for new

experimental set-ups. Additionally we design an experimental set-up for a synthetic

polypeptide with a periodic sequence of amino acids, which enables especially reliable

determination of translocation rates.

PACS numbers: 05.40.-a, 87.15.R-, 87.15.km, 87.19.xw

Special Issue: Article preparation, IOP journals

http://arxiv.org/abs/0806.2594v1


Towards prediction of proteasomal digestion patterns of proteins 2

A macromolecular complex, the proteasome, is the complex molecular machine for

the degradation of intracellular proteins [1]. In particular, proteasomes produce epitopes

for an immune system [2]. They exist in cells as the free proteolytically active core, the

barrel-shaped 20S proteasome (figure 1), and as associations of this core with regulatory

complexes PA700 (19S regulator) or PA28 (11S regulator) at its ends [3]. This paper

deals with proteasomal digestion of proteins widely studied in molecular biology and

immunology.

A protein enters the proteasome and is transported into the central chamber

(this process is referred as the translocation one) where it is cleaved into fragments

by one of the cleavage terminals arranged along two rings. Fragments of the protein

produced are removed through proteasome gates. Some of these fragments, epitopes,

are transported onto the cell surface where T-lymphocytes scan them in order to

recognize the cells to be killed because of an abnormal functioning. Hence, the digestion

pattern for a degraded protein and its statistical properties determine the reaction of

the immune system to the presence of this protein in a certain cell. Peculiarities of

the translocation rates can qualitatively affect the expression of the specific fragment,

e.g., an epitope, because an altered transport changes time of being near the cleavage

terminal, i.e., conditions of cleavage. Moreover, impairment of proteasomal degradation,

probably due to transport malfunction, might contribute to the pathology of various

neurodegenerative conditions [4].

The mechanism of protein translocation remains unknown (however, subjects

related to some extent to this problem have been studied in [5, 6, 7, 8]). It is also

unknown whether this mechanism is qualitatively different for different proteasome types

(constitutive or immuno-), with/without different regulatory complexes. Recently, in [9]

a stochastic model, which allows a straightforward reconstruction of the translocation

rates and cleavage specificities from mass spectroscopy (MS) data on digestion patterns,

has been introduced. These properties reconstructed can be used for a comprehensive

quantitative prediction of proteasomal digestion patterns for new proteins and new

experimental set-ups. In this paper we elaborate the mathematical theories for the

employing of the introduced model for relatively short synthetic polypeptides (section 2),

long proteins with a periodic sequence of amino acids (section 3), and long natural

proteins which require a peculiar approach (section 4).

1. Physical model of the system and mathematical description

We describe the process of protein transport and degradation by the proteasome (see

figure 1) within the framework of the following assumptions.

• Protein translocation: The process of the infiltration of a protein into the

proteasome chamber is a sequence of thermal noise induced jumps of the protein strand

by one amino acid (AA). In figure 1, the zoom-in of the chamber gate schematically

shows the diameter of the gate to be comparable with the characteristic size of an AA,

what means that the protein chain may be fixed in metastable states by a tight gate
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Figure 1. Infiltration of a protein strand into the 20S proteasome: The scissors

mark the positions of active sites rings at x = 0 and x = L; the cleavage occurs via

the attaching-detaching of the protein to active sites (dark-grey color). The zoom-in

shows the protein fragment KEFNII passing through the gate; the electron shields are

presented in pale colors.

between successive jumps due to large thermal fluctuations. Indeed, the atomic force

measurements reveals Ub/kT >3 [10], where Ub is the characteristic height of the energy

barrier separating nearest metastable positions of the chain and kT/2 is the energy

of thermal fluctuations. The probability of the protein shift by one AA during the

infinitesimal time interval dt into the proteasome (to the right in figure 1) is assumed to

depend only on the length x of the protein forward end beyond the active sites nearest to

the proteasome chamber gate used for protein infiltration (the left ones in figure 1); this

probability divided by dt is given by the translocation rate function (TRF) v(x) ≡ vx.

