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Abstract

In this paper we study the properties of the phase diagram of asimple extra dimensional

model on the lattice at finite temperature. We consider the five-dimensional pure gauge

abelian model with anisotropic couplings which at zero temperature exhibits a new inter-

esting phase, the layer phase. This phase is characterized by a massless photon living on the

four dimensional subspace and confinement along the extra dimension. We show that, as

long as the temperature takes a non zero value the aforementioned layer phase disappears.

It would be equivalent to assume that at finite temperature the higher-dimensional lattice

model loses any feature of the layered structure due to the deconfinement which opens up

the interactions between the three-dimensional subspacesat finite temperature.
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1 Introduction

The original idea of Fu and Nielsen in the mid-eighties of thelast century consisted in proposing

a new way of dimensional reduction through higher dimensional lattice models with anisotropic

couplings [1]. Since then in a series of papers the phase diagram of the higher-dimensional lat-

tice models was studied by mean field and Monte carlo methods.Besides that a mechanism

of producing the anisotropic couplings was proposed invoking a Randall-Sundrum space-time

metric to the (continuum) higher dimensional models[2, 3].The lattice model with anisotropic

couplings which came up could help in understanding the localisation of the gauge interaction

on the brane; the idea was that the usual four-dimensional space-time is embedded in a higher

dimensional bulk in which the extra dimensions are subject to confinement. Indeed the assumed

strong coupling dynamics along the extra dimension requires a non-perturbative study. The nu-

merical study on the lattice has verified the prediction of a new phase (layer phase) proposed by

Fu and Nielsen who used mean field methods. In this new phase weestablished the existence of

a massless photon on the four-dimensional subspace while atthe same time the extra dimension

is confined [4]. This confinement is responsible for the fact that the higher-dimensional space

is layered-like and the interactions are confined in the four-dimensional space-time slices.

It is worthwhile to mention that in the Dvali-Shifman model asimilar way of thinking has

been used in order to achieve a localization mechanism on a brane: the assumption of con-

finement (of a non-abelian nature) along one of the dimensions which limits the dynamics of

the model in a subspace with one dimension less [5]. It is possible to generate gravitationally

this localization mechanism for the trapping of the chargedfields, under a non-abelian gauge

field, on a 3d submanifold (brane) using the non-minimal coupling of gravity with a scalar field

[6]. The result is a spontaneously broken phase on the brane (higgs phase) and a confining

(symmetric phase) in the transverse directions (bulk).

In this work we consider the following exercise: we assume a five-dimensional U(1) lattice

model with anisotropic couplings at finite temperature. Ourintention is to discover the fate of

the layer phase as we switch on the temperature to non zero values. By means of numerical

methods we study the phase diagram and our main result is thatfor T 6= 0 the layer phase

becomes a deconfined phase with new properties. In other words, the confining extra dimension

that is detected atT = 0, becomes deconfined for non zero values of the temperature and the

system is lacking the four-dimensional layered structure.1

The previous result is suggestive for the behavior of a multidimensional anisotropic gauge-

higgs model at finite temperature2. It is well known that at high temperature the higgs phase

turns into a symmetric phase. We expect then that the layer higgs phase disappears at this

1Our results contradict the prediction based on a Variational Cumulant Expansion by the authors of ref. [7] for

which the layer phase of the anisotropic lattice gauge models persists at high temperature.
2For the analysis of anisotropic gauge-higgs models at zero temperature see the refs. [8, 9].
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temperature. The new phase is probably a multidimensional high temperature symmetric phase:

a hot multidimensional world in the ”quark-gluon plasma” phase. In this rather hypothetical

scenario the Universe starts as a hot multidimensional system that cools down, passes through

a series of phase transitions and ends up to a brane Universe at zero temperature.

To explore the phase diagram of the anisotropic 5D U(1) gaugemodel we have to under-

stand first the phase structure of the 4D U(1) gauge model at high temperature. The study of the

phase structure of lattice electrodynamics in three and four dimensions at zero temperature, us-

ing the topological excitations of the theory (monopoles) was first performed by the authors of

ref. [10]. Computer simulations for the 3D compact QED at finite temperature were performed

in ref. [11] for the deconfinement transition from the monopole anti-monopole point of view. In

three dimensions and zero temperature the theory is confining for all values of the coupling con-

stant and a monopole and anti-monopole plasma is responsible for the permanent confinement

of oppositely charged particles. For non-zero temperaturethe binding of monopoles and the for-

mation of magnetic dipoles lead to loss of confinement. The dipole plasma can not sufficiently

screen the field created by electric currents and the screening mass vanishes.

In four dimensions the point-like topological excitationsbecome one-dimensional objects

(strings of monopole currents). Again, in the zero-temperature case and for small values of

the coupling constantβ there is a large number of monopole loops winding around the system

and causing disorder. As a consequence, if an external field is applied it will be shielded after

a small penetration. For large values ofβ, on the other hand, the situation is different. A

long distance penetration of the external field is observed,accompanied by the renormalization

of the magnetic charges due to the monopole currents. The case of 4D compact U(1) gauge

theory at finite temperature was studied separately in [12] and [13]. The authors of reference

[12] reported a second order phase transition to a Coulomb phase forLt ≥ 4, with critical

exponents consistent with 3d Gaussian values and no obviousdependence onLt. A different

picture emerged in ref. [13], where among other things the disappearance of the Coulomb phase

for all values ofT (≡ 1
Lt
) 6= 0 was predicted. Instead of a Coulomb phase we are left with a

spatial confining - temporal Coulomb phase for all temperatures.

