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Abstract

In this paper we study the properties of the phase diagramsofple extra dimensional
model on the lattice at finite temperature. We consider thedimensional pure gauge
abelian model with anisotropic couplings which at zero terafure exhibits a new inter-
esting phase, the layer phase. This phase is charactesizeohbssless photon living on the
four dimensional subspace and confinement along the extrardiion. We show that, as
long as the temperature takes a non zero value the aforemedtlayer phase disappears.
It would be equivalent to assume that at finite temperatugehtgher-dimensional lattice
model loses any feature of the layered structure due to tbenfieement which opens up
the interactions between the three-dimensional subspadrste temperature.
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1 Introduction

The original idea of Fu and Nielsen in the mid-eighties ofl#fs century consisted in proposing
a new way of dimensional reduction through higher dimeraditaitice models with anisotropic
couplings[[1]. Since then in a series of papers the phaseatragf the higher-dimensional lat-
tice models was studied by mean field and Monte carlo methBdsides that a mechanism
of producing the anisotropic couplings was proposed inwpld Randall-Sundrum space-time
metric to the (continuum) higher dimensional models[2,T3]e lattice model with anisotropic
couplings which came up could help in understanding thelikatzon of the gauge interaction
on the brane; the idea was that the usual four-dimensioaaespme is embedded in a higher
dimensional bulk in which the extra dimensions are subgecbhfinement. Indeed the assumed
strong coupling dynamics along the extra dimension reguwneon-perturbative study. The nu-
merical study on the lattice has verified the prediction oéa& phase (layer phase) proposed by
Fu and Nielsen who used mean field methods. In this new phasstaielished the existence of
a massless photon on the four-dimensional subspace wiilile aame time the extra dimension
is confined|[[4]. This confinement is responsible for the faet the higher-dimensional space
is layered-like and the interactions are confined in the-thorensional space-time slices.

It is worthwhile to mention that in the Dvali-Shifman modes$ianilar way of thinking has
been used in order to achieve a localization mechanism omrgebrthe assumption of con-
finement (of a non-abelian nature) along one of the dimessidrich limits the dynamics of
the model in a subspace with one dimension less [5]. It isiplesi generate gravitationally
this localization mechanism for the trapping of the charfieldls, under a non-abelian gauge
field, on a 3d submanifold (brane) using the non-minimal éiogpof gravity with a scalar field
[6]. The result is a spontaneously broken phase on the blaggs(phase) and a confining
(symmetric phase) in the transverse directions (bulk).

In this work we consider the following exercise: we assumegeadiimensional U(1) lattice
model with anisotropic couplings at finite temperature. @tgntion is to discover the fate of
the layer phase as we switch on the temperature to non zewesraBy means of numerical
methods we study the phase diagram and our main result iahdt # 0 the layer phase
becomes a deconfined phase with new properties. In otheswibielconfining extra dimension
that is detected d' = 0, becomes deconfined for non zero values of the temperatdréhan
system is lacking the four-dimensional layered struc@lre.

The previous result is suggestive for the behavior of a minfiensional anisotropic gauge-
higgs model at finite temperatLHe It is well known that at high temperature the higgs phase
turns into a symmetric phase. We expect then that the laygshphase disappears at this

1Our results contradict the prediction based on a VariatiGuanulant Expansion by the authors of ref] [7] for

which the layer phase of the anisotropic lattice gauge nsggietsists at high temperature.
2For the analysis of anisotropic gauge-higgs models at zenpérature see the refsl [8, 9.



temperature. The new phase is probably a multidimensioghltemperature symmetric phase:
a hot multidimensional world in the "quark-gluon plasma’agbk. In this rather hypothetical
scenario the Universe starts as a hot multidimensiona¢ésy#at cools down, passes through
a series of phase transitions and ends up to a brane Unitezssaemperature.

To explore the phase diagram of the anisotropic 5D U(1) gamgeel we have to under-
stand first the phase structure of the 4D U(1) gauge modegjattemperature. The study of the
phase structure of lattice electrodynamics in three anddouensions at zero temperature, us-
ing the topological excitations of the theory (monopolea¥\irst performed by the authors of
ref. [L0]. Computer simulations for the 3D compact QED até&mémperature were performed
in ref. [11] for the deconfinement transition from the monle@nti-monopole point of view. In
three dimensions and zero temperature the theory is cogfioirall values of the coupling con-
stant and a monopole and anti-monopole plasma is resperisitthe permanent confinement
of oppositely charged particles. For non-zero temperahg&®inding of monopoles and the for-
mation of magnetic dipoles lead to loss of confinement. Tpeldiplasma can not sufficiently
screen the field created by electric currents and the scrg@mass vanishes.