In such a way, we neglect the role of the AA sequence specificity for translocation, what

is suggested by a non-covalent interaction between the proteasome and the retracted

protein. The backward motions of the entering strand are neglected as well (from [10],

for the potential energy U(x) of the metastable state x, (U(x−1)−U(x+1))/2kT ≈ 2.5,

thus, meaning the probability of a backward motion to be diminished by factor e−2.5

against the forward one). These assumptions do not impose significant restrictions on

the physical mechanism of the translocation process: they are valid for the thermal drift

in a tilted spatially-periodic potential (e.g., see [11]) as well as for the ratchet effect (e.g.,

see [8]), etc. The TRFs of different proteasome species (20S, 26S which is the association

of 20S core and 19S regulatory complexes, etc. [3]) differ.



Towards prediction of proteasomal digestion patterns of proteins 4

• Cleavage: When the protein strand is close to the active site, the probability of

cleavage during the infinitesimal time interval dt depends on the sequence of AAs nearest

to the peptide bond cleaved [12]. For the given protein, this conditional probability

divided by dt, in other words, conditional cleavage rate (CCR), γ(τ) ≡ γτ , is a function

of the bond number τ (precisely, τ numerates the position of the bond within the initial

protein and is counted from the end which has first entered the proteasome; see figure 1).

In the following we use the number τ of the bong nearest to the first ring of active sites

as a time-like variable.

• Removal of digestion products: The cleaved parts of the protein degraded,

peptides, leave the chamber through the second proteasome gate. Due to their mobility

being higher in comparison to that of the protein, processed peptides leave the chamber

quick enough to neglect both their possible further splitting and their influence on the

protein translocation.

Let us now introduce the distribution w(x|τ) which is the probability of the protein

forward end beyond the first ring of the active sites to be of the length x, when the

τth bond is near that ring, in terms we use henceforth, at the discrete “time moment”

τ . We measure x in AA. Note, x and τ are integer. In the following we describe the

“temporal” evolution of distribution w(x|τ). On this way, we treat the shift of the

protein strand into the proteasome for one AA, i.e., the transition τ → τ + 1. Let us

decompose w(x|τ + 1) as

w(x|τ + 1) =
∑

j wj(x|τ + 1) ,

where wj(x|τ + 1) are the contributions due to different scenarios of this transition.

Along with w(x|τ), we account Q(n,m|τ), the amount of the peptide (n,m), which is

the m–n subsequence of the degraded protein (see figure 1), generated during transition

τ → τ + 1.

In the process of protein digestion there are three possible elementary events:

(a) the strand shift: x → x+ 1, τ → τ + 1; the event rate is v(x);

(b) the cleavage on the first ring of cleavage centers (x = 0): x → 0, τ → τ ; the event

rate is γ(τ);

(c) the cleavage on the second ring of cleavage centers (x = L, L is the distance between

the rings of cleavage centers): x → L, τ → τ ; the event rate is γ(τ − L).

In terms of these elementary events the possible scenarios of transition τ→τ+1 are

(1) Elementary event (a). Its probability is

P1(x|τ) =
{

vx/(vx + γτ ), x ≤ L ;

vx/(vx + γτ + γτ−L), x > L .

In this scenario, x → x+ 1, and

w1(x+ 1|τ + 1) = P1(x|τ)w(x|τ) . (1)

No peptides are generated;
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(2) Elementary event (b), which may not be followed by anything but the strand shift

by one AA (as there is nothing to be cleaved). This scenario probability is

P2(x|τ) =
{

γτ/(vx + γτ), x ≤ L ;

γτ/(vx + γτ + γτ−L), x > L .