In this paper, we are not going to present a detailed study of the nature of the phase tran-

sitions; however, some of our findings seem to indicate the absence of a Coulomb phase for

all temperatures different from zero for the case of four dimensional compact QED (as long

as the conditionLt << Ls is satisfied). We go one step further and examine a finite temper-

ature scenario in five dimensions through the anisotropic U(1) gauge model with couplingsβ

andβ
′

. The connection of this model with the brane model scenariosmakes it an ideal can-

didate for the study of the brane models in the non-zero temperature case. We are mostly

interested to discover if some of the most promising characteristics of this model survive in the

high-temperature regime. In what follows we will try to givea brief summary of our findings
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through the description of the limiting cases of our model.

For β
′

= 0 we obtain the four dimensional QED at finite temperature. From the study of

the system with volumeV4D = Lt × L3
s andLt = 2, 4 and 6 we come to the conclusion that,

although phase transitions seem to appear for finiteLs, they are actually finite-size effects and

disappear in the limitLs → ∞. For all values ofLt 6= 0 the Coulomb phase gives its place to

a temporal Coulomb - spatial confining phase (deconfining phase) [14]. The Coulomb phase is

recovered only atT = 0.

Forβ
′

6= 0 andLt = 2 we have a five dimensional, anisotropic model in a high temperature

state. The zero temperature model has been already studied and it is characterized by three

distinct phases [3, 4, 15, 16]. A five dimensional confining phase, a 5D Coulomb phase and the

layer phase where the system is confining along the fifth direction while, along the four remain-

ing directions, it exhibits the Coulomb behaviour with a massless photon. These characteristics

change when the temperature becomes non-zero. We observed the replacement of the layer

phase by a deconfining phase, due to the same mechanism responsible for the disappearance

of the Coulomb phase in four dimensions. The behavior of the system in the time direction is

coulombic and confining in the remaining four directions.

Our work is organized as follows. In section 2 we present the action of the model and the

observables, the helicity modulus and the Polyakov line, that we use in order to characterize the

phase diagram of the model. In section 3 we analyze the systemin the three limiting cases: 5D

anisotropic forT = 0, β
′

= 0 andLt = 1. Finally in section 4 we present the phase diagram

for the 5D anisotropic model at finite temperature and in particular forLt = 2. 3

2 The model

2.1 Definition

The five dimensional anisotropic U(1) gauge model with two couplings,β and β
′

, at finite

temperature is defined as :

S5D
gauge = β

∑

x,1≤µ<ν≤3

(1−Re(Uµν(x)) + β
∑

x,1≤µ≤3

(1− Re(Uµt(x))+

β
′
∑

x,1≤µ≤3

(1− Re(Uµ5(x)) + β
′
∑

x

(1−Re(Ut5(x)) (1)

3We recall thatT ≡ 1/Lt in lattice units.
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where
Uµν(x) = Uµ(x)Uν(x+ asµ̂)U

†
µ(x+ asν̂)U

†
ν(x)

Uµt(x) = Uµ(x)Ut(x+ asµ̂)U
†
µ(x+ att̂)U

†
t (x)

Uµ5(x) = Uµ(x)U5(x+ asµ̂)U
†
µ(x+ a55̂)U

†
5 (x)

Ut5(x) = Ut(x)U5(x+ att̂)U
†
t (x+ a55̂)U

†
5(x)

are the plaquette variables defined on the 4d-subspaces{(µ, ν = 1, 2, 3) - t} and planes con-

taining an extra, fifth dimension (x5). With an obvious noatation we call these plaquettes as

Ps, Pst, P
′

s5 andP
′

t5.

The link variables are defined as

Uµ(x) = eiθµ(x), Ut(x) = eiθt(x) and U5(x) = eiθ5(x)

Let us make the notation clear. The action is defined in an Euclidean lattice volume, namely

V = Lt × L3
s × L5 in lattice units.Lt is the compactified temporal dimension which is related

to the temperature through the relationship

T =
1

Ltat
(2)

We denote withat the lattice spacing,Lt is an integer number,Ls=1,2,3 are the usual ”infinite”

space dimensions and finallyL5 is an extra, fifth dimension, which we consider to be infinite and

equal toLs. We assume periodic bourdary conditions for the U(1) gauge field in all directions.

The proclaimed anisotropy of the model has nothing to do withthe ”time” direction. In this

model the lattice spacingsas,at are equal. The anisotropy is introduced through the interaction

along the extra direction. So, we haveas = at ≡ a anda5 6= a wherea5 is the lattice spacing

related to the extra dimension.

In our model the gauge couplingsβ andβ
′

are generally independent from each other and

the coordinates. The lattice spacing is determined from thevalue of the couplingsβ andβ
′

. In

some cases we can have a coordinate dependence and it is possible to relate them with extra

fields, as in the brane model [2, 3, 17]. In terms of the continuum fields the link angles,θM , can

be written as :

θM (x) = aM ĀM(x)

whereĀM(x) are the gauge potentials [3, 8] and withM we denoteM = (t, µ, 5). In the naı̈ve

continuum limit(a, a5 → 0) we define:

β =
a5
g25

and β ′ =
a2

g25a5

whereg5 is the bare five-dimensional coupling constant for the gaugefield. The resulting con-

tinuum action takes the standard form:

Sgauge =

∫

d5x
1

g25
F

2

MN , FMN = ∂MAN − ∂NAM .
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Note thatg25 has dimensions of length and is related to a characteristic scale for five dimensions.

The previous expression does not exhibit any anisotropy at all. However, the results that we

present below indicate that the anisotropy may survive in the continuum limit.

2.2 Observables

We now proceed to the introduction of the observables, i.e. the gauge invariant quantities which

are used for the study of the model.

2.2.1 The helicity modulus

Among the quantities used to distinguish the various phasesand the respective phase transitions

in a statistical model the ones that attract the most attention are the so called order parameters.

