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ABSTRACT

In this work we revisit ab-initio methods to identify natively unfolded
proteins. Single predictors and combined score indexes are considered and
their performance is critically evaluated against other methods already
present in the literature. We consider mean packing (< P >), mean pairwise
energy (¡Ec¿) and a new index of folding status, based on VSL2 (gV SL2),
a predictor of single disordered amino acids. We use a dataset made of
743 folded proteins and 81 natively unfolded proteins. Individual use of
these predictors has a performance comparable or even better than other
proposed methods: gVSL2 reaches a sensitivity of 0.81, a specificity of 0.89
and a level of false predictions of 0.11. Moreover, the performance of these
single predictors is not significantly improved if used in combination. In
many cases different predictors differently classified as folded or unfolded the
same amino acid sequences. We introduce a strictly unanimous combination
score SSU that combines mean packing, mean pairwise energy and gV SL2.
SSU leaves undecided sequences differently classified by two single predic-
tors. By applying the single indexes on dataset purged from the proteins
left unpredicted by SSU , their performance significantly increases, indicating
that unclassified proteins by SSU are mainly false predictions. Amino acid
composition is the main determinant considered by predictors of natively
unfolded proteins, therefore the classification of proteins with amino acid
composition compatible with both folded and unfolded sequences is quite
challenging. For this reason, if we exclude these proteins from the dataset,
the performance of the folding indexes increases. The percentage of proteins
predicted as natively unfolded by SSU in the three kingdoms are: 4.1% for
Bacteria, 1.0% for Archaea and 20.0% for Eukarya; comparable, but not co-
incident with similar previous determinations. Evidence is given of a scaling
law relating the number of natively unfolded proteins with the total number
of proteins in a genome; a first estimate of the critical exponent is 1.95 ±
0.21.
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BACKGROUND