In this scenario, x → 1, and

w2(x|τ + 1) = δx,1
∑∞

x′=1 P2(x
′|τ)w(x′|τ) . (2)

The peptides cut out are

Q2(τ, τ − x+ 1|τ) = P2(x|τ)w(x|τ) ; (3)

(3) Elementary event (c), which may be followed either by strand shift (1) or by scenario (2).

The probability of the first stage (c) is

Pc(x|τ) =
{

0, x ≤ L ;

γτ−L/(vx + γτ + γτ−L), x > L .

After event (c), when x → L, the number of the system states generated is

wc(x|τ) = δx,L
∑∞

x′=L+1 Pc(x
′|τ)w(x′|τ) ,

and the peptides cut out are

Qc(τ − L, τ − x+ 1|τ) = Pc(x|τ)w(x|τ) .
The subsequent events (1) or (2) should be considered as the respective above mentioned

scenarios starting with the distribution wc(x|τ), i.e.,

wc1(x|τ + 1) = P1(L|τ)wc(x− 1|τ) = P1(L|τ) δx,L+1

∞∑

x′=L+1

Pc(x
′|τ)w(x′|τ) , (4)

Qc1(τ−L, τ−x+1|τ) = P1(L|τ)Qc(τ−L, τ−x+1|τ) = P1(L|τ)Pc(x|τ)w(x|τ) ; (5)

wc2(x|τ + 1) = δx,1

∞∑

x′=1

P2(x
′|τ)wc(x

′|τ) = δx,1 P2(L|τ)
∞∑

x′=L+1

Pc(x
′|τ)w(x′|τ) , (6)

Qc2(τ−L, τ−x+1|τ) = P2(L|τ)Qc(τ−L, τ−x+1|τ) = P2(L|τ)Pc(x|τ)w(x|τ) , (7)

Qc2(τ, τ − x+ 1|τ) = P2(x|τ)wc(x|τ) = δx,L P2(L|τ)
∞∑

x′=L+1

Pc(x
′|τ)w(x′|τ) . (8)

Collecting equations (1), (2), (4), (6), one finds the master equation

w(1|τ + 1) =
L∑

x=1

γτ w(x|τ)
vx + γτ

+

(
1 +

γτ−L

vL + γτ

) ∞∑

x=L+1

γτ w(x|τ)
vx + γτ + γτ−L

; (9)

w(L+ 1|τ + 1) =
vL

vL + γτ

[
w(L|τ) +

∞∑

x=L+1

γτ−Lw(x|τ)
vx + γτ + γτ−L

]
; (10)

w(x|τ + 1) =
vx−1w(x− 1|τ)

vx−1 + γτ +Θ(x−L−1)γτ−L

for x 6= 1, x 6= L+ 1. (11)



Towards prediction of proteasomal digestion patterns of proteins 6

Here x = 1, 2, 3, ...,M and τ = 1, 2, 3, ...,M − 1, where M is the length of the protein,

and the Heaviside function Θ(x < 0) = 0, Θ(x ≥ 0) = 1. Equations (9)–(11) form a

linear map

w(x|τ + 1) =
∑∞

y=1 Lxy(τ)w(y|τ). (12)

The whole contribution to the cleavage pattern

Q(τ, τ − x+ 1|τ) = Q2(τ, τ − x+ 1|τ) +Qc2(τ, τ − x+ 1|τ)

=
γτ w(x|τ)

vx + γτ +Θ(x−L−1)γτ−L

+
δx,L γτ
vL + γτ

M∑

x′=L+1

γτ−Lw(x
′|τ)

vx′ + γτ + γτ−L

; (13)

Q(τ−L, τ−L−x+1|τ) = Qc1(τ−L, τ−L−x+1|τ) +Qc2(τ−L, τ−L−x+1|τ)

=
γτ−L w(L+ x|τ)
vL+x + γτ + γτ−L

. (14)

All the rest [not specified by expressions (13), (14)] elements Q(m,n|τ) are zero. The

expressions for digestion patternQ(m,n) after the processing of a single protein molecule

are different for short polypeptides and long ones of a periodic AA sequence.