Their great significance comes from the fact that they display completely different behavior

between the various phases. Their ”thermal average” is zeroon the one side of the transition

and moves away from zero on the other side. For the case of a confining-Coulomb transition

a quantity with the properties of an order parameter is the helicity modulus (h.m). It was first

introduced in the context of lattice gauge theories by P.de Forcrand and M. Vettorazzo and it

characterizes the responce of a system to an external flux. Itis zero in a confining phase and

nonzero in a coulombic one[13].

Let us consider our five dimensional system with(Lµ, Lν , Lρ, Lt, L5) and let us choose a partic-

ular orientation, for example,(µ, ν). Through the remaining orthogonal directions it is defined

a stack ofLρ × Lt × L5 plaquettes parallel to the(µ, ν) orientation. In order to study the re-

sponse of the system to an external static field we assume the presence of an external fluxΦ

through this stack of plaquettes. By a suitable choice of variable transformations we can spread

the flux homogeneously over the parallel planes. In other words, we can add the constant value

of ΦP = Φ
LµLν

to each of the plaquettes of the given (µ, ν) orientation. Also we can impose

an external flux by changing the boundary links using twistedboundary conditions instead of

using pure periodic [13, 18]. The partition function, in thepresence of the external flux, is:

Z(Φ) =

∫

Dθe−S(θ;Φ) (3)

S(θ; Φ) = −β
∑

(µν)planes

cos(θµν +
Φ

LµLν

)− β
∑

(µν)planes

cos(θµν)

−β
∑

x,1≤µ≤3

cos(θµt(x))− β
′
∑

x,1≤µ≤3

cos(θµ5(x))

− β
′
∑

x

cos(θt5(x)) (4)
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where
∑

(µν)planes is the sum over the plaquettes of the given orientation(µ, ν), containing the

flux and
∑

(µν)planes its complement, consisting of all the plaquettes that remained unchanged

(plaquettes belonging to the other planes).

¿From the partition function we can obtain the flux dependentfree energy

F (Φ) = − ln(Z(Φ)) = − ln

(
∫

Dθe−S(θ;Φ)

)

(5)

An important observation is that the partition functionZ(Φ) of equation (3) and hence the flux

free energy is clearly2π periodic . So, the extra flux we impose on the system is defined only

mod(2π).

In the confining phase the flux free energyF (Φ) is constant in the thermodynamic limit because

the correlation length and the effect of the external flux through the twisted boundary links is

exponentially decreasing. On the contrary, in the Coulomb phase we have an infinite correlation

length, so the influence of the twisted boundary conditions is extended to the full extent of the

system. As a result we have a nontrivial dependence ofF (Φ) by the external fluxΦ.

The helicity modulus is defined as

h(β) =
∂2F (Φ)

∂Φ2

∣

∣

∣

∣

Φ=0

(6)

and it gives a measure of the curvature of the free energy profile aroundΦ = 0. From the above

equation and for various choices with respect to the orientation, due to the anisotropy of the

model, we have:

hs(β) =
1

(LµLν)2

(〈

∑

Ps

(β cos(θµν))

〉

−

〈

(
∑

Ps

(β sin(θµν)))
2

〉)

(7)

ht(β) =
1

(LµLt)2

(〈

∑

Pst

(β cos(θµt))

〉

−

〈

(
∑

Pst

(β sin(θµt)))
2

〉)

(8)

hs5(β
′

) =
1

(LµL5)2





〈

∑

P
′

s5

(β
′

cos(θµ5))

〉

−

〈

(
∑

P
′

s5

(β
′

sin(θµ5)))
2

〉



 (9)

ht5(β
′

) =
1

(LtL5)2





〈

∑

P
′

t5

(β
′

cos(θt5))

〉

−

〈

(
∑

P
′

t5

(β
′

sin(θt5)))
2

〉



 (10)

Now, consider for the moment the classical limit (β → ∞) for the action (4) where all the

fluctuations are suppressed. In this limit the flux is distributed equally over all the plaquettes

of each plane and it does not change as we cross the parallel planes. If we expand the classical
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action in powers of the flux, since in the thermodynamic limitthe quantity Φ
LµLν

is always small

, we find:

Sclassical(Φ) =
1

2
βΦ2 V5D

(LµLν)2
+ constant=⇒ Fclassical(Φ)− Fclassical(0) =

1

2
βΦ2 V5D

(LµLν)2

whereV5D = LµLνLρLtL5 is the 5D lattice volume.

The above expression for the free energy, F, holds all the wayup to the phase transition,

where fluctuations are present, if one only replaces the barecoupling by a renormalized cou-

pling,β → βR(β) (for details see [18, 13]):

F[finiteβ](Φ)− F[finiteβ](0) =
βR

2
Φ2

(

LρLtL5

LµLν

)

(11)

¿From the Eqs. (6) and (11) we have for the “spatial” h.m

hs(β) ∼ βRLt (12)

and following the same steps, we can get the scaling relations for the remaining quantities:

ht(β) ∼ βR

L2
µ

Lt

(13)

hs5(β
′

) ∼ β
′

RLt (14)

ht5(β
′

) ∼ β
′

R

L2
µ

Lt

(15)

Although the arguments presented above are based mainly on the classical approach, this is

indeed the case in the Coulomb phase and the helicity moduli applied for the five dimensional

system behave exactly as the above equations predict.

2.2.2 Polyakov loop (or Wilson line)

For the evaluation of the potential between a static quark-antiquark pair at zero temperature,

the study of the ground state expectation value of the Wilsonloop for large Euclidean times is

needed. When the temperature is non zero (Lt << Ls as opposed to the former case) the same

information is obtained by using a different quantity whichis the Polyakov loop or the Wilson

line. It consists of the product of link variables along topologically non-trivial loops, winding

around the time direction due to periodic conditions.

