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We perform analytical reductions of one-loop tensor integrals with 5 and 6 legs to scalar master integrals. They
are based on the use of recurrence relations connecting integrals in different space-time dimensions. The reductions
are expressed in a compact form in terms of signed minors, and have been implemented in a mathematica package
called hexagon.m. We present several numerical examples.

1. Introduction

Recent years have seen the emergence of first
results for loop corrections to massive 2 → 4 scat-
tering processes [1,2,3]. One of the challenges
posed by such processes is the need to compute
one-loop tensor integrals with up to 6 legs. In this
contribution, we concentrate on integrals with 5
and 6 legs.
In 4-dimensional space-time, a linear relation

must exist between the loop momentum and the
external momenta of a pentagon integral. Simi-
larly, if the external momenta of a hexagon are
4-dimensional, they must be linearly dependent.
This enables one to reduce hexagons to pen-
tagons, and pentagons to boxes [4,5,6]. These
considerations have been extended to dimension-
ally regularized one-loop tensor integrals [7,8].
Generally, in the reduction of tensor integrals one
encounters inverse Gram determinants, which can
vanish at exceptional phase space points and be
a source of instabilities in a numerical program.
In the case of 4-dimensional pentagons, it is pos-
sible to avoid the leading inverse Gram determi-
nant [9]. Other schemes for the reduction of mul-
tileg one-loop tensor integrals have been discussed
in refs. [10,11,12,13].
Here, we use the methods of ref. [10]. Our

present goal is to provide compact analytic for-
mulas for the complete reduction of tensor pen-
tagons and hexagons to scalar master integrals,
which are free of leading inverse Gram determi-

nants. We describe an implementation of these
formulas in a mathematica package hexagon.m.

2. Notations

We consider one-loop, N -point tensor integrals
of rank R in d-dimensional space-time,

J (N)
µ1...µR

(d; ν1, . . . , νN ) =

∫

ddk

iπd/2

kµ1
. . . kµR

Dν1
1 . . . DνN

N

(1)

with propagator denominators1

Dj = (k − qj)
2
−m2

j + iǫ . (2)

Following Davydychev [14], we decompose these
tensor integrals into a basis of symmetric tensors
constructed from metric tensors g and the mo-
menta qj

J (N)
µ1...µR

(d; ν1, . . . , νN ) = (−1)
R

∑

λ,κ1,...,κN

(−
1

2
)
λ

{

[g]λ[q1]
κ1 . . . [qN ]κN

}

µ1...µR

(ν1)κ1
. . . (νN )κN

J (N) (d+ 2(R− λ); ν1 + κ1, . . . , νN + κN ) (3)

where (ν)κ = Γ(ν+κ)
Γ(ν) are Pochhammer symbols

and the sum runs over non-negative integers such
that 2λ + κ1 + . . . + κN = R. The next step is
to use recurrence relations to reduce the scalar

1 In order to be consistent with the conventions of ref. [10],
we have changed the sign of qj as compared with the orig-
inal definition of ref. [14].
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coefficients J (N) appearing in the decomposition
to a set of master integrals.

It is useful to introduce a notation for certain
determinants that occur in the recurrence rela-
tions and their solutions. First, the determinant
of an (N + 1) × (N + 1) matrix, known as the
modified Cayley determinant [4],

()N ≡

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

0 1 1 . . . 1
1 Y11 Y12 . . . Y1N

1 Y12 Y22 . . . Y2N

...
...

...
. . .

...
1 Y1N Y2N . . . YNN

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

, (4)

with coefficients

Yij = −(qi−qj)
2+m2

i +m2
j , (i, j = 1 . . .N) .(5)

Although the masses of the propagators appear in
the coefficients Yij , the determinant ()N does not
depend on them and it is actually proportional to
the Gram determinant of the external momenta
of the N -point function in eq. (1). All other de-
terminants we need are signed minors of ()N , con-
structed by deleting m rows and m columns from
()N , and multiplying with a sign factor. They
will be denoted by
(

j1 j2 · · · jm
k1 k2 · · · km

)

N

≡ (−1)
∑

l
(jl+kl)

sgn{j} sgn{k}

∣

∣

∣

∣

rows j1 · · · jm deleted
columns k1 · · · km deleted

∣

∣

∣

∣

, (6)

where sgn{j} and sgn{k} are the signs of permu-
tations that sort the deleted rows j1 · · · jm and
columns k1 · · · km into ascending order.