2. Short (25–50 AA) synthetic polypeptides

First we consider degradation of short (25–50AA) synthetic polypeptide (protein), the

most common situation for in vitro experiments. Here we start at τ = 1 with w(x|τ =

1) = δx,1 and iterate linear map (12) till the last τ = M−1. For a short polypeptide the

releasing of the last fragment from the chamber at the “time moment” τ = M should be

additionally taken into account: Q(M,M −x+1|M) → Q(M,M −x+1|M)+w(x|M).

Hence, with w(x|τ) known for τ = 1, 2, ...,M , one may evaluate digestion pattern

Q(m,n) from (13) and (14),

Q(τ1, τ2) = Q(τ1, τ2|τ1) + Θ(M−τ1−L)Q(τ1, τ2|τ1 + L)

= δτ1,Mw(τ1 + L− τ2 + 1|M) +
γτ1 w(τ1 − τ2 + 1|τ1)

vτ1−τ2+1 + γτ1 + Θ(τ1−τ2−L)γτ1−L

+
δτ1−τ2+1,L γτ1
vL + γτ1

M∑

x=L+1

γτ1−L w(x|τ1)
vx + γτ1 + γτ1−L

+Θ(M−τ1−L)
γτ1 w(τ1 + L− τ2 + 1|τ1 + L)

vτ1+L−τ2+1 + γτ1+L + γτ1
, (15)

here 1 ≤ τ2 ≤ τ1 ≤ M . Since the protein may be cleaved starting both from the C- and

from the N-terminal, the final digestion pattern is given by

Qfin(τ1, τ2) = PNQN(τ1, τ2) + PC QC(M − τ2 + 1,M − τ1 + 1) . (16)

The subscripts indicate which terminal goes first, PN and PC = 1 − PN are the

probabilities of the degradation starting from the corresponding end. Generally, vN(x)

and vC(x) may be slightly different, but here we neglect this difference. Note that
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Figure 2. Test — Reconstruction of translocation rate function v(x) and conditional

cleavage rates γ(τ) for the 44mer peptide Kloe 316 [14, 15] [but with roughly estimated

authentic (original) values of γ(τ)], which is the subsequence 543–586AA of human

myelin associated glycoprotein. a) the conditional cleavage rates and the AA sequence;

b) the translocation rate function; c) the upper plot presents the set of digestion

fragments (black bars: fragments utilized for the reconstruction, grey bars: not

utilized), and the lower plot presents the amount of the corresponding fragment

(diamonds: the reconstructed values Qfin, grey bars: the values of Q̃ utilized for the

reconstruction).

a fragment length distribution S(x) (often used in the literature [13]) is then the

convolution

S(x) =
∑M

τ=x Q(τ, τ − x+ 1) . (17)

Digestion pattern Qfin(τ1, τ2) is a functional of TRF v(x) and CCR γ(τ). Utilizing

MS data on the digestion pattern, one can determine nonzero values of γ(τ) (i.e.
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positions of possible cleavage) and minimize the mismatch between Qfin(τ1, τ2) and MS

data Q̃(τ1, τ2) over v(x), the nonzero values of γ(τ), and PN in order to reconstruct them.

Expecting the function v(x) to be smooth, we parameterize appropriate approximate

functions as

vapp(x) = v0e
−

A2
2√

A2
1
+x

+
A2
2

|A1|
−A2

3(
√

A2
1+x−|A1|)

. (18)

Note, v(x) and γ(τ) are defined up to a constant multiplier, which should be determined

from the degradation rate in real time, but not from the digestion pattern.

In order to verify the robustness of the reconstruction procedure, numerous tests

have been performed. A typical test presented in figure 2 has been performed in 4 steps:

(1) For given v(x) [not generic for vapp, i.e., the used function v(x) cannot be perfectly

fitted with expression (18)] and γ(τ) digestion pattern Q(τ1, τ2) has been evaluated.