Pt(~n, n5) =

Lt
∏

nt=1

Ut(~n, nt, n5)

Pt =
1

L4
s

∑

(~n,n5)

Pt(~n, n5) (16)

8



where{n}ǫZ5 denotes a lattice site.

Physically, the expectation value of the Polyakov loop determines the free energy of a system

with a single, static heavy quark, measured relative to the vacuum:

〈|Pt|〉 = e−LtFq (17)

where|P | is the absolute value of P and< · · · > the statistical average value evaluated using

the action of equation (1). The above relation holds even in the presence of finite mass quarks

coupled to the gauge potential with the only difference thatin that case the expectation value

has to be calculated using the finite temperature action thatincludes the dynamical fermions.

The Polyakov loop is somewhat the world line of a static quarkin a Wilson loop and that

suggests that the free energy of a quark-antiquark pair located at( ~n1, n51) and( ~n2, n52) respec-

tively is given by the correlation function of two such loops, with bases at the aforementioned

points and having opposite orientations. Consequently we have:
〈

Pt1( ~n1, n51)P
†
t2
( ~n2, n52)

〉

= e−LtFqq̄({ ~n1,n51
};{ ~n2,n52

}) (18)

keepingLt constant.

For large distance separation of the quark-antiquark pair and assuming that the correlation func-

tions satisfy clustering, the above expression reduces to
〈

Pt1( ~n1, n51)P
†
t2
( ~n2, n52)

〉

→ | 〈Pt〉 |
2 for |R̂| → ∞ (whereR̂ = { ~n1, n51} − { ~n2, n52})

(19)

which is just the self-energy of two isolated quarks.

In the confinement phase the correlation function of the Polyakov loop decays exponentially for

large distances:
〈

Pt(0)P
†
t (R̂)

〉

∼ e−Ltσ|R̂| (20)

giving a linear potential with string tensionσ andFqq̄ ≃ σ|R̂|.

The flux free energyFqq̄ increases, in general, for large separation of the quarks inthe confining

phase, giving eventually< |Pt| >= 0 andFqq̄ = ∞ in the thermodynamic limit. We interpret

< |Pt| >= 0 as a signal for confinement. If we have< |Pt| > 6= 0, then the free energy of the

static quark-antiquark pair tends to a constant value, for large separation of the heavy charges,

as shown in Eqs. (18) and (19), and this is a signal for deconfinement. In other words, the ex-

pectation value of the temporal Polyakov loop serves as an order parameter in finite temperature

gauge theories.
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3 Three limitting cases

3.1 The zero temperature case

The five dimensional anisotropic U(1) gauge model, at zero temperature, was first introduced by

Fu and Nielsen [1] as an attempt to offer an alternative way toachieve dimensional reduction.

Since then many numerical investigations of the model have been made [15, 16]. As we have

already noted in the Introduction, the interest in this comes from the fact that the anisotropy of

the model produces a new phase, the so called layer phase, which can serve as a mechanism

for gauge field localization on a brane. We can induce this anisotropy to the gauge coupling

using, for example, the Randall-Sundrum metric backgroundin five dimensions. The effect of

the warp factor from the RS background or a general anti-de-Sitter (AdS5) background on the

U(1) gauge theory is to provide the gauge theory with a different gauge coupling in the fifth

direction([3]).

In Fig. 1 we present the phase diagram of the theory. It consists of three distinct phases. For

large values ofβ andβ
′

the model lies in a Coulomb phase (C) on the 5-D space. Now, if one

keepsβ constant and bigger than one and at the same time lets decreaseβ
′

, one will eventually

come across the new phase, the layer phase (L), where the forces in four dimensions will still be

Coulomb-like but in the fifth dimension the confinement is present. For small values ofβ andβ
′

the force is confining in all five directions and the corresponding phase is the Strong phase (S).

The properties of the three phases can become more transparent in terms of two test charges.

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

 0  0.2  0.4  0.6  0.8  1  1.2  1.4  1.6

β

β’

The phase diagram for zero temperature

Strong

Layer Coulomb

Figure 1: The phase diagram for the 5D anisotropic U(1) gaugemodel at zero temperature.

Three phases are present: Strong confining phase, 5D Coulombphase and the Layer phase.
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In the Coulomb phase the force between two heavy charges is 5DCoulomb-like, and becomes

the exact five dimensional Coulomb law in the diagonal line, defined byβ = β
′

for which

no anisotropy appears (for a numerical investigation see [4]). The completely opposite picture

emerges in the Strong phase. There the force is confining in all five directions giving infinite

energy for the separation of the test charges in any direction. Now, two test charges in the

layer phase will experience a Coulomb force in the four dimensional layers, with the coupling

given by the four-dimensional couplingβ; there are strong indications of the similarity with the

usual 4D Coulomb law (see [4] for details), while along the fifth direction the test charges will

experience a strong force as the corresponding couplingβ
′

takes small values. This means that

charged particles in the layer phase will mainly run only along a layer since in an attempt to

leave the layer in which they belong they will be driven back by a linear potential, analogous to

the one responsible for the quark confinement. This is the mechanism on which the gauge field

localization scheme is based.

Now we would like to sketch the three phases in terms of the helicity modulus. In the zero

temperature case (Lt = Ls ≡ L5) we are left with only two possible choices. Instead of the

Eqs. (7)-(10) we have:

hS(β) =
1

(LµLν)2

(〈

∑

P

(β cos(θµν))

〉

−

〈

(
∑

P

(β sin(θµν)))
2

〉)

(21)

h5(β
′

) =
1

(LµL5)2





〈

∑

P
′

(β
′

cos(θµ5))

〉

−

〈

(
∑

P
′

(β
′

sin(θµ5)))
2

〉



 (22)

The first one,hS(β), is used to probe the response of the system to an external fluxin the spatial

planes (belonging to a 4d layer) while the second one,h5(β
′

), is used in a similar way for the

planes containing the extra, transverse direction.