Combining integration by parts identities with
relations connecting integrals in different space-
time dimensions [15], one obtains the following
basic recurrence relations [10]:

()N νjj
+J (N)(d+ 2) =

[

−

(

j

0

)

N

+

n
∑

k=1

(

j

k

)

N

k−

]

J (N)(d) , (7)

(d−

n
∑

i=1

νi + 1) ()N J (N)(d+ 2) =

[

(

0

0

)

N

−

n
∑

k=1

(

0

k

)

N

k−

]

J (N)(d) , (8)

(

0

0

)

N

νjj
+J (N)(d) =

n
∑

k=1

(

0j

0k

)

N

×

[

d−

n
∑

i=1

νi(k
−i+ + 1)

]

J (N)(d) . (9)

where the operator j± acts by shifting the index
νj by ±1.

3. Pentagons

A detailed discussion of the second rank pen-
tagon is given in Ref. [16]. In this section, we
will consider a third rank tensor integral with in-
dices ν1 = . . . = ν5 = 1, which we write as Iµ ν λ

5 .
We assume here and in the next section, that the
loop momentum k has been shifted in such a way
that qN = 0. Applying eq. (3) gives integrals in
space-time dimensions d + 4 and d + 6 and with
increased indices. They are reduced back to the
generic dimension d = 4 − 2ǫ by the recurrence
relations in eqs. (7)-(8). This involves a division
by a Gram determinant ()N at each step. The
leading Gram determinant, ()5, can be avoided if
one is only interested in contractions of the ten-
sor integral with 4-dimensional objects [9]. This
is achieved by using the following decomposition
of the metric tensor,

gµν = 2

N−1
∑

i,j=1

(

i
j

)

N

()N
qµi q

ν
j + gµν⊥ , (10)

and dropping terms proportional to gµν⊥ . After
further simplifications we obtain:

Iµ ν λ
5 =

4
∑

i,j,k=1

qµi qνj q
λ
kEijk+

4
∑

k=1

g[µνq
λ]
k E00k , (11)

where

g[µνq
λ]
k = gµν qλk + gµλ qνk + gνλ qµk , (12)

with scalar coefficients defined by

Eijk =

5
∑

s=1

S4,s
ijkI

s
4

+

5
∑

s,t=1

S3,st
ijk Ist3 +

5
∑

s,t,u=1

S2,stu
ijk Istu2 , (13)
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with

S4,s
ijk =

1

3
(

0
0

)

5

(

s
s

)2

5

×

{

−

(

0s

0k

)

5

[(

0s

is

)

5

(

0s

js

)

5

+

(

is

js

)

5

(

0s

0s

)

5

]

+

(

0s

0s

)

5

[(

0i

sk

)

5

(

0s

js

)

5

+

(

0j

sk

)

5

(

0s

is

)

5

]}

+ (i ↔ k) + (j ↔ k) , (14)

S3,st
ijk =

1

3
(

0
0

)

5

(

s
s

)2

5

{(

0s

0k

)

5

[(

ts

is

)

5

(

0s

js

)

5

+

(

is

js

)

5

(

ts

0s

)

5

+

(

s
s

)

5

(

0st
ist

)

5
(

st
st

)

5

(

ts

js

)

5

]

−

[(

0i

sk

)

5

(

0s

js

)

5

+

(

0j

sk

)

5

(

0s

is

)

5

](

ts

0s

)

5

−

[(

0i

sk

)

5

(

ts

js

)

5

+

(

0j

sk

)

5

(

ts

is

)

5

]

×

(

s
s

)

5

(

0st
0st

)

5

2
(

st
st

)

5

}

+ (i ↔ k) + (j ↔ k) , (15)

S2,stu
ijk = −

1

3
(

0
0

)

5

(

s
s

)

5

(

st
st

)

5

×

{(

0s

0k

)

5

(

ts

js

)

5

(

ust

ist

)

5

−
1

2

[(

0j

sk

)

5

(

ust

ist

)

5

+

(

0i

sk

)

5

(

ust

jst

)

5

](

ts

0s

)

5

}

+ (i ↔ k) + (j ↔ k) , (16)

and

E00j =
1

6
(

0
0

)