In four dimensions the point-like topological excitatidmscome one-dimensional objects
(strings of monopole currents). Again, in the zero-tempeeacase and for small values of
the coupling constant there is a large number of monopole loops winding around yeeem
and causing disorder. As a consequence, if an external §iegdplied it will be shielded after
a small penetration. For large values @f on the other hand, the situation is different. A
long distance penetration of the external field is obseraedompanied by the renormalization
of the magnetic charges due to the monopole currents. TheafadD compact U(1) gauge
theory at finite temperature was studied separately in [h8][43]. The authors of reference
[12] reported a second order phase transition to a CoulonalsepforZ, > 4, with critical
exponents consistent with 3d Gaussian values and no obdepesndence on,. A different
picture emerged in ref. [13], where among other things teaghearance of the Coulomb phase
for all values ofT'(= L%) # 0 was predicted. Instead of a Coulomb phase we are left with a
spatial confining - temporal Coulomb phase for all tempeestu

In this paper, we are not going to present a detailed studigeohature of the phase tran-
sitions; however, some of our findings seem to indicate trsemte of a Coulomb phase for
all temperatures different from zero for the case of fouretisional compact QED (as long
as the condition.; << L, is satisfied). We go one step further and examine a finite tempe
ature scenario in five dimensions through the anisotropi) gauge model with couplings
and’. The connection of this model with the brane model scenariakes it an ideal can-
didate for the study of the brane models in the non-zero teatpe case. We are mostly
interested to discover if some of the most promising charatics of this model survive in the
high-temperature regime. In what follows we will try to giaeorief summary of our findings



through the description of the limiting cases of our model.

For 3 = 0 we obtain the four dimensional QED at finite temperature.nFtbe study of
the system with volum&,p, = L, x L2 andL; = 2,4 and 6 we come to the conclusion that,
although phase transitions seem to appear for fihitehey are actually finite-size effects and
disappear in the limil., — oo. For all values ofZ; # 0 the Coulomb phase gives its place to
a temporal Coulomb - spatial confining phase (deconfining@hid 4]. The Coulomb phase is
recovered only a" = 0.

For" # 0 andL, = 2 we have a five dimensional, anisotropic model in a high teatpes
state. The zero temperature model has been already studlilel ia characterized by three
distinct phases [3,4, 15, 16]. A five dimensional confininggd a 5D Coulomb phase and the
layer phase where the system is confining along the fifth timeevhile, along the four remain-
ing directions, it exhibits the Coulomb behaviour with a slass photon. These characteristics
change when the temperature becomes non-zero. We obsée/edpiacement of the layer
phase by a deconfining phase, due to the same mechanismsidedar the disappearance
of the Coulomb phase in four dimensions. The behavior of yiséesn in the time direction is
coulombic and confining in the remaining four directions.

Our work is organized as follows. In section 2 we present tt®a of the model and the
observables, the helicity modulus and the Polyakov liret, we use in order to characterize the
phase diagram of the model. In section 3 we analyze the systdra three limiting cases: 5D
anisotropic forT’ = 0, 5 = 0 andL, = 1. Finally in section 4 we present the phase diagram
for the 5D anisotropic model at finite temperature and inipaldr for L, = 2.

2 The model

2.1 Definition

The five dimensional anisotropic U(1) gauge model with twapimgs, 5 and 3, at finite
temperature is defined as :

Sobe =08 > (1=Re(Uy(x))+5 Y  (1-Re(Uu(z))+
z,1<u<v<3 ,1<u<3
B Y (1—Re(Uus(x +521—36Ut5( ) (1)
z,1<u<3

3We recall thafl’ = 1/L, in lattice units.



where

U () U,(2)U, (z + as/fL)U;(x + as0)Ul(x)
Un(z) = Uu2)Ui(z + asp)Uf(x + aid)Uf (z)
Uss() = Uua)Us(x + as@)Uj (2 + as5) Ul (x)
Us(z) = Ulx)Us(x + ad)Ul (z + asb)Ul (z)

are the plaquette variables defined on the 4d-subsgdges = 1,2, 3) - t} and planes con-
taining an extra, fifth dimensiornz{). With an obvious noatation we call these plaquettes as
P,, Py, P, and Py;.