In the past few years it has been discovered that several proteins, in
physiological conditions, lack a well defined tertiary structure, existing
as an ensemble of flexible conformations. These proteins, denoted in the
literature as natively unfolded or intrinsically disordered, are characterized,
microscopically, by an high atomic diffusivity all along their sequence. Nev-
ertheless they are involved in important cellular functions, like signalling,
targeting or DNA binding [1, 2, 3, 4, 5, 6, 7]; their existence shifts the
structure-function paradigm, that regards the tertiary structure of a protein
as necessary for its biological function [8]. It has been suggested that
natively unfolded proteins may also play critical roles in the development
of cancer [9]; moreover, the absence of a rigid structure allows them to bind
different targets with high specificity and low affinity, suggesting that they
are hubs in protein interaction networks [10, 11, 12]. Unstructured regions
may be present also in folded proteins. A specific local flexibility in these
partially unfolded proteins might play a dynamical role in modulating their
interactions with other macromolecules.
In this work we critically review sequence-only, ab-initio, methods to
identify natively unfolded proteins. Computational approaches aimed at
identifying unstructured regions in proteins are very useful, since the exper-
imental characterization of these regions is flawed by a certain ambiguity,
due to the several techniques available, that often give conflicting views
on the same protein [13, 14]. In particular, predictors of natively unfolded
proteins may be useful to fastly screen datasets of amino acid sequences,
looking for those that have a high tendency to remain unfolded; and this is
the main application that we have in mind in this work.
Several methods have been proposed to predict unstructured segments
in proteins [15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28]. These
methods aim at identifying disordered amino acids, i.e. residues for which
it is hard to determine experimentally, using X-ray cristallography or
NMR spectroscopy, the average positions of their atoms [29]. Predictors of
disordered amino acids are useful to find unstructured regions in partially
unfolded proteins, but they do not highlight immediately whether a
protein globally folds or not. Besides, unfolded segments may have a
wealth of different static and dynamic properties, but each predictor is
generally focussed on just one specific characteristic, therefore it seems
wise to combine the information from different indicators to obtain robust
predictions [30, 31]. Other methods aim at predicting whether a protein
is globally natively unfolded. Several physico-chemical properties have
been recognized as useful indicators, but they have been used differently
by authors [32, 33, 28, 26, 34, 35]; moreover the proposed methods have
been tested on various datasets, so it is not easy to make comparisons,
searching for an optimal approach. Within the present study we revisited
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and optimized various methods of predicting natively unfolded proteins.
Two predictors are based on mean packing [28] and mean pairwise energy
[36, 26]. A third index, called here gVSL2, is derived from VSL2 [37, 27], a
predictor of disordered amino acids that excellently performed in the recent
CASP7 experiment [29]. We retuned the parameters of the predictors,
increasing the performance with respect to the original settings indicated
in the literature. With our settings we discriminated folded proteins from
natively unfolded ones with sensitivity up to 0.74 and a level of false
predictions below 0.11. We then studied the possibility of enhancing the
performance of single folding indexes by combining them into scores. We
considered both the unanimous score SU and the voting score SV proposed
by Oldfield et al. [33]. We introduced also a score S0 that requires consensus
among the majority of folding indexes (see Methods for details) However,
we did not succeeded in enhancing significantly the performance of single
folding indexes. Interestingly, we observed an increasing of the performance
with respect to single folding indexes by introducing a strictly unanimous
score SSU that requires unanimous consensus among the various indexes
of fold to classify a protein in one of the two folding classes, and that left
unclassified proteins differently classified by at least two indexes. This score
exhibited a sensitivity of 0.82, a level of false predictions of 0.05 and it left
unclassified about 10% of the proteins in the test set. It is important to
note that the predictors of natively unfolded proteins currently described
in the literature and reviewed in this paper classify a protein as folded or
not by analysing mainly amino acidic composition of protein sequences
(see Results and Discussion below and also [38]). In a nutshell, predictors
of natively unfolded proteins are learning machine trained at recognizing
sequences with amino acidic composition similar to that of the folded and
natively unfolded proteins in a curated training set. Our results indicate
that in a generic dataset there are proteins with amino acidic composition
typical of folded and natively unfolded sequences; these proteins have a
strong folding signature in their sequence and therefore they are generally
classified correctly by all the predictors of natively unfolded proteins.
However, in a dataset there are also proteins with amino acidic composition
different from that of folded and natively unfolded sequences. These
proteins do not have a well-defined folding signature in their sequence and
they are often misclassified by single folding indexes. A score that does
not classify them therefore reduces the number of false predictions and
exhibits higher performance. Proteins with a weak folding signature cannot
be analysed with the predictors of natively unfolded proteins currently
described in the literature, but differently approaches must be used.
We applied our indexes to evaluate the frequency of natively unfolded
proteins present in various genomes, obtaining results consistent with those
reported by Ward et al. using DISOPRED2 [24]. Since our approach is
quite different from theirs, we think that it is a valid alternative. Finally,
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we observed a significant correlation, using our approach, between the
number of predicted disordered proteins and the number of proteins in
genomes of Bacteria, Archaea and Eukarya and we determined a scaling
law, of possible fundamental significance, to be validated by further studies.