(2) The result has been perturbed by the noise, Q̃τ1τ2 = Qτ1τ2+10−4Rτ1,τ2

√
Qτ1,τ2, where

Rτ1,τ2 are independent random numbers uniformly distributed in [−1, 1].

(3) We have omitted the information about fragments, which relative amount is less than

5 · 10−3, and 1mer and 2mer fragments as being hardly detectable in experiments (one

cannot distinguish identical AAs cut out from different parts of the polypeptide [16]).

(4) Resulting Q̃τ1τ2 has been used for the reconstruction of v(x) and γ(τ).

The original and reconstructed data for γ(τ) (figure 2a) and v(x) (figure 2b) are in a

very good agreement. The reconstructed PN = 0.52 against original PN = 0.50 .

Unfortunately, the data available in the literature are mainly too much incomplete

(a lot of fragments are not accounted) and not enough precise for a truly reliable

reconstruction [9] (the initial solutions used for experiments quite frequently contain

not only the polypeptide to be digested but also a certain amount of its fragments,

the first measurement of the proportions of the solution is performed to late, when

considerably more than 5% of the initial substrate has been degraded and one may not

neglect reentries of the digestion fragments into the proteasome, etc.).

Thus, we should note the limitations of the suggested reconstruction method:

• The reconstruction procedure for short polypeptides is very sensitive to measurement

inaccuracy.

• For some polypeptides the procedure fails. This may happen due to a specific

arrangement of cleavage positions, when different TRFs v(x) provides almost identical

digestion patterns.

• Though the whole information on Q(τ1, τ2) is not needed, the number of nonzero

values of Q(τ1, τ2) required for a reliable (tolerant to noise) reconstruction is at least the

twice number of reconstructed parameters, i.e. 2×([number of positions of potential cleavage]+

[number of parameters of vapp] + 1). For instance, for Kloe 258 in [9] the number of

trustworthy and utilized values of Q̃(τ1, τ2) is 19 instead of the required 2×(10+3+1) =

28, it is a bit greater than the number of the unknown parameters, i.e., 14. Hence, more

accurate and comprehensive MS data on the digestion pattern are required.

• For short polypeptides the finishing stage of the degradation is relatively important,

while in this stage the translocation rate is affected by the edge effects (the backward
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end of the polypeptide gets inside the proteasome chamber) and is not the same as for

the remainder of the polypeptide.

3. Long synthetic polypeptides of a periodic amino acid sequence

While a more comprehensive acquisition of data on digestion fragments and enhance-

ment of experimental techniques for short polypeptides are up to experimentalists we

propose experimental set-up which allows overcoming all the limitations mentioned

above and is expected to be realizable. For this a long synthetic polypeptide with a

T -periodic AA sequence: γ(τ) = γ(τ + T ) should be digested. Here “long” means one

may neglect the peculiarities of the starting and finishing stages of the degradation, and

M ≫ T .

For the given direction of the degradation, e.g., starting with the N-terminal, we

are looking for the establishing T -periodic in τ solution wN,T (x|τ) = wN,T (x|τ − T )

to equation (12). The fragment (n,m) is identical to the one (n+kT,m+kT ), where

k is integer; therefore QN(m,n) may be chosen to make contribution to QN(m − n +

(n mod T ), n mod T ). The amount of fragments grows almost linearly with “time” τ

as the polypeptide being processed. Hence, for the digestion pattern one finds

QN,T (τ1, τ2) ≡ lim
τ→∞

1

τ

τ∑

τ ′=1

QN(τ1, τ2|τ ′) =
1

T

T∑

τ ′=1

QN,T (τ1, τ2|τ ′)

=
1

T

[
γτ1 wN,T (τ1 − τ2 + 1|τ1)

vτ1−τ2+1 + γτ1 +Θ(τ1−τ2−L)γτ1−L

+
δτ1−τ2+1,L γτ1
vL + γτ1

∞∑

x=L+1

γτ1−LwN,T (x|τ1)
vx + γτ1 + γτ1−L

+
γτ1 wN,T (τ1 + L− τ2 + 1|τ1 + L)

vτ1+L−τ2+1 + γτ1+L + γτ1

]
(19)

(here 1 ≤ τ2 ≤ T and τ1 ≥ τ2).