The link variables are defined as

Uu(x) = ei0u(@) Uy(z) = %) and Us(z) = ¢95(@)

Let us make the notation clear. The action is defined in anidsh lattice volume, namely
V = L; x L? x Ls in lattice units.L; is the compactified temporal dimension which is related
to the temperature through the relationship

1
B Lay
We denote withu, the lattice spacingl., is an integer numbetr,,_, - 5 are the usual "infinite”
space dimensions and finally is an extra, fifth dimension, which we consider to be infinitd a
equal toL,. We assume periodic bourdary conditions for the U(1) gatedé in all directions.
The proclaimed anisotropy of the model has nothing to do with"time” direction. In this
model the lattice spacings,a; are equal. The anisotropy is introduced through the intienac
along the extra direction. So, we have= a; = a anda; # a whereas is the lattice spacing
related to the extra dimension.

In our model the gauge couplingsand 5" are generally independent from each other and
the coordinates. The lattice spacing is determined fronvahee of the couplingg and3’. In
some cases we can have a coordinate dependence and it Blpdssilate them with extra
fields, as in the brane model [2,/3,/17]. In terms of the comtmdields the link angle®,,, can
be written as :

T

(2)

GM(Jf) = CLJMAM(ZC)
where A, (z) are the gauge potentials [3, 8] and withwe denotel/ = (¢, i, 5). In the naive
continuum limit(a, a; — 0) we define:

2

8= a—g and g’ = —Z
95 9505

wheregs is the bare five-dimensional coupling constant for the gdigd@ The resulting con-
tinuum action takes the standard form:

1 —2 — — —
Sgauge = /d%?FMN . Fyun =0uAn — OnAw.
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Note thaty? has dimensions of length and is related to a characterisile $or five dimensions.
The previous expression does not exhibit any anisotropyl.atHHawever, the results that we
present below indicate that the anisotropy may surviveactmtinuum limit.

2.2 Observables

We now proceed to the introduction of the observables,hegauge invariant quantities which
are used for the study of the model.

2.2.1 The helicity modulus

Among the quantities used to distinguish the various phaisdshe respective phase transitions
in a statistical model the ones that attract the most atieratre the so called order parameters.
Their great significance comes from the fact that they disptampletely different behavior
between the various phases. Their "thermal average” is @erthe one side of the transition
and moves away from zero on the other side. For the case offaicgaCoulomb transition

a quantity with the properties of an order parameter is thieityemodulus (h.m). It was first
introduced in the context of lattice gauge theories by Palerand and M. Vettorazzo and it
characterizes the responce of a system to an external flisx.zéro in a confining phase and
nonzero in a coulombic one[13].

Let us consider our five dimensional system wWith,, L,, L,, L., L5) and let us choose a partic-
ular orientation, for examplé, ). Through the remaining orthogonal directions it is defined
a stack ofL, x L; x L; plaquettes parallel to th@:, ) orientation. In order to study the re-
sponse of the system to an external static field we assumedkente of an external fluk
through this stack of plaquettes. By a suitable choice aabée transformations we can spread
the flux homogeneously over the parallel planes. In othedsjore can add the constant value
of ¢p = % to each of the plaquettes of the given ¢) orientation. Also we can impose
an external flux by changing the boundary links using twistedndary conditions instead of
using pure periodic [13, 18]. The partition function, in fhresence of the external flux, is:

Z(®) = / Dfe=5®) 3)

S(0;®) =—p Z cos (0, + %) —p Z cos(0z)

(pv)planes (pv)planes

5 Y cosul@) Y cos(ls(x))

2, 1<pu<3 2, 1<pu<3

- Z cos(bi5(x)) 4)



wherey_ ., ianes 1S the sum over the plaquettes of the given orientatjan), containing the
flux andy_ ;) 1anes its complement, consisting of all the plagquettes that reethunchanged
(plaquettes belonging to the other planes).

¢, From the partition function we can obtain the flux depenttestenergy

F(®) = —In(Z(®)) = —1In (/ Deesw%@)) (5)

An important observation is that the partition functig®) of equation (3) and hence the flux
free energy is clearlgr periodic . So, the extra flux we impose on the system is defingd o
mod27).