(i) In the Strong phase (keepingβ
′

constant) the space-like helicity modulus vanishes (which

is a clear signal of confinement); as we approach and eventually pass the phase boundary it

becomes non-zero in the layer phase with a value that approaches 1 asβ increases further. On

the other hand, the transverse h.m,hT (β
′

), remains zero throughout the transition since both

phases exhibit confinement in the fifth direction.

(ii) For the transition between the 5D Coulomb phase and the layer phase,hS(β) retains a

value close to 1 for all values ofβ
′

, since the four dimensional layers experience already a

4d Coulomb-like phase, whilehT (β
′

) vanishes for the layer phase; as the system crosses the

critical point and enters the Coulomb phase it grows towards1 asβ
′

increases further [4, 15].

3.2 Theβ
′

= 0 case

On the axis defined byβ
′

= 0 we consider the four-dimensional U(1) model. In this section our

intention is to strengthen the arguments given in references [13]. We present numerical results
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showing that we have a Coulomb phase only for T=0, in accordance with Fig. 12 of [13].

Our findings contradict the ones of ref. [12] that stipulatesthe existence of a Coulomb phase

for Lt ≥ 4 andβ ≥ βc. The numerical results presented below show that we have a spatial

confinement phase when the spatial lattice sizeLs gets big enough, compared to the temporal

sizeLt (Ls & 4Lt).

This behavior can be understood, following closely the ref.[13], using simple theoretical

arguments. In order to havehs(β) ∼ 0, one must have at least two monopole loops (far apart)

winding around the time direction with opposite orientations. A non contractible time-like

monopole loop can, in principle, disorder all the spatial planes in the lattice. The probability to

have one such loop passing through a given lattice site is, roughly, e−mmon(β)Lt, wheremmon(β)

is the monopole mass. So the condition to achieve a probability of order 1 for a system to con-

taining one (or two) wrapping monopole loops, is:

L3
s × e−mmon(β)Lt ∼ 1 =⇒ Ls ∼ e

Lt
3
mmon(β)) =⇒ Ls ∼ e

Lt
3
cβ (23)

sincemmon(β) is of orderβ. Now, starting from the above equation we can make two state-

ments. First, it predicts a pseudocritical couplingβc ∼ log(Ls) which was verified by our

measurements and second, that as we go to smaller temperatures (biggerLt), for sufficiently

largeLs Eq. (23) is satisfied; hence the spatial planes becomes completely disorder and the

Coulomb phase disappears.

 0
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 0.3
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Figure 2: The mean value< |Pt| > of the temporal Polyakov loop forβ
′

= 0 and temporal size

Lt = 2. < |Pt| > goes to zero in the confining phase forLs → ∞. In the deconfinement phase

(β > βc(Lt)) < |Pt| > is non-zero, approaching the value of one asβ increases

In Fig. 2 we show the mean value of the temporal Polyakov loopPt(β) for Lt = 2. There
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is an obvious continuous phase transition from the confiningphase(β ≤ βc ≃ 0.90), where

< |Pt| > is zero, to the deconfining phase where< |Pt| > approaches the value of one. In the

confining phase the free energy of a single static charge, relative to the vacuum, goes to infinity

with Ls while it gets a positive value in the deconfining phase which vanishes asβ increases.

The mean value of the temporal Polyakov loop remains always non zero in the finite temperature

phase as we switch onβ
′

. This is the case presented in section 4. However this order parameter

does not help us to characterize further the nature of the different phases. We arrived at the

conclusion that the helicity modulus is a more promising quantity to study in detail the phase

diagram.
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Figure 3: The temporal helicity modulusht for Lt = 2 (a) andLt = 6 (b) andβ
′

= 0. Results

from three different volumes are present. The value ofht increases withLs in the deconfine

region, forβ bigger than a critical value, again with accordance with thescaling predictions of

section (2.2.1). The transition forLt = 2 is continuous, as opposed to theLt = 6 case, where

we have a discontinuous behavior.

In figure 3 we present our results for the temporal helicity modulusht(β) for two different

“temperatures”Lt = 2 andLt = 6. The temporal h.m is zero in the confining phase forβ <

βc(Lt) and non-zero forβ ≥ βc(Lt) in the deconfining phase, indicating coulombic behavior.

The signal forht(β) in the deconfining phase (β ≥ βc) is being enhanced with increasingLs,

following the scaling relationht ∼
Ls

Lt
. The transition point has only a weak dependence from

the lattice volume showing convergence to a critical valueβc(Lt) with Ls. We see thatβc(Lt)

tends to smaller values asLt decreases.4 Another noticeable difference is the behavior ofht in

the critical region. ForLt = 2 , ht(β) goes continuously to zero whenβ approachesβc from

above. ForLt = 6, on the other hand, theht has an obvious discontinuity asβ approachesβc

4βc(Lt = 2) = 0.9008(3), βc(Lt = 4) = 1.00340(1) andβc(Lt = 6) = 1.0094491(1). The results are taken

from ref. [13].
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and the volume increases. This behavior indicates a different order for the phase transition, a

second order phase transition forLt = 2 and a first order forLt = 6 (for details see ref. [13]).