To treat the degradation process starting with the C-terminal, one has (i) to

perform the transformation γ(τ) → γ(T − τ), (ii) iterate linear map (12) with

the new γ(τ) like for the N-case, but assuming QC(m,n|τ) to make contribution to

QC(m mod T , n−m+ (m mod T )). Unlike (16), the final result is

Qfin(τ1, τ2) = PNQN,T (τ1, τ2) + PCQC,T (T−τ2, T−τ1).

Matching Qfin(m,n) to the MS data one can reconstruct v(τ), γ(τ), and PN. For a

test we have made use of the cleavage map of the digestion of yeast enolise-1 by human

erythrocyte proteasome [17]. Looking at its subsequence 331–348AA

...|ATAIEKKA|AD|ALLL|KV|NQ|...–COOH

(vertical stripes mark the positions of experimentally observed cleavages), one may

expect the case, where the underlined subsequence is followed not by KV, but by KKA...,

and the periodic sequence is

AD|ALLL|KKA| . . . |AD|ALLL|KKA| . . . |AD|ALLL|KKA–COOH ,
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Figure 3. Test — Reconstruction of translocation rate function v(x) and conditional

cleavage rates γ(τ) for a 9-periodic polypeptide with the cleavage positions 2, 6, 9.

(For description see caption to figure 2.)

to be realizable. For such a sequence a test like the one in figure 2 (but with much

stronger dithering: Q̃τ1τ2 = Qτ1τ2 + 2 · 10−3Rτ1,τ2

√
Qτ1,τ2) is presented in figure 3. Due

to the small number of unknown parameters the reconstruction procedure is rather

tolerant to measurement inaccuracy and does not require information on a large number

of digestion fragments (the most easily detectable fragments are enough).

4. Long natural proteins

The case of a most immediate interest is the digestion of long natural proteins

(over about 300AA) because it concerns the in vivo proteasomal activity. A direct

implementation of the procedure developed for short polypeptides is hardly possible

here, as in the course of matching Q(τ1, τ2) to the MS data, one has to perform a

minimization over an enormous number of parameters. However, for long non-periodic

proteins, one may assume γ(τ) to be a random process in order to evaluate some

observable statistical properties like the fragment length distribution (FLD) of the

digestion products, i.e. S(x) [see equation (17)].

For this random process we adopt the following:

• the neighbor values γ(τ) and γ(τ +1) are mutually independent (what does not
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necessarily mean that CCR γ(τ) is independent of neighbor AAs);

• γ(τ) is zero with a certain probability q, and has a finite probability density g(γ)

otherwise.

The normalized mean FLD S(x) ≡ 〈S(x)〉/
∑∞

x′=1〈S(x′)〉 may be evaluated either

via the plain iterating of (12)–(16) with noise γ(τ) over a large interval of τ or via the

direct simulation of the system with a Gillespie algorithm (e.g., see [18]). However,

the calculation procedure may be considerably facilitated. For this purpose, let us

average (12) over realizations of γ(τ),

〈w(x|τ + 1)〉γ =
∑∞

y=1〈Lxy(τ)w(y|τ)〉γ . (20)

Noteworthy, w(x|τ) depends on γ(τ−1) and the preceding values of γ but is independent

of γ(τ). Moreover, the impact of preceding values of γ decays in the course of the

processing of the protein, and one may neglect the correlation between w(x|τ) and

γ(τ − L) which are mutually distant in τ . Thus, w(x|τ) is independent of γ(τ) and