In the confining phase the flux free enegyd) is constant in the thermodynamic limit because
the correlation length and the effect of the external fluxtigh the twisted boundary links is
exponentially decreasing. On the contrary, in the Coulohdsp we have an infinite correlation
length, so the influence of the twisted boundary conditisrexiended to the full extent of the
system. As a result we have a nontrivial dependendg(df) by the external fluxp.

The helicity modulus is defined as

02 F(®)
02

h(B) = (6)

$=0

and it gives a measure of the curvature of the free energyi@eohund® = 0. From the above
equation and for various choices with respect to the oriemtadue to the anisotropy of the
model, we have:

ha(B) = ﬁ <<Z(5008(%))> - <<Z<5sm<m>>>2>) ()

Py

he(B) = ﬁ <<Z(ﬁ cos(em>>> - <(Z(ﬁ sin(em>>>2>) ®)

Pst Pst

hs(8) = ﬁ (<Z<6’ cos<0u5>>> - <<Z<5’ sin<0u5>>>2>) (9)

!

his(8) = m (<Z(5' COS(9t5))> - <(Z(5' sin(9t5)))2>> (10)

Now, consider for the moment the classical limit & oo) for the action (4) where all the
fluctuations are suppressed. In this limit the flux is distiélal equally over all the plaquettes
of each plane and it does not change as we cross the paralhaslif we expand the classical
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action in powers of the flux, since in the thermodynamic lithé quantltym is always small
, we find:

Vsp 1 Vsp

+ ConStan Fcassica (I) - Fcassica 0 = 3 (I)z
(LuLy)z t:'> | ( ) | ( ) 26 (LHLV)2

1
Sclassica(q)) = 56(1)2

whereV;p = L, L, L,L,Ls is the 5D lattice volume.

The above expression for the free energy, F, holds all thewpato the phase transition,
where fluctuations are present, if one only replaces the dmupling by a renormalized cou-
pling, 8 — Bgr(pB) (for details see [18, 13]):

Br LyLyLs
F[ﬁnneﬁ](q)) - F[finiteB](O) = 7(1)2 ﬁ (11)
¢,From the Egs. (6) and (11) we have for the “spatial” h.m
hs(B) ~ BrLs (12)
and following the same steps, we can get the scaling refarthe remaining quantities:
L2
ha(B) ~ B (13)
t
hes(8) ~ BrLi (14)
i ! L2
his(8) ~ B (15)
t

Although the arguments presented above are based mainlyeoddssical approach, this is
indeed the case in the Coulomb phase and the helicity moplpliel for the five dimensional
system behave exactly as the above equations predict.

2.2.2 Polyakov loop (or Wilson line)

For the evaluation of the potential between a static quatlgaark pair at zero temperature,
the study of the ground state expectation value of the Wilsop for large Euclidean times is
needed. When the temperature is non zéro{< L, as opposed to the former case) the same
information is obtained by using a different quantity whislthe Polyakov loop or the Wilson
line. It consists of the product of link variables along ttggpcally non-trivial loops, winding
around the time direction due to periodic conditions.

Ly
Pt(ﬁa 'I’L5) - H Ut(ﬁa nt7n5)

ntzl

P = % S Py, ns) (16)

s (ﬁvn5)
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where{n}eZ° denotes a lattice site.
Physically, the expectation value of the Polyakov loop deiees the free energy of a system
with a single, static heavy quark, measured relative to #ueium:

(|Pef) = et (17)

where|P| is the absolute value of P anrd - - - > the statistical average value evaluated using
the action of equation (1). The above relation holds evehémpresence of finite mass quarks
coupled to the gauge potential with the only difference thdhat case the expectation value
has to be calculated using the finite temperature actionribltdes the dynamical fermions.

The Polyakov loop is somewhat the world line of a static quar& Wilson loop and that
suggests that the free energy of a quark-antiquark paitdda(n}, ns, ) and(ns, ns,) respec-
tively is given by the correlation function of two such logpsth bases at the aforementioned
points and having opposite orientations. Consequentlyave:h

<Pt1 (n_i’ ns, )P;; (7{’2’ n52)> — e—Lthq({Tﬁ,nsl }i{nz,msy}) (18)

keepingL; constant.
For large distance separation of the quark-antiquark paisgsuming that the correlation func-
tions satisfy clustering, the above expression reduces to

(P (071,05, P (073, m,) ) — | (B) [ for | R — 00 (wherel = {1, ns, } — {153, m5,})
(19)
which is just the self-energy of two isolated quarks.
In the confinement phase the correlation function of the &ay loop decays exponentially for
large distances:
(PAO)PI(R)) ~ e~ HeoIR (20)

giving a linear potential with string tensienand F,; ~ o|R|.