RESULTS AND DISCUSSION

Mean packing, mean contact energy and gV SL2

In this work we revisited several predictors of globally unfolded proteins.
We considered HQ, mean packing < P >, mean pairwise energy < EC >
and gV SL2. HQ is an our implementation of the method by Uversky and
co-workers [32, 39]. The mean packing of a protein is the arithmetic mean
of the packing values of its amino acids. The packing of an amino acid is
defined as the average number of its close residues, i.e. residues within a
distance of 8 Å, computed on a large set of structured proteins [28]. We
considered as natively unfolded protein sequences with mean packing below
20.54. The mean pairwise energy of a protein is the arithmetic mean of
the contact energy values of its amino acids. It was computed following
the protocol implemented in the IUPred code [26]. We considered as
natively unfolded protein sequences with mean pairwise energy above -0.37
arbitrary energy unit (a.e.u.). gV SL2 is an index derived from the disorder
predictor VSL2 [37, 27]; specifically, gVSL2 is the arithmetic mean of the
VSL2 scores, over the sequence. Details on the implementation we used
are reported in the Methods section. We tested the performance of HQ,
mean packing, mean pairwise energy and gVSL2 on a test set made of 743
folded and 81 natively unfolded proteins. The results are reported in table
1. As we can see, HQ has, relatively, the worst performance. Mean packing
and mean pairwise energy show similar performance, whereas gVSL2 has a
comparatively higher sensitivity, but also a higher level of false predictions.
Mean packing and mean pairwise energy have been used previously to
predict whether a protein is natively unfolded or not. Mean packing has
been used by Galzitskaya and co-workers [28]. They used a sliding window
restricted to just one amino acid and a threshold at 20.73. Using their
setting on our own test set, the sensitivity arose from 0.74 to 0.83. However,
the level of false predictions also grew, from 0.07 to 0.19. This suggests
that, using the approach in [28], one could overestimate the number of
natively unfolded proteins present in the genome of a given organism.
Dosztanyi et al. consider as disordered amino acids with contact energy
value above -0.2 a.e.u. [26]; recently, this threshold has been used to
effectively discriminate folded proteins from natively unfolded ones, in a
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peculiar set of protein complexes [34]. Using the discriminative threshold
of -0.2 a.e.u. on our test set, sensitivity dropped from 0.74 to 0.54. This
result shows that the effectiveness of discriminative threshold, using single
predictors, strongly depends on the chosen test set. However, our settings
seems to be more robust that the those previously indicated in the literature.

Shuffling-invariance of the folding indexes and their dependence

from amino acidic composition

We checked that the indexes of fold we analysed here are invariant under
shuffling of the amino acids in the sequences (changes limited to a few
percent). This shuffling invariance of the indexes suggests some consider-
ations. There is a large consensus that the tertiary structure of a protein
is stabilized by hydrophobic effects and Van der Waals interactions, not
so sensible to the detailed geometry of the fold, that is modulated by the
strongly directional hydrogen bonds and steric hinderance between lateral
chains. These latter interactions should obey a fine dynamical network of
geometric constraints. We think that the shuffling invariant folding indexes
proposed up to now in the literature and re-optimized in the present work
are able to capture information related only to the geometry-independent
forces, that are globally correlated with a peculiar bias in the amino acid
composition of the sequence. Our position, nonetheless, is in line with
recent suggestion in the literature [38]. To confirm this point, we studied the
correlation among folding indexes and the frequencies of amino acids in the
protein sequences. To this aim, we used the distinction proposed by Romero
et al. in [18]. They observed that natively unfolded proteins are depleted
in order-promoting residues: W, C, F, I, Y, V, L; and enriched in disorder-
promoting residues: M, A, R, Q, S, P, E. We studied the correlation among
order- and disorder-promoting amino acid frequencies and mean packing,
mean contact energy and gV SL2; the results are reported in table 4. We
observe a high correlation, especially among indexes of fold and frequency
of order-promoting amino acids; this confirms that the indexes here inves-
tigated are determined by the mere amino acidic composition and not by
other more subtle effects, due to a specific order or polarity of the sequences.

Combination of indexes into unanimous and voting scores

We explored the possibility of enhancing the performance of single indexes
of fold by combining them into several scoring schemes. We analysed
both the unanimous and voting scores by Oldfield et al. [33] and a strictly
unanimous score SSU (see Materials and Methods). The results of the
predictions are reported in table 2. Comparing table 1 with table 2, we
observe that the performance of SU has lower sensitivity with respect to
mean packing, mean contact energy and gV SL2, whereas SV has higher
sensitivity but also a higher level of false predictions. We conclude that SU

is less effective than SV . On the other hand SV must be used with caution,
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since the higher level of false predictions may lead to an overestimate of the
number of natively unfolded proteins in a given genome.