In Fig. 4 we show the spatial helicity modulushs(β) for Lt = 2 and spatial lattice sizes

Ls = 4, 8, 16 and 24. The spatial helicity modulus is zero forβ smaller than a critical value

βc(Ls) that depends strongly onLs. We shall refer from now on toβc(Ls) as the pseudocritical

value, to distinguish it from the real critical value ofβ that comes from the temporal helicity

modulusht(β). Forβ ≥ βc(Ls), hs takes non-zero values, increasing linearly asβ takes bigger

values . On the other side, the magnitude of this quantity decreases according to the ratio∼ Lt

Ls
,

as we increaseLs and tends to zero forLs → ∞. The pseudocritical valueβc(Ls) increases

with Ls as log(Ls) [13] and the ratioβc(Ls)
log(Ls)

tends to the value 0.5 forLs ≥ 16. In this way

βc(Ls) goes to infinity whenLs → ∞. As a result the spatial h.m is always zero in the infinite

volume limit and as a consequence we have a spatial confining phase.
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Figure 4: The spatial helicity modulushs for Lt = 2 andβ
′

= 0, versus the four dimensional

couplingβ. The pseudo critical value ofβ increases very fast, towards an infinite value, as

the spatial lattice sizeLs increases. The shift of the transition region to bigger values ofβ is

obvious even in the smaller volumes.

Finally we study the spatial helicity modulus forLt = 4 andLt = 6. The results are shown

in Figs. 5(a)(Lt = 4) and 5(b)(Lt = 6). We have, in general, the same situation as forLt = 2.

There is a pseudo-critical value ofβ that moves to larger values asLs increases showing a

strong dependence onLt. The signal forLt = 4 is clear only forLs ≥ 16. ForLt = 6 it seems

thatLs = 16 is not enough but forLs ≥ 24 we get a clear displacement ofβc(Ls) to the right.

In the regionβ ≤ βc(Ls) the spatial helicity modulus is zero (confining region). Forβ > βc the

spatial h.m scales with∼ Lt

Ls
and tends to zero forLs → ∞. If we examine theLt = 8 case for

example, we would probably need volumes bigger than8 × 323 in order to get a clear picture
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of the behavior of the system. From the previous observations we can say thaths(β) is zero for

every value ofβ in the infinite volume limit, and consequently, we have spatial confinement for

all temperatures different from zero.

We conclude that the phase diagram on theβ, T = 1
Lt

plane has three phases: a confining

phase forβ < βc(Lt), a temporal Coulomb - spatial confining phase forβ > βc(Lt)
5 and the

pure Coulomb phase forLt → ∞ andβ > βc [13, 14].
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Figure 5: In figures (a) and (b) we present the spatial h.m (hs) for β
′

= 0 and different temporal

sizes,Lt = 4 andLt = 6, for a variety of spatial volumes. The size ofhs decreases with

Ls whenβ takes values bigger than the pseudo critical value, as predicted in section (2.2.1).

The transition region moves clearly to the right as the volume increases, in agreement with the

Lt = 2 behavior.

3.3 Lt = 1

In this case the temporal link is a Polyakov loop by itself andof course it is a gauge invariant

quantity. The temporal plaquette becomes:

θµt(x) = θµ(x) + θt(x+ µ̂)− θµ(x)− θt(x)

The two spatial links cancel each other, so in the U(1) case weget:

θµt(x) = θt(x+ µ̂)− θt(x)

The contribution to the action is:

St = −β
∑

x,1≤µ≤3

cos(θt(x+ µ̂)− θt(x)) (24)

5This phase is usually called deconfining phase.

15



The same applies for the “temporal-transverse” plaquettesand following the same steps as

above we find that their contribution to the action is :

St
′ = −β

′
∑

x

cos(θt(x+ 5̂)− θt(x)) (25)

From the above equations it can be observed that the temporalplaquettes decouple from the

space and transverse ones. Equations (24) and (25) describea 4DXY model with anisotropic

couplings(β, β
′

). The three spatial links and the fifth, transverse link form aseparate four di-

mensional anisotropic U(1) gauge theory with two couplings, β andβ
′

. As a result the partition

function of the model reduces to:

Z(Lt=1) = Zanisotropic4D−XY
× Zanisotropic4D−U(1) (26)

and it describes two independent lattice field theories.

The anisotropic4D −XY model, forβ
′

= 0, reduces to the three dimensionalXY model

which has a second order phase transition forβ = 0.4542 [19]. The phase transition line

continues to the(β, β
′

) plane for smaller values ofβ asβ
′

increases and the critical value ofβ

seems to tend asymptotically to the value of 0.1 asβ
′

goes to infinity.6

The 4D gauge model forβ
′

= 0 reduces to a three dimensional U(1) gauge theory which

is always in the confining phase. In the(β, β
′

) plane we have a critical line which separates

the strong confining phase from the four dimensional Coulombphase. If we move along the

diagonal, for example, whereβ = β
′

, we get the usual weak first order phase transition for

β = β
′

= 1.001113 [20, 15].

The above discussion can be summarized in the three dimensional plot of Fig. 6 . The

vertical axis is for the temperature given in terms of the discrete variableLt. The upper plane

for Lt = 1 corresponds to ”infinite” temperature while the lower planefor Lt = L5 = Ls

corresponds to the zero temperature case.