The flux free energy,; increases, in general, for large separation of the quartkeinonfining
phase, giving eventually |P;| >= 0 andF,; = oo in the thermodynamic limit. We interpret
< |P;| >= 0 as a signal for confinement. If we hawe|P;| > 0, then the free energy of the
static quark-antiquark pair tends to a constant value diad separation of the heavy charges,
as shown in Egs. (18) and (19), and this is a signal for decemi@nt. In other words, the ex-
pectation value of the temporal Polyakov loop serves asa@ar @arameter in finite temperature
gauge theories.



3 Three limitting cases

3.1 The zero temperature case

The five dimensional anisotropic U(1) gauge model, at zenperature, was first introduced by
Fu and Nielsen J1] as an attempt to offer an alternative wagctoeve dimensional reduction.
Since then many numerical investigations of the model haenlmade [15, 16]. As we have
already noted in the Introduction, the interest in this cerfnem the fact that the anisotropy of
the model produces a new phase, the so called layer phaseh wdm serve as a mechanism
for gauge field localization on a brane. We can induce thisaropy to the gauge coupling
using, for example, the Randall-Sundrum metric backgraoritve dimensions. The effect of
the warp factor from the RS background or a general antiitter$AdS;) background on the
U(1) gauge theory is to provide the gauge theory with a dffieigauge coupling in the fifth
direction([3]).

In Fig. 1 we present the phase diagram of the theory. It censighree distinct phases. For
large values ofs and 3’ the model lies in a Coulomb phasg) on the 5-D space. Now, if one
keepss constant and bigger than one and at the same time lets decfeasie will eventually
come across the new phase, the layer phasenhere the forces in four dimensions will still be
Coulomb-like but in the fifth dimension the confinement isserat. For small values gfands’
the force is confining in all five directions and the corregfing phase is the Strong pha$).(
The properties of the three phases can become more transpaterms of two test charges.

The phase diagram for zero temperature

&
1.8 % i
16| g ]
14+ Layer g Coulomb 1
12 | i
@ &
1 OO OO 1
&
08 | <& O i
¢ o
06 | <& & .
Stron O
0.4 9 <& > 4
02 0 o‘.2 (;.4 0‘6 o‘.g ‘1 1‘.2 1‘.4 16
B

Figure 1: The phase diagram for the 5D anisotropic U(1) gaugdel at zero temperature.
Three phases are present: Strong confining phase, 5D Coyloase and the Layer phase.
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In the Coulomb phase the force between two heavy charges Gailbmb-like, and becomes
the exact five dimensional Coulomb law in the diagonal linefireed by = /' for which
no anisotropy appears (for a numerical investigation/she Jhe completely opposite picture
emerges in the Strong phase. There the force is confining fivaldirections giving infinite
energy for the separation of the test charges in any dimectidow, two test charges in the
layer phase will experience a Coulomb force in the four disn@mal layers, with the coupling
given by the four-dimensional coupling there are strong indications of the similarity with the
usual 4D Coulomb law (seel[4] for details), while along thehfdirection the test charges will
experience a strong force as the corresponding couplitakes small values. This means that
charged particles in the layer phase will mainly run onlyngl@ layer since in an attempt to
leave the layer in which they belong they will be driven baglkabinear potential, analogous to
the one responsible for the quark confinement. This is théharesm on which the gauge field
localization scheme is based.

Now we would like to sketch the three phases in terms of thieibhemodulus. In the zero
temperature casd.{ = L, = Ls) we are left with only two possible choices. Instead of the
Egs. (7)-(10) we have:

hs(B) = (Lu%)z <<Z(ﬁ COS(9uu))> - <(Z(ﬁ Sin(‘guv»)2>> (21)

hs(8') = (Lu%)z (<Z(6’ COS(GH5))> - <(Z(5’ sin(9u5)))2>) (22)

The first onehs(/3), is used to probe the response of the system to an externah tle spatial
planes (belonging to a 4d layer) while the second @gé&3'), is used in a similar way for the
planes containing the extra, transverse direction.