From table 2 we observe a significant improvement both in the sen-
sitivity and in the specificity only for the strictly unanimous score SSU .
On one hand, then, SSU has a higher sensitivity and a lower level of false
predictions with respect to all other indexes. On the other hand, SSU

leaves unclassified all proteins that mean packing, mean contact energy and
gV SL2 does not jointly predict in the same class. In our set of 743 folded
and 81 natively unfolded proteins, 80 sequences were left unclassified, about
10% of all proteins; of these 80 unclassified sequences, 15 are natively
unfolded, corresponding to 19% of all natively unfolded proteins in the test
set; therefore SSU may have a selectivity bias towards folded proteins. It is
interesting to note that if when re-evaluated the single folding indexes on
the dataset purged by the unclassified proteins by SSU , their performance
increased and coincided with that of SSU . This indicates that proteins
unclassified by SSU are mainly false predictions of the single indexes: if we
exclude them from the dataset, we reduce the false predictions of the single
folding indexes thus increasing their performance.

Sequences left unclassified by SSU reasonably have amino acidic com-
position compatible with both classes; it is assumable that there exists a
twilight zone between order and disorder [38], and proteins unclassified by
SSU belong to that twilight zone. In this zone a single index would be
definitely not reliable, haphazardly forcing the assignment of a protein to
one or the other class. SSU , then, is a conservative reliable index, which
refrains from forcing a classification and, positively, useful to select amino
acid sequences with a weak folding signature. These left over sequences
could be an interesting category per se, or, simply, a group of proteins
which challenge the discriminating power of the methods here investigated.

Other scoring schemes

We have introduced the score S0 to search for a good performance com-
bination score able to take a decision in all cases. It requires consensus
among the majority of folding indexes to assign an amino acid sequence to
a specific class, so its value could be considered as a quantitative expression
of how typically a sequence is assigned to a class or to the other: a higher
score means higher consensus among different folding indexes and then a
more definite assignment. The performance of S0, evaluated on our test
set, is reported in table 2 and is clearly lower than that of SSU ; nonetheless
the combined use of both indexes can be helpful to reduce the number of
unclassified proteins. We applied S0 to the 80 proteins left unclassified by
SSU , and we assigned to a folding class only those with |S0| > 6, as shown
in the last row of table 2 denoted by SSU/S0. The combined use of SSU
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and S0 gives a sensitivity of 0.79, a level of false predictions of 0.06 and, of
the 80 proteins left unclassified by SSU , 46 are still unclassified.

Frequency of disorder in various genomes

In an interesting paper [24] the classifier DISOPRED2 is used to estimate
the disorder frequency in 13 bacterial, 6 archaean and 5 eukaryotic genomes;
an average of 4.2% of eubacterial, 2.0% of archaean and 33.0% of eukaryotic
proteins are predicted to contain long disordered regions, i.e. segments with
at least 30 consecutive disordered amino acids (see table 3). We analysed
the same genomes, with the exception of Homo sapiens, by means of the
combination scores defined in the above sections (see again table 3). We
observe that S0 predicts about 5.2% of eubacterial, 1.7% of archaean and
22.0% of eukaryotic proteins as natively unfolded; these percentages are
compatible with those predicted using DISOPRED2. It is worth noting that
the percentage of natively unfolded proteins predicted by SSU are lower than
those predicted by S0; more precisely, the percentage of natively unfolded
proteins predicted by SSU are 3.7% for Bacteria, 0.8% for Archaea and
19.3% for Eukarya. The application of SSU/S0, useful to further evaluate
sequences left unclassified by SSU , gave a quite similar result. The results
obtained with our scores are correlated with those obtained by means of
DISOPRED2 (see figure 1), which is a predictor of disordered amino acids
that analyses local evolutionary properties of polypeptide chains. Our scores
combined different global indicators of folding status, based on the analysis
of four basic parameters. The coherence in the predictions obtained through
these two different approaches make us confident of the reliability of our
predictions.