γ(τ − L), which are involved in Lxy(τ), and (20) yields

〈w(x|τ + 1)〉γ ≈
∑∞

y=1〈Lxy(τ)〉γτγτ−L
〈w(y|τ)〉γ ; (21)

from (13), (14), (17),

〈S(x|τ + 1)〉γ = 〈S(x|τ)〉γ +
〈

γτ
vx + γτ +Θ(x−L−1)γτ−L

〉

γτγτ−L

〈w(x|τ)〉γ

+

〈
γτ−L

vL+x + γτ + γτ−L

〉

γτγτ−L

〈w(L+ x|τ)〉γ

+ δx,L

∞∑

x′=L+1

〈
γτ

vL + γτ
· γτ−L

vx′ + γτ + γτ−L

〉

γτγτ−L

〈w(x′|τ)〉γ , (22)

where

〈f(γ1, γ2)〉γ1γ2 ≡ q2f(0, 0) + q(1− q)
∫∞

0
g(γ)[f(0, γ) + f(γ, 0)]dγ

+ (1− q)2
∫∞

0
dγ1

∫∞

0
dγ2 g(γ1) g(γ2) f(γ1, γ2) .

The FLD observed in experiments is S(x) corresponding to the establishing steady

solution 〈w(x|∞)〉 to linear map (21).

Noteworthy, with the additional approximation

〈Lxy(γτ , γτ−L)〉γτγτ−L
≈ Lxy(〈γ〉, 〈γ〉) ,

one may obtain an implicit recursive formula for establishing 〈w(x|τ)〉 from (21),

〈w(x+ 1|∞)〉 = (1 + δx,L) vx
vx + (1 + Θ(x− L))〈γ〉〈w(x|∞)〉 , (23)

and find FLD S(x) from (22),

S(x) =

(1 + δx,L)〈γ〉 〈w(x|∞)〉
vx + (1 + Θ(x− L))〈γ〉 +

〈γ〉 〈w(L+ x|∞)〉
vL+x + 2〈γ〉

〈w(1|∞)〉+ 〈w(L+ 1|∞)〉
2

. (24)
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Figure 4. Samples of fragment length distribution S(x) (FLD) for the degradation

of a long natural protein under the assumption, that conditional cleavage rate γ(τ)

may be treated as a random process. The fraction q of nonscissile peptide bonds is

indicated in the plots, nonzero values of γ(τ) are uniformly distributed in [0, γmax],

L = 9, the adopted translocation rate function v(x) is plotted in the right plot.

In two left plots, bars: results of the direct simulation with a Gillespie algorithm,

squares: the approximation (21), (22), circles: the approximation (23), (24) with

〈γ〉 = (1− q)γmax/2.

Remarkably, in the quasi-continuous limit (which is valid when v(x) is a “slow” function

of x), the last expressions provide (cf. [18])

〈w(x|∞)〉 = (1 + Θ(x− L))〈w(0|∞)〉 e
−

x
R

0

(1+Θ(x−L)) 〈γ〉

v(x′)
dx′

,

S(x) = 〈γ〉

e
−

x
R

0

(1+Θ(x−L)) 〈γ〉

v(x′)
dx′

v(x)
+

e
−

L+x
R

0

(1+Θ(x−L)) 〈γ〉

v(x′)
dx′

v(L+ x)

1 + e
−

L
R

0

〈γ〉

v(x′)
dx′

.

In figure 4, one may see, that the both above mentioned approximations become

more accurate as q decreases. However, for realistic value q ≈ 3/4 which is suggested

by experimental cleavage maps (see figure 2, where the sites of a potential cleavage

are taken from experimental data), the approximation (21), (22) works considerably

better than the one (23), (24). Remarkably, as q increases with 〈γ〉 kept fixed, the local
maximum near x = L shifts from x = L to higher values of fragment length x and the

cutting-out of longer peptides becomes more probable. The existence of this maximum

at L ≈ 8 − 10AA deserves especial attention because the epitopes, involved in the

functioning of the immune system and bound to MHC I molecules, have exactly such

length [19].