(i) In the Strong phase (keeping) constant) the space-like helicity modulus vanishes (which
is a clear signal of confinement); as we approach and evénjpeds the phase boundary it
becomes non-zero in the layer phase with a value that appeedcass increases further. On
the other hand, the transverse him(3’), remains zero throughout the transition since both
phases exhibit confinement in the fifth direction.

(i) For the transition between the 5D Coulomb phase and dlgerl phasehs(5) retains a
value close to 1 for all values ¢f , since the four dimensional layers experience already a
4d Coulomb-like phase, while;(3') vanishes for the layer phase; as the system crosses the
critical point and enters the Coulomb phase it grows towéras3’ increases further [4, 15].

3.2 Thes = 0case

On the axis defined by’ = 0 we consider the four-dimensional U(1) model. In this sectar
intention is to strengthen the arguments given in referefit&]. We present numerical results

11



showing that we have a Coulomb phase only for T=0, in accaelamth Fig. 12 of [13].
Our findings contradict the ones of ref. [12] that stipulates existence of a Coulomb phase
for L, > 4 and$ > p.. The numerical results presented below show that we havatakp
confinement phase when the spatial lattice gizgets big enough, compared to the temporal
sizel; (Ls 2 4L;).

This behavior can be understood, following closely the [E3], using simple theoretical
arguments. In order to have(/5) ~ 0, one must have at least two monopole loops (far apart)
winding around the time direction with opposite orientao A non contractible time-like
monopole loop can, in principle, disorder all the spatiahgls in the lattice. The probability to
have one such loop passing through a given lattice site ugjhly, e="m(®)le  wheren,o.(3)
is the monopole mass. So the condition to achieve a probabflorder 1 for a system to con-
taining one (or two) wrapping monopole loops, is:

L3 x emmmonl®Le ] = [~ e Fmmon(8) = [~ o508 23)

sincem,.(3) is of order/3. Now, starting from the above equation we can make two state-
ments. First, it predicts a pseudocritical couplifig ~ log(Ls) which was verified by our
measurements and second, that as we go to smaller tempsrévigger’,), for sufficiently
large L, EqQ. (23) is satisfied; hence the spatial planes becomes etehptisorder and the
Coulomb phase disappears.

3
V=2Xx Ls
0.9 T T T T T ]
Le=4 — T
08 | Ls=8 oo +'*'§§ gﬁ,,g@:é»ﬁ |
B
07 7LS=16 [ +r%§§
Ls=2 4. o #g
06 |- s
i B
N os| /! ;3
— IR
o i
v 4T .
03 o
02 # K
e rR
0.1 - x * x
» S S
04 0.6 058 1 12 14 16 1.8

Figure 2: The mean value | P;| > of the temporal Polyakov loop fgi' = 0 and temporal size
L, = 2. < |P| > goes to zero in the confining phase far — co. In the deconfinement phase
(B > B.(Ly)) < | P,| > is non-zero, approaching the value of onesascreases

In Fig. 2 we show the mean value of the temporal Polyakov 1Bdp) for L, = 2. There
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is an obvious continuous phase transition from the confipimase(s < 8. ~ 0.90), where

< | P > is zero, to the deconfining phase wheréP;| > approaches the value of one. In the
confining phase the free energy of a single static chargajwelto the vacuum, goes to infinity
with L, while it gets a positive value in the deconfining phase whighishes ag increases.
The mean value of the temporal Polyakov loop remains alwagsaro in the finite temperature
phase as we switch gfi. This is the case presented in section 4. However this o@fanpeter
does not help us to characterize further the nature of tHerdift phases. We arrived at the
conclusion that the helicity modulus is a more promisingriiiato study in detail the phase
diagram.

v=2xLS® V=6xL>
L =, : . : 45 . : T
s~ = LS=8 — -
2] Le=8- P N Lg=16 -« - -
Ls=16 * - 35 Lg=24 - - -
10 fLs=24 - - R L
A 3 -
a” . ™ e X
8 % — I 25 - x
—~ A T P~ x oe
[Sa) )4 A (o) g *
= s o el ~ 2

Figure 3: The temporal helicity moduliis for L, = 2 (a) andL, = 6 (b) ands’ = 0. Results
from three different volumes are present. The valué,ahcreases with., in the deconfine
region, fors bigger than a critical value, again with accordance withsteding predictions of
section (2.2.1). The transition fdr, = 2 is continuous, as opposed to the = 6 case, where
we have a discontinuous behavior.