It has been suggested that natively unfolded proteins are involved
in regulatory and signalling processes inside a cell [1, 5, 3]. The higher
percentage of natively unfolded proteins in Eukarya has been related
to: i) the presence of finely regulated degradation pathways that allow
disordered proteins to escape recognition processes, strictly based on the
structure-function paradigm [1]; and ii) the necessity of flexible proteins
within complex regulatory and signalling networks, typical of eukaryotic
organisms [3, 5]. In fact, it has been observed that, in protein interaction
networks, disorder is frequent in the hub proteins [10, 11, 12]. In figure
2 we attempt at establishing a scaling law; on the basis of the genomes
here investigated we obtain that the number of natively unfolded proteins,
detected by SSU , is proportional to the number of proteins in the genome
raised to the power 1.95 ± 0.21. Further studies are necessary to confirm
the validity of this scaling law, possibly relevant for the general biology
of genetic code translation but also in the search of allometric relations
between frequency of disordered proteins and regulative complexity of the
species.
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CONCLUSIONS

Let us put in perspective the results obtained in this work. We observed
that natively unfolded proteins have, in general, a higher mean contact en-
ergy than folded ones; we can relate this property to their difficulty in reach-
ing a stable configuration, corresponding to a relatively low free energy. This
explains also their tendency to have a low mean packing, typical of extended
conformations, corresponding to minima of the free energy separated by low
barriers, of the order of physiological thermal energy scales kBTphys. It
has been also observed that natively unfolded proteins have a lower mean
hydrophobicity and a higher mean net charge [32], and these two param-
eters have been used to discriminate between the two groups of proteins
[32, 39, 33]. As suggested by Uversky [32], natively unfolded proteins do not
fold because their hydrophobicity is insufficient, in typical environments,
to form the hydrophobic core necessary to nucleate the folding process. It
is interesting to observe that mean hydrophobicity and mean contact en-
ergy are correlated (Pearson’s correlation coefficient equal to -0.74): high
hydrophobicity stabilizes the structure and favors the spontaneous search
for a minimum free energy configuration. Of course the stabilization of a
protein tertiary structure is due not only to hydrophobicity, but also to
other forces of different origin (Van der Waals, hydrogen bonding, excluded
volume); nonetheless, the strong correlation between hydrophobicity and
contact energy supports the idea that contact energy incorporates a strong
contribution from hydrophobicity.
The invariance of the analysed folding indexes under shuffling of the amino
acids in the protein sequences and the correlation between the indexes and
the frequency of order-promoting (disorder-promoting) amino acids indi-
cate that these indexes capture information related only to the geometry-
independent forces, that are globally related to the amino acid composition
of the protein sequences. This fact points to an intrinsic limitation of these
approaches in predicting natively unfolded proteins, in line with the observa-
tion by Szilagyi et al. [38]. Proteins with an amino acid composition typical
of folded or of natively unfolded sequences are generally correctly identified
by single dichotomic predictors of natively unfolded proteins, as indicated
by their high performance in dataset purged by unclassified proteins by SSU .
However, these predictors perform worse in dataset containing proteins with
amino acid composition compatible with both folded and natively unfolded
sequences, and their performance cannot be significantly enhanced by com-
bining them into score. This last kind of proteins generally are differently
classified by single folding indexes, so our strictly unanimous score helps in
identify them. Our score SSU therefore can be used in two ways: i) it iden-
tifies proteins with strong signature of folding status in their sequence, ideal
candidates to be folded or unfolded; ii) it identifies proteins with a weak
signature of folding status in their sequence, for which it is haphazarding to
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say whether they are folded or not, since they are often false predictions of
the folding indexes. These proteins are worth to be analysed per se since
they may have peculiar structural and functional properties. However, they
cannot be analysed with current natively unfolded proteins predictors, but
new approaches must be used or developed, possibly considering the order of
amino acids in the sequences that influence their interactions among them.