4 Study of the phase diagram forLt = 2.

In five dimensions the phase diagram at zero temperature is given in Fig. 1.7 For0 ≤ β
′

< 0.40

andβ ≈ 1. there is a critical horizontal line in the phase diagram separating the 5D strong

confining phase from the layer phase. Forβ > 1 andβ
′

≃ 0.35 there is a critical vertical line

that separates the layer from the 5D Coulomb phase. Our intention in this section is to explore

the effects of finite temperature on our system and the most important, the feasibility (if any )

of a layer phase, through the study of the changes in the aforementioned phase line boundaries

6For example, for the 4DXY model the critical value is atβ = β
′

= 0.29(1) (see Fig. 6).
7Lower plane (1/Lt = 0.0), see Fig. 6.
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the temperature. We present the critical curves for the three limiting cases.C4 andC5 are the

four dimensional and the five dimensional Coulomb phases respectively.L stands for the layer

phase at zero temperature.D4 is the temporal Coulomb - spatial confining phase forβ
′

= 0.

and the phases themselves. To that end we move, first, on the lineβ
′

= 0.20 in order to study

the strong-layer phase transition at finite T; we know that for β
′

= 0 (subsection 3.2) there is

phase transition forβ ≃ 0.90. Second, we move along the lineβ = 1.10, in order to study

the layer-Coulomb phase transition at finite temperature.8 As we will explain in section 4.2 and

using the Figs. 4 and 7 in order to have a clear picture of the behavior of the system for bigger

values ofβ we need even bigger five dimensional volumes than those that we can presently

achieve.

Using the results presented in the two following sections wecan argue that the layer phase

disappears forLt = 2 and becomes a deconfined phase with new properties which willbe

described below. We can also generalize the arguments and say that there is no layer phase in

finite temperature for any temperature different from zero.The existence of the layer phase is

based strongly on the existence of the Coulomb phase forβ
′

= 0. However there is no Coulomb

phase forβ
′

= 0 atT 6= 0 as it is argued in ref. [13]. We also confirm this result (see subsection

3.2).

8We refer to the case of the plane(β, β
′

) at1/Lt = 0.5 in Fig. 6.
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4.1 Moving along the lineβ
′

=0.20

We begin the investigation of the 5D anisotropic pure U(1) gauge model at finite temperature

with what used to be called as a 5D strong-layer phase transition at zero temperature (Fig. 1). We

utilize the helicity modulushs(β), ht(β) in order to bring out the features of the transition and

compare them with the T=0 andβ
′

= 0 cases. As it is shown in Fig. 3 the first deviation from

the zero temperature case comes from the fact that now, the transition line boundary between

the two phases, is found at a lower value ofβ = 0.90 in contrast with the value ofβ = 1.001113

for T = 0 case. Another observation is that the values obtained here concerninght(β) are of

the same order of magnitude as the ones, for theβ
′

= 0 case; the only difference is the slight

movement of the critical region to a value between 0.85 and 0.90.

Moving now to a discussion of Fig. 7 and the spatial helicity modulushs(β) we encounter

many similarities with the results of subsection 3.2 :

i) There is a pseudocritical valueβc(Ls) for each lattice size, withhs equal to zero forβ ≤

βc(Ls), signal of spatial confinement. Forβ > βc(Ls) the spatial helicity modulushs increases

with β, as one would expect from a Coulomb phase. But the transitionpoint moves to higher

and higher values ofβ as the spatial extent of the lattice (Ls) grows. What we see here is only

a finite size effect that ceases to exist in the thermodynamicLs → ∞ limit.

ii) The magnitude ofhs(β), calculated on a single 4d layer, decreases withLs for the same

value ofβ for β > βc(Ls), following the ratio∼ 1
Ls

. So we expect, as in the 4d case for

β
′

= 0, that the spatial helicity modulus tends to zero for all values ofβ asLs → ∞ (indicating

spatial confinement); the phase transition to a Coulomb phase disappears together with the layer

phase in the infinite volume limit. We mention also that the spatial-transverse helicity modulus

(hs5(β)) remains zero throughout the transition.

-0.3

-0.2

-0.1

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.4  0.6  0.8  1  1.2  1.4  1.6  1.8  2

h s
(β

)

β

β’=0.20 4d-layer
Ls=4

Ls=8

Ls=16

Figure 7: The spatial helicity modulushs is strictly zero for each volumeV = 2 × L4
s until

the pseudo-critical valueβc(Ls) is approached. Forβ > βc(Ls) thehs tends to zero as1
Ls

for

constantβ.
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In Fig. 8(a) we present the temporal helicity modulusht; also, in Fig. 8(b) we present

the temporal-transverse helicity modulusht5 versusβ, for three different volumes. The two

quantities have the same behavior: both take values equal tozero forβ ≤ 0.85 and non-zero

for β > 0.85 and they increase with the lattice sizeLs, indicating a coulombic behavior in the

temporal direction. We also note that the Polyakov loop in the temporal direction, a result not

shown here, is zero forβ smaller than a critical value (βc ≃ 0.85) and tends to one forβ > βc.

The transition, for the three quantitiesht, ht5 and< |Pt| >, concerning the strong confining

phase (β ≤ 0.85) to the deconfining phase (β > 0.85) is a continuous one . Although we do not

analyze further the order of this phase transition we may guess that it may not be the case of a

first order phase transition.

All of the results obtained so far advocate to the disappearance of the layer phase at fi-

nite temperature. The layer gives its place to a phase showing a confining behavior in the 4d

subspaces (formed by the three spatial coordinates and the transverse one) and a coulombic

behavior along the temporal direction.
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Figure 8: The temporal helicity modulusht (a) and the temporal-transverse helicity modulus

ht5 (b) for Lt = 2 andβ
′

= 0.20 versusβ. Theht is evaluated on the 4d-subspaces (Lt × L3
s)

and scales asLs for β > βc. Theht5 is evaluated on the whole lattice and scales asL2
s for

β > βc.

4.2 Moving along the lineβ = 1.10

As we have seen in the previous sections the system undergoesa continuous phase transition

from the strong, confining phase, to a new phase. The transition point forβ
′

= 0 is shown to be

βc ≃ 0.90 and forβ
′

= 0.20 it is slightly smaller being in the interval0.85 ≤ βc < 0.90 region.