In figure 3 we present our results for the temporal helicitydoash, (/) for two different
“temperatures’.; = 2 andL, = 6. The temporal h.m is zero in the confining phase o«
B.(L;) and non-zero fos > (.(L;) in the deconfining phase, indicating coulombic behavior.
The signal forh, (/) in the deconfining phase& (> 5.) is being enhanced with increasiiig,
following the scaling relatior; ~ i—t The transition point has only a weak dependence from
the lattice volume showing convergence to a critical valud.;) with L,. We see that,.(L;)
tends to smaller values ds decreasé%.Another noticeable difference is the behaviohgin
the critical region. For.; = 2, h,(/3) goes continuously to zero whehapproacheg, from
above. Forl; = 6, on the other hand, thie, has an obvious discontinuity @sapproaches,

48.(Ly = 2) = 0.9008(3), B.(L; = 4) = 1.00340(1) and3.(L; = 6) = 1.0094491(1). The results are taken
from ref. [13].
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and the volume increases. This behavior indicates a differeler for the phase transition, a
second order phase transition for= 2 and a first order for,, = 6 (for details see ref| [13]).

In Fig. 4 we show the spatial helicity modulag(j5) for L, = 2 and spatial lattice sizes
Ly = 4,8,16 and 24. The spatial helicity modulus is zero fosmaller than a critical value
B.(Ls) that depends strongly aii,. We shall refer from now on t6.(L,) as the pseudocritical
value, to distinguish it from the real critical value 6fthat comes from the temporal helicity
modulush,(5). Forg > B.(Ls), hs takes non-zero values, increasing linearlyaakes bigger
values . On the other side, the magnitude of this quantityedeses according to the raﬂof—;,
as we increasé; and tends to zero fob;, — oo. The pseudocritical valug.(Ls) increases
with L, aslog(Ls) [13] and the ratiol% tends to the value 0.5 fak, > 16. In this way
B.(Ls) goes to infinity when;, — co. As a result the spatial h.m is always zero in the infinite
volume limit and as a consequence we have a spatial confihiagep

V=2x Ls
0.7 T T T T
06 L5=4 +
SF L =8 .
S *
- +
05 |Ls=16 - = Lt
LS=24 e L
04 =
+
~_ x X
~ 03 = X )
. r *
n £ R
X %
02 E3 x *x***’
. o XK *
X e
=]
01t = % ; FELLES i
g % _ 1
ot et npyRemiabey8800tohg ]
I
-0.1 L L L L L L L
0.4 0.6 0.8 1 12 14 16 18 2

Figure 4: The spatial helicity modulus for L, = 2 and3’ = 0, versus the four dimensional
coupling 3. The pseudo critical value ¢f increases very fast, towards an infinite value, as
the spatial lattice sizé, increases. The shift of the transition region to bigger e@alafj is
obvious even in the smaller volumes.

Finally we study the spatial helicity modulus fby = 4 and L, = 6. The results are shown
in Figs. 5(a){; = 4) and 5(b){.; = 6). We have, in general, the same situation aslfor= 2.
There is a pseudo-critical value ofthat moves to larger values ds increases showing a
strong dependence dn. The signal for; = 4 is clear only forL, > 16. For L; = 6 it seems
that L, = 16 is not enough but fol.; > 24 we get a clear displacement 8f( L) to the right.
In the regions < S.(L,) the spatial helicity modulus is zero (confining region). Bas . the
spatial h.m scales witk % and tends to zero fak, — oco. If we examine thd., = 8 case for
example, we would probébly need volumes bigger than323 in order to get a clear picture

14



of the behavior of the system. From the previous observatigncan say thdt,(5) is zero for
every value of3 in the infinite volume limit, and consequently, we have sggatbnfinement for

all temperatures different from zero.