MATERIALS AND METHODS

Datasets

In this work we used as training set the list of proteins compiled by
Prilusky to test FoldIndex [39], a web-based server aimed at identifying
unstructured proteins. It includes 151 folded proteins and 39 proteins
reported in the literature as natively unfolded . Folded proteins have a
length between 50 and 200 amino acids, they do not contain prosthetic
groups or disulphide bridges and their structures have been determined by
X-ray cristallography.
We compiled our own test set starting from PDBSelect25, version october
2007 [40, 41], that contains 3694 proteins with sequence identity lower than
25%. To avoid the introduction of poor models we excluded structures
with a resolution above 2 Å and an R-factor above 20%. We obtained a
list of 1015 folded proteins. From this list, we extracted a restricted list of
743 fully ordered proteins, that contain less than 5% of disordered amino
acids. We aligned PDB file SEQRES fields with the ATOM fields and the
residues that are present in SEQRES but absent in ATOM were considered
as disordered. To compile a list of natively unfolded proteins, we started
from the DisProt database, version 3.6 [42, 43]. We extracted a list of 81
natively unfolded proteins with at least 95% of disordered amino acids and
sequence identity below 25%.

Mean packing

The mean packing of a protein sequence is the arithmetic mean of the pack-
ing values of each amino acid. We used the packing index introduced by
Galzitskaya et al. [28], based on the number of residues located within a dis-
tance of 8 Å, averaged over a large dataset of structures. We considered a
sliding window of length 11 and we assigned its mean packing to the central
residue.

To set the stage we initially computed mean packings on Prilusky’s set
[39]; we looked for a discriminative threshold as to obtain a sensitivity of
at least 0.80 and a level of false predictions as low as possible; we found
it at 20.55, getting a sensitivity of 0.82 and a level of false predictions of
0.13. We repeated the experiment with sliding windows of different length,
without improvement of the performance.
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Mean contact energy

We followed the method by Dosztanyi et al. [26]. The contact energy value
of an amino acid is a measure of its ”contact interaction” with the amino
acids located from 2 to 100 positions apart, downward and upward, along
the sequence. There are, of course, constraints due to the length of the
sequence that should be taken into account in the bookeeping. The contact
energy of amino acid i at position p is given by:

e
(p)
i =

20∑

j=1

Pijn
(p)
j

where n
(p)
i is the frequency of amino acid j in a window of length up to 100

around position p, taking into account possible limitations on both sides
due to the length of the protein. The generic element Pij of the ”energy
predictor matrix” P expresses the expected contact interaction energy
between amino acid i and j.

Contact energy values are averaged over a window of 21 amino acids
and the average is assigned to the central residue at position p in the
sequence. Finally, the arithmetic mean of the contact energy values of all
the amino acids gives the global mean contact energy of the protein.
To discriminate between folded and natively unfolded proteins, we com-
puted mean contact energy of the Prilusky’s set [39] and we looked for
a threshold, so to get a sensitivity of at least 0.80 and a level of false
predictions as low as possible. We found it at -0.37 arbitrary energy unit
(a.e.u.), getting a sensitivity of 0.85 and a level of false prediction of 0.14.

Index derived from VSL2

VSL2 [37, 27] is a disorder predictor that assigns to each amino acid of a
protein sequence the probability that the amino acid is disordered, estimated
using a combination of support vector machines. The score from VSL2 is
normalized between 0 and 1 and an amino acid is considered disordered if
its value is above 0.5.

We used the arithmetic mean of these disorder scores, evaluated using
VSL2B and output windows of length 11, to discriminate folded from
unfolded proteins and we call it gV SL2 index. We classified a protein as
natively unfolded if gV SL2 was above 0.5.