5

{

−

5
∑

s=1

1
(

s
s

)2

5

×

[

3

(

s

0

)

5

(

0s

js

)

5

−

(

s

j

)

5

(

0s

0s

)

5

](

0s

0s

)

5

Is4

+

5
∑

s,t=1

1
(

s
s

)2

5

×

[

3

(

s

0

)

5

(

0s

js

)

5

−

(

s

j

)

5

(

ts
0s

)2

5
(

st
st

)

5

]

(

ts

0s

)

5

Ist3

−

5
∑

s,t,u=1

(

s

j

)

5

(

ust
0st

)

5
(

s
s

)

5

(

st
st

)

5

(

ts

0s

)

5

Istu2

}

. (17)

The decomposition in eq. (11) is equivalent to the
one found in ref. [9], where the coefficients Eijk

and E00j are expressed in terms of tensor 4-point
functions. Here, instead, they are completely re-
duced to a basis of scalar master integrals consist-
ing of boxes Is4 , vertices I

st
3 , and 2-point functions

Istu2 obtained by removing lines s, s and t, or s,
t and u from the pentagon.

4. Hexagons

If the external momenta of a hexagon are 4-
dimensional, their Gram determinant vanishes:
()6 = 0, and a linear relation between the propa-
gators Dj exists:

1 =

6
∑

j=1

(

0
j

)

6
(

0
0

)

6

Dj . (18)

With this relation, any hexagon integral can triv-
ially be reduced to pentagons. For example, for
the scalar hexagon, one obtains the well-known
result [4]:

I6 =

6
∑

r=1

(

0
r

)

6
(

0
0

)

6

Ir5 , (19)

where the scalar pentagon Ir5 on the right hand
side is obtained by removing line r from the
hexagon I6. In the same way, tensor hexagons
of rank R can be reduced to tensor pentagons of
rank R. However, it was noticed in ref. [10] that
a reduction directly to tensor pentagons of rank
R − 1 is also possible:

Iµ1...µR

6 =

6
∑

r=1

vµ1

r Iµ2...µR ,r
5 , (20)

where

vµr ≡ −
1

(

0
0

)

6

5
∑

i=1

(

0i

0r

)

6

qµi . (21)

A more general proof of this property was given
in ref. [13]. By substituting our reduction for-
mulas for tensor pentagons into eq. (20), we can
immediately express tensor hexagons in terms of
scalar master integrals.
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5. Numerical results

The method of reducing six and five point
Feynman integrals presented in this paper was
implemented in a MATHEMATICA package called
hexagon.m [17]. It allows to reduce six point in-
tegrals. Additionally, as hexagons are connected
with pentagons, the package also allows one to
reduce pentagons. The present implementation
includes:

• six point functions up to rank four

• five point functions up to rank three

These tensor ranks are sufficient to get results for
e.g. NNLO contributions to Bhabha scattering.
The kinematics used in the package2 is presented
in Fig. 1.
Before using hexagon.m, the package must be
loaded in a MATHEMATICA environment by execut-
ing:

<<hexagon.m

The package is able to output the full result for a
six or five point tensor integral, a specific coeffi-
cient, or a list of all coefficients for a given rank.
For a more detailed description, see Table 1.
hexagon.m is able to generate both analytic and
numerical results, depending on the user’s input.
It provides coefficients of Lorentz-covariant ten-
sors, and works in a basis of gµν and internal
momenta (chords) qi,

q0 = 0, qn =

n
∑

i=1

pi, (22)

see also Fig. 1. In terms of these coefficients,
the tensor decomposition of pentagons E and
hexagons F reads:

Eµ =

4
∑

i=1

qµi Ei,

Eµν =

4
∑

i,j=1

qµi q
ν
i Eij + gµνE00,

2 The masses and momenta are numbered according to the
conventions of LoopTools [18], which are slightly different
from those used in the previous sections and in ref. [10].

p1

p2

p3

p4

p5

p6

k + q1

k + q2 k + q3

k + q4

k + q5k + q0

m2

m4m3

m5

m6m1

p3

p5

p4

p1

p2

k + q0

k + q1

k + q2

k + q3

k + q4

m2

m3

m4

m5

m1

Figure 1. Momentum flow used in hexagon.m for
six and five point diagrams.