In order to study the nature and the extent of the new phase, wechoose to keepβ fixed at the

value of 1.10 and letβ
′

to vary. In Figs. 9(a) and 9(b) we present the spatial helicity modulus
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hs(β
′

) and the spatial-transverse helicity modulushs5(β
′

) for three values of the volume. The

hs andhs5 are zero, within the statistical error, forβ
′

smaller than 0.445 signaling disordering

in the spatial and transverse directions. This phase is the continuation of theβ
′

= 0 phase to

non zero values ofβ
′

. The 3d U(1) theory obtained through dimensional reductionfor β
′

= 0,

is extended (for0 ≤ β
′

≤ 0.445) to a 4d dimensionally reduced U(1) theory in the confining

phase. We observe that the layer phase, consisting of a combination of 4d Coulomb phase and

confinement in the extra dimension, becomes a deconfined phase.

There is a critical region defined in the interval (0.445 ≤ β
′

≤ 0.450) in which a finite

discontinuity in both quantities (hs, hs5) is shown up . Forβ
′

> β
′

c the spatial helicity modulus

is non zero and almost constant which is a characteristic of aCoulomb phase. The value of

hs5(β
′

) increases linearly withβ
′

, following the lattice weak coupling expansion, approaching

hs(β
′

) asβ
′

→ β. The values ofhs andhs5 in Fig. 9 are divided byLt and are independent of

the spatial lattice sizeLs. The spatial helicity modulus gives the renormalized couplingβR = 1
e2
R

of the 5D U(1) theory in the Coulomb phase which is fixed by the value ofβ = 1.10[4].

The temporal and the temporal-transverse helicity modulus( not shown here), remain non

zero and increase withβ
′

. Also the temporal Polyakov loop is non zero which is a signalof a

finite temperature phase.
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Figure 9: The spatial helicity modulus (a) and the spatial-transverse helicity modulus (b) as a

function ofβ
′

, measured for the temporal lattice sizeLt = 2. The critical value ofβ
′

remains

constant with the lattice volume.

By close inspection of Fig. 4 (β
′

= 0) and Fig. 7 (β
′

= 0.20), it becomes obvious that for

a constant value ofβ the spatial helicity modulus is non-zero for some of the volumes that we

used and it vanishes as the spatial volume increases beyond adefinite value. Forβ = 1.10, for

example, the lattice sizeLs = 16 is enough to show the correct thermodynamic limit behavior.

If we move to larger values ofβ, like β = 1.40, we have to use a spatial size of the order

Ls ≥ 24 in order to find the correct behavior. This is beyond our current computer capabilities.
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In Fig. 10 we sketch, roughly, the phase diagram forLt = 2 in the (β, β
′

) plane. There are

three phases with different behavior of the observables we used:

1. 5D confining phase with:Pt = 0, ht = 0, ht5 = hs5 = 0 andhs = 0

2. Finite temperature 5D Coulomb phase:Pt 6= 0, ht, hs, ht5 andhs5 6= 0

3. Dimensionally reduced 4d confining phase-temporal CoulombPt 6= 0, ht 6= 0 ,ht5 6= 0

andhs, hs5 = 0
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Figure 10: A rough sketch for the phase diagram of the model for Lt = 2. There are three

different phases, a 5D confining phase, a 5D Coulomb phase in finite temperature and a new

one characterized as temporal Coulomb-4d confining.

From the discussion in section 3.2 forβ
′

= 0 we argue that the critical temperature for

the appearance of the phase diagram of Fig. 10 it is the zero temperature. The reason is that

the layer phase strongly depends on the existence of the phase transition in the Coulomb phase

for β
′

= 0. All the results we have presented in section 3.2 forT > 0 andβ
′

= 0 point to

a 3d confining phase, in the infinite volume limit, forβ larger than a critical valueβc(Lt). A

Coulomb phase does not seem to be the case. From this analysiswe conclude that the phase

diagram presented in Fig. 10 is reproduced for every temperature bigger than zero. Especially

for β > βc(Lt) and0 < β
′

< β
′

c(Lt) we have a 4d confining-temporal coulombic phase instead

of a layer phase. Two charges are not anymore localized (confined) on a three dimensional

subspace (brane) but the temperature gives the possibilityof having interactions between the

neighbor three dimensional subspaces. It seems that there are two characteristic correlation

lengths in this deconfining phase. The correlation length given by the spatial string tension and

a second one characterising the thickness of the brane givenby the interaction in the transverse

direction and the temperature. We did not study quantitatively these two correlation lengths at
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finite temperature but we may easily see from the Fig. 6 what happens in two limiting cases.

ForLt = 1 (infinite temperature) we have a 4d U(1) gauge theory in the strong confining phase

and the two correlation lengths are indistinguishable and approach each other. For the zero

temperature case on the other hand, there is no spatial string tension; we get a massless photon

on the branes. Note that in this case the branes are characterized by zero thickness. In between

these two limiting cases we expect a continuous change in thebehavior depending strongly on

the temperature.

5 Discussion

The extra dimensional models, like the brane models, are well studied mainly in the zero tem-

perature case. But if we imagine that our brane world is a partof the Universe history then

a study of the brane models at high temperature is required. In this paper we tried to do a

first approach to this open problem, namely the behavior of brane models in high temperature

(though neglecting the gravity effects). We believe that our toy model of five dimensional U(1)

anisotropic lattice gauge theory has all the required essential characteristics. This model has a

very rich phase diagram with respect to the temperature (seethe discussion in Sections 3 and 4)

summarized in Figures 6 and 10.

Concluding we could note that the layer phase for zero temperature (with a massless photon

on the brane and confinement in the extra dimensions) gives its place to a deconfined phase

at non-zero temperature. In this phase the three spatial dimensions and the transverse one

form a 4d subspace with confining properties, while the temporal direction shows a coulombic

behavior.
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