We conclude that the phase diagram onthé& = Lit plane has three phases: a confining
phase for3 < .(L;), a temporal Coulomb - spatial confining phasefor (.(L;) H and the
pure Coulomb phase far, — oo andg > g. [13,[14].

v=4xL® v=6xL>
0.6 T T T 0.9 T T
Ls=84»7 08l Ls=84»7
05 fLg=16 - oo | Ls=16 <
Ls=24 -=- ) =24 -
s el Ls=24
Lg=32 -

hs(B)

Figure 5: In figures (a) and (b) we present the spatial lnfor 3 = 0 and different temporal
sizes,I;, = 4 and L, = 6, for a variety of spatial volumes. The size bf decreases with
L, whenj takes values bigger than the pseudo critical value, as @ezlin section (2.2.1).
The transition region moves clearly to the right as the vauncreases, in agreement with the
L, = 2 behavior.

33 Li=1

In this case the temporal link is a Polyakov loop by itself afidourse it is a gauge invariant
guantity. The temporal plaquette becomes:

Our(2) = 0,(x) + 0:(x + 1) — O () — Ou()
The two spatial links cancel each other, so in the U(1) casgetie
O,(x) = Oi(x + 1) — 0:()
The contribution to the action is:

Sp==B Y cos(bi(x+ ) — bi(x)) (24)

2,1<u<3

5This phase is usually called deconfining phase.
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The same applies for the “temporal-transverse” plaquettes following the same steps as
above we find that their contribution to the action is :

Sy =—B> cos(by(x +5) — b()) (25)

From the above equations it can be observed that the templapiettes decouple from the
space and transverse ones. Equations (24) and (25) deactD&XY model with anisotropic
couplings(3, #'). The three spatial links and the fifth, transverse link forseparate four di-
mensional anisotropic U(1) gauge theory with two coupljands’. As a result the partition
function of the model reduces to:

Z(Ltzl) = Zanisotropio;nfxy X Zanisotropio;mU(l) (26)

and it describes two independent lattice field theories.

The anisotropietD — XY model, fors" = 0, reduces to the three dimensiod&y¥ model
which has a second order phase transitionfox 0.4542 [19]. The phase transition line
continues to thé3, ') plane for smaller values gf as3’ increases and the critical value @f
seems to tend asymptotically to the value of 0. Bagoes to infinity

The 4D gauge model fob' = 0 reduces to a three dimensional U(1) gauge theory which
is always in the confining phase. In the, ') plane we have a critical line which separates
the strong confining phase from the four dimensional Coul@imhse. If we move along the
diagonal, for example, where = 3, we get the usual weak first order phase transition for
= =1.001113[20,[15].

The above discussion can be summarized in the three dinmahgtot of Fig. 6 . The
vertical axis is for the temperature given in terms of thedite variablel;,. The upper plane
for L, = 1 corresponds to "infinite” temperature while the lower pldoe L, = L5 = L,
corresponds to the zero temperature case.

4 Study of the phase diagram forL; = 2.

In five dimensions the phase diagram at zero temperatureda @i Fig. 1H For0 < 3 < 0.40
and =~ 1. there is a critical horizontal line in the phase diagram ss#p#y the 5D strong
confining phase from the layer phase. Bor 1 andj3’ ~ 0.35 there is a critical vertical line
that separates the layer from the 5D Coulomb phase. Outtiotein this section is to explore
the effects of finite temperature on our system and the mgsbitant, the feasibility (if any )
of a layer phase, through the study of the changes in therafargoned phase line boundaries

8For example, for the 4IX'Y model the critical value is at = 3 = 0.29(1) (see Fig. 6).
"Lower plane (/L; = 0.0), see Fig. 6.
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Figure 6: Three dimensional phase diagram of the model, ¢higcal axis (/L,) represents
the temperature. We present the critical curves for thesthneiting cases (), and(C’; are the

four dimensional and the five dimensional Coulomb phasgsentsely. L stands for the layer
phase at zero temperatui®, is the temporal Coulomb - spatial confining phasefot= 0.

and the phases themselves. To that end we move, first, omthé li= 0.20 in order to study

the strong-layer phase transition at finite T; we know that#o= 0 (subsection 3.2) there is
phase transition fog ~ 0.90. Second, we move along the life= 1.10, in order to study

the layer-Coulomb phase transition at finite temperﬁu!ke.we will explain in section 4.2 and
using the Figs. 4 and 7 in order to have a clear picture of thexder of the system for bigger
values of3 we need even bigger five dimensional volumes than those thatam presently
achieve.

Using the results presented in the two following sectionsamre argue that the layer phase
disappears for,; = 2 and becomes a deconfined phase with new properties whictbavill
described below. We can also generalize the arguments grttiegathere is no