The important limitation of this method is related to the reconstruction of v(x)

for 1mer and 2mer peptides. These peptides are hardly detectable in experiments

and, therefore, experimental S(x) is not determined for x = 1, 2, and one cannot

reconstruct the respective values of v(x). Note, for methods suggested in sections 2 and 3
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this limitation does not occur because, e.g., for the subsequence |F|S|SDFRISGAPE|

in figure 2, the information on v(1) is reflected in the difference between the readily

measurable amounts of generated peptides |S|SDF...| and |SDF...|, while for long

natural proteins we lose the individual information on each specific peptide cut out.

5. Conclusion

In this paper we have discussed a model of the degradation of proteins by the proteasome

which allows one to reconstruct the proteasomal translocation function and the cleavage

specificity inherent to the amino acid sequence and not affected by proteasomal transport

properties. With these properties determined, one can comprehensively predict digestion

patterns of new proteins. The model is relevant for a broad variety of hypothetically

possible translocation mechanisms [8, 11]. We have mathematically elaborated this

model for the cases of (i) relatively short (25–50mers) synthetic polypeptides as the

most common case for in vitro experiments, (ii) long periodic polypeptides (proposed

experiments with such polypeptides are very promising for reverse engineering), and

(iii) long natural proteins.

In [18], we have already discussed how peculiarities of the translocation function

may lead to the multimodality of the fragment length distribution even for γ(τ) = const.

Here we have shown that the amount of each digestion fragment is not only determined

by the cleavage map [specifically, conditional cleavage rate γ(τ)] of the substrate but

is also crucially affected by nonuniformity of the translocation rate. The results of

implementation of the developed theory for processing experimental data on digestion

patterns for different proteasome species under different conditions can give insight into

the nature of the protein translocation mechanism inside the proteasome. They can as

well elucidate the unanswered question whether there is some preference for starting the

degradation with the N- or C-terminal of the protein, and how this preference is affected

by regulatory complexes. Hopefully, theoretical results will stimulate new experiments

as suggested in this paper for the case of a periodic polypeptide.
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[8] Zaikin A and Pöschel T 2005 Europhys. Lett. 69 725–31

[9] Goldobin D S, Mishto M, Textoris-Taube K, Kloetzel P M and Zaikin A 2008 Reverse engineering

of proteasomal translocation rates [submitted, preview: arXiv:0804.0682]

[10] Witt S (private communication)

[11] Reimann P, Van den Broeck C, Linke H, Hänggi P, Rubi J M and Perez-Madrid A, 2001 Phys.

Rev. Lett. 87 010602

[12] Tenzer S, Peters B, Bulik S, Schoor O, Lemmel C, Schatz M M, Kloetzel P M, Rammensee H G,

Schild H and Holzhütter H G 2005 Cell. Mol. Life Sci. 62 1025–37

[13] Kisselev A F, Akopian T N and Goldberg A L 1998 J. Biol. Chem. 273 1982–9

[14] Mishto M et al 2006 Biol. Chem. 387 417–29

[15] Mishto M, Luciani F, Holzhütter H G, Bellavista E, Santoro A, Textoris-Taube K, Franceschi C,

Kloetzel P M and Zaikin A 2008 J. Mol. Biol. 377 1607–17

[16] Kohler A, Cascio P, Leggett D S, Woo K M, Goldberg A L and Finley D 2001 Mol. Cell 7 1143–52

[17] Nussbaum A K, Kuttler C, Hadeler K-P, Rammensee H-G and Schild H 2001 Immunogenetics 53

87–94

[18] Zaikin A, Mitra A K, Goldobin D S and Kurths J 2006 Biophys. Rev. Lett. 1 375–86
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