Combination of two parameters into a single index of fold

We plotted the values of the two parameters on a plane and we looked for
discriminative lines. In general there is an overlap region that prevents an
exact separation of the two groups of sequences. We identified the overlap
region as the narrower vertical band containing points from both groups.
For all pairs of points inside the overlap area we traced a line and evaluated
its performance in separating the two groups of proteins; among all the
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discriminative lines with sensitivity above 0.80, we chose that with lowest
false predictions. If the equation of a discriminative line is:
y = ax+ b,
then the corrisponding scalar index of fold was defined as:
I = −sign(〈xf 〉 − 〈xnf 〉) · sign(a) · (y − ax− b)
where 〈xf 〉 and 〈xnf 〉 are, respectively, the mean values of the index x for
folded and natively unfolded proteins. The defined index was positive for
folded proteins and negative or 0 for natively unfolded ones. If the slope a
became very large our code looked for discriminative lines parallel to the
ordinate axis and the index was defined as:
I = sign(〈xf 〉 − 〈xnf 〉)(x − xth)
where x = xth was the optimum discriminative line.

Definition of score indexes

We combined mean packing, mean contact energy and gV SL2 to obtain
score indexes: SU , SV and SSU , and then S0. SU and SV have been previ-
ously proposed by Oldfield et al. [33]. SU is an unanimous score: a protein
is classified as natively unfolded if all the folding indexes agree on that, oth-
erwise it is classified as folded. SV on the other hand is a voting score: a
protein is classified as natively unfolded if at least one index assigns it to
such a class. We proposed a third combination rule: we classified a protein
as folded only if all the indexes predicted it as folded; conversely, we clas-
sified a protein as natively unfolded only if all the indexes predicted it as
natively unfolded. This rule left a protein unclassified if there is disagree-
ment between at least two indexes. We call this score strictly unanimous,
SSU .

To obtain S0, we increased the number of indexes; we took different
pairs of parameters, we plotted their values into planes and obtained an
index of fold, as explained in the previous section. We considered all the
combinations of the four indexes: Uversky’s HQ [32], mean packing, mean
contact energy and gV SL2 to get 10 new indicators of folding status. We
combined them into a global score as follows: if an index predicted a protein
as folded, we incremented the score by 1; if the index predicted a protein as
unfolded, we decremented the score by 1. We excluded indexes that were
unable to discriminate folded from unfolded proteins of the training set with
a sensitivity of at least 0.75 and a level of false predictions above 0.15. The
score can assume a positive, negative or null value. S0 classifies a protein
as folded if its value is positive, otherwise it classifies it as natively unfolded.

Parameters of performance

To evaluate the performance of the predictors we used very common
indicators: [29]:
Sensitivity: Sn = TP

TP+FN
= TP

Nunfolded
,
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Specificity: Sp =
TN

TN+FP
= TN

Nfolded
,

False predictions: fp = 1− Sp = FP
TN+FP

.
Where TP stands for True Positive, TN for True Negative, FP for False
Positive and FN for False Negative.
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TABLES

Sn Sp fp
HQ 0.67 0.88 0.12

〈P 〉 0.74 0.93 0.07

〈Ec〉 0.74 0.91 0.09

gV SL2 0.81 0.89 0.11

Table 1: Performance of single indexes of fold. Performance of: HQ,
mean packing, mean contact energy and gV SL2 in discriminating natively
unfolded proteins among those in test set. Sn, sensitivity; Sp, specificity;
fp, number of false predictions. See Methods for definitions.

Sn Sp fp n.c. folded unfolded

SU 0.67 0.95 0.05 0 736 88

SV 0.85 0.87 0.13 0 656 168

SSU 0.82 0.95 0.05 80 656 88

S0 0.73 0.93 0.07 0 712 112

SSU/S0 0.79 0.94 0.06 46 681 97

Table 2: Performance of different combination scores. Performance
of the combination scores (see text) on the proteins of the test set. Sn,
sensitivity; Sp, specificity; fp, number of false predictions; n.c., number of
proteins left unclassified.