Eµνλ =

4
∑

i,j,k=1

qµi q
ν
i q

λ
kEijk +

4
∑

i=1

g[µνq
λ]
i E00i,

Fµ =
5

∑

i=1

qµi Fi,

Fµν =
5

∑

i,j=1

qµi q
ν
i Fij ,

Fµνλ =

5
∑

i,j,k=1

qµi q
ν
i q

λ
kFijk +

5
∑

i=1

gµνqλi F00i,

Fµνλρ =

5
∑

i,j,k,l=1

qµi q
ν
i q

λ
k q

ρ
l Fijkl

+

5
∑

i,j=1

qµi q
[ν
j gλρ]F00ij . (23)
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Table 1
Functions used in the package.

Six point functions Five point functions
RedF0 scalar 6pt integral RedE0 scalar 5pt integral
RedF1 vector 6pt integral RedE1 vector 5pt integral
RedF2 rank two 6pt tensor integral RedE2 rank two 5pt tensor integral
RedF3 rank three 6pt tensor integral RedE3 rank three 5pt tensor integral
RedF4 rank four 6pt tensor integral
RedFcoef coefficient of given 6pt RedEcoef coefficient of given 5pt
RedFget all coefficients of given 6pt RedEget all coefficients of given 5pt
The basic functions have the following arguments, here sij = (pi + pj)

2, sijk = (pi + pj + pk)
2:

RedF0[p21, . . . , p
2
6, s12, s23, s34, s45, s56, s16, s123, s234, s345,m

2
1, . . . ,m

2
6]

RedE0[p21, . . . , p
2
5, s12, s23, s34, s45, s15,m

2
1, . . . ,m

2
5]

For the purpose of checking the correctness of the
reduction procedures implemented in the pack-
age, we have made both internal and external
checks. Internal checks were used for tensor inte-
grals, and consisted mainly in writing a scalar
product of internal and external momenta in
terms of lower rank tensor integrals, which had
been checked before. External checks were made
with use of: LoopTools [18] (five point integrals);
AMBRE [19] with MB.m [20] (five point integrals);
Sector Decomposition [21] (five and six point
scalar integrals).
We present some of the cross-checks in Table 2.

In all these checks, we use LoopTools to calcu-
late the finite parts of the scalar four, three and
two point functions which appear after the reduc-
tion by hexagon.m. We note that, in general, the
functions defined directly in LoopTools may not
be sufficient to cover the whole kinematic phase
space obtained from reduction of six point func-
tions. In such cases our reduction package must
be supplemented with additional libraries.
In the first example in Table 2, we use AMBRE

and MB.m to check the decomposition in the Eu-
clidean kinematic region, including tensor struc-
tures. We show the result from hexagon.m for a
contracted tensor of rank three. At the level typ-
ical for Monte Carlo calculations, it is in agree-
ment with the result from Mellin-Barnes integra-
tion: 0.218885.
The second example comes from ref. [22], (Ta-

ble 2, region I). Here, we use the package [21]
and show for the case of the scalar six point func-

tion agreement with the calculation using the sec-
tor decomposition method (typically five digits
accuracy). In the third example, we have ex-
tended the scalar case given in [22] (Table 1, re-
gion III). Also the tensorial results agree directly
with LoopTools.
Finally, for six point tensor integrals, we have

performed comparisons with a Fortran implemen-
tation of our reduction formulas by two of us (TD
and BT), and also with an independent code by
P. Uwer [23]. Some sample results, for the ran-
domly chosen phase space point given in table 3,
are shown in table 4.

6. Summary

We have described an analytical reduction of
one-loop tensor integrals with 5 or 6 legs down
to scalar master integrals, and shown explicitly
the result for the tensor pentagon of rank three.
Formulas for other cases and detailed derivations
will be presented elsewhere. The reduction for-
mulas have been implemented in a mathematica
package hexagon.m, which will be made publicly
available.
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Table 2
Numerical cross-checks.
1) Comparison with AMBRE & MB.m : pµ1p

ν
1p

λ
1Eµνλ

Point:
p21 = p22 = p23 = p25 = 1, p24 = 0, m2

1 = m2
3 = 0, m2

2 = m2
4 = m2

5 = 1,
s12 = −3, s23 = −6, s34 = −5, s45 = −7, s15 = −2
In: RedE3[ p21, . . . , p