18



ORGANISM N. DP21 S0 SSU SSU/S0

proteins % l > 30 % unfolded % unfolded % n.c. % unfolded

ARCHAEA

A.pernix 1700 2.1 2.2 1.3 5.3 1.6
A.fulgidus 2418 0.9 1.7 0.8 5.0 0.9
Halobacterium sp. 2 2622 5.0 24.4 16.2 30.8 16.5
M.jannaschii 1768 1.0 1.1 0.2 5.4 0.5
P.abyssi 1898 1.4 1.3 0.5 5.1 0.7
T.volcanium 1491 1.0 2.1 1.1 4.5 1.3

9275 2.0 1.7 0.8 5.1 1.0

BACTERIA

A.tumefaciens C58 5355 5.7 5.5 4.1 8.0 4.5
A.aeolicus VF5 1558 1.9 1.5 0.5 5.9 0.7
C.pneumoniae AR39 1085 4.8 5.8 4.1 9.0 4.7
C.tepidum TLS 2247 3.3 6.2 4.7 7.7 5.3
E.coli K12 4130 2.8 3.6 2.5 6.1 2.8
H.influenzae Rd 1615 3.8 3.2 2.1 5.2 2.6
M.tuberculosis H37Rv 3989 7.0 10.1 7.4 11.6 7.9
N.meningitidis MC58 2063 4.5 6.0 4.4 8.3 4.7
S.typhi 4756 2.7 4.2 2.9 6.8 3.2
S. aureus 2618 4.5 6.6 5.5 6.9 5.9
Synechocystis PCC 6803 3569 4.7 4.2 3.2 6.4 3.5
T.maritima 1856 1.8 2.4 1.0 5.8 1.2
T.pallidum 1009 6.4 4.3 2.7 6.7 3.5

35850 4.2 5.2 3.7 7.5 4.1

EUKARYA

A.thaliana 31708 33.8 19.6 17.5 14.6 18.0
C.elegans 22843 27.5 19.1 16.1 13.0 16.8
D.melanogaster 20046 36.6 29.8 26.5 14.4 27.5
S.cerevisiae 5880 31.2 19.8 17.0 14.2 17.8

80477 33.0 22.0 19.3 14.1 20.0

Table 3: Frequency of natively unfolded proteins in various genomes3. Comparison among
the percentage of proteins having disordered segments with more than 30 consecutive amino acids
as predicted by DISOPRED2 (DP2) and the percentage of natively unfolded proteins predicted by
the scores defined in this work.

1 From Ward J.J. et al., Prediction and functional analysis of native disorder in proteins

from the three kingdoms of life, J. Mol. Biol. 2004, 337, 635-645
2 Halobacterium sp. is an outlier, so we did not consider it in the computation of the mean of
disordered proteins in the Archaea.

3 genomes were downloaded from the ftp server of NCBI: ftp://ftp.ncbi.nlm.nih.gov/genomes/
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fOP fDP

HQ 0.74 -0.60

〈P 〉 0.91 -0.63

〈Ec〉 -0.85 0.57

gV SL2 -0.84 0.77

Table 4: Correlation among fold indexes and frequencies of order- (fOP ) and
disorder-promoting (fDP ) amino acids

FIGURE CAPTIONS

FIGURE 1: Frequency of natively unfolded proteins in genomes:

correlation between combination scores and DISOPRED2.

For each genome considered in table 3 the estimate of the average frequency
of natively unfolded proteins, estimated with S0, SSU and SSU/S0, are
plotted versus the estimate made, using DISOPRED2, by Ward et al.
[24]. The correlation coefficients are: 0.84(S0), 0.90(SSU ) and 0.91(SSU/S0).

FIGURE 2: Number of predicted natively unfolded proteins vs.

total number of proteins in various genomes.

Logarithmic plot of the number of natively unfolded proteins, predicted by
SSU , vs. the total number of proteins in the genome. The exponent of the
power law is: 1.95 ± 0.21.
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Figure 1:

Figure 1 Frequency of natively unfolded proteins in genomes: correlation
between combination scores and DISOPRED2.
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Figure 2:

Figure 2 Number of predicted natively unfolded proteins vs. total number
of proteins in various genomes.
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