2
5, s12, s23, s34, s45, s15,m

2
1, . . . ,m

2
5 ]/.{D4->D0,C3->C0,B2->B0}

Out: 0.218741

2) Comparison with Sector Decomposition : F0

Point:
p21 = p22 = p23 = p24 = p25 = p26 = −1, m2

1 = m2
2 = m2

3 = m2
4 = m2

5 = m2
6 = 1,

s12 = s23 = s34 = s45 = s56 = s16 = s123 = s234 = −1, s345 = −5/2
In: RedF0[ p21, . . . , p

2
6, s12, s23, s34, s45, s56, s16, s123, s234, s345,m

2
1, . . . ,m

2
6 ]/.{D4->D0}

Out: 0.013526

3) Comparison with LoopTools : E0, E1, E2, E3, E4, E34, E123, E002

Point:
p21 = p22 = 0, p23 = p25 = 49/256, p24 = 9/100, m2

1 = m2
2 = m2

3 = 49/256, m2
4 = m2

5 = 81/1600,
s12 = 4, s23 = −1/5, s34 = 1/5, s45 = 3/10, s15 = −1/2
In: RedE0[ p21, . . . , p

2
5, s12, s23, s34, s45, s15,m

2
1, . . . ,m

2
5 ]/.D4->D0

Out: 41.3403 - 45.9721*I

In: RedEget[rank1 , p21, . . . , p
2
5, s12, s23, s34, s45, s15,m

2
1, . . . ,m

2
5 ]/.D4->D0

Out: ee1 =-2.38605 + 5.27599*I, ee2 =-5.80875 + 0.597891*I,

ee3 =-14.4931 + 20.8149*I, ee4 =-11.3362 + 18.1593*I

In: RedEcoef[ee34 , p21, . . . , p
2
5, s12, s23, s34, s45, s15,m

2
1, . . . ,m

2
5 ]/.{D4->D0,C3->C0}

Out: 7.1964 + 3.10115*I

In: RedEcoef[ee123 , p21, . . . , p
2
5, s12, s23, s34, s45, s15,m

2
1, . . . ,m

2
5 ]/.{D4->D0,C3->C0,B2->B0}

Out:-0.149527 - 0.31059*I

In: RedEcoef[ee002 , p21, . . . , p
2
5, s12, s23, s34, s45, s15,m

2
1, . . . ,m

2
5 ]/.{D4->D0,C3->C0,B2->B0}

Out: 0.154517 - 0.387727*I

Marie-Curie Research Training Networks MRTN-
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2006-035482 “FLAVIAnet”.
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Table 3
Phase space point used in the tensor hexagons

p1 = (0.21774554E + 03, 0, 0, 0.21774554E + 03)

p2 = (0.21774554E + 03, 0, 0, −0.21774554E+ 03)

p3 = (−0.20369415E+ 03, −0.47579512E+ 02, 0.42126823E+ 02, 0.84097181E+ 02)

p4 = (−0.20907237E+ 03, 0.55215961E+ 02, −0.46692034E+ 02, −0.90010087E+ 02)

p5 = (−0.68463308E+ 01, 0.53063195E+ 01, 0.29698267E+ 01, −0.31456871E+ 01)

p6 = (−0.15878244E+ 02, −0.12942769E+ 02, 0.15953850E+ 01, 0.90585932E+ 01)

m1 = 110.0, m2 = 120.0, m3 = 130.0, m4 = 140.0, m5 = 150.0, m6 = 160.0

Table 4
Results for scalar, vector, and 2nd-rank six point
functions for the phase space point of Table 3.

RESULTS

REAL IM
F0

-0.223393E-18 -0.396728E-19
µ Fµ

0 0.192487E-17 0.972635E-17
1 -0.363320E-17 -0.11940E-17
2 0.365514E-17 0.106928E-17
3 0.239793E-16 0.341928E-17
µ ν Fµν

0 0 0.599459E-14 -0.114601E-14
0 1 0.323869E-15 0.423754E-15
0 2 -0.294252E-15 -0.375481E-15
0 3 -0.255450E-14 -0.195640E-14
1 1 -0.164562E-14 -0.993796E-16
1 2 0.920944E-16 0.706487E-17
1 3 0.347694E-15 -0.127190E-16
2 2 -0.163339E-14 -0.994148E-16
2 3 -0.341773E-15 0.818678E-17
3 3 -0.413909E-14 0.670676E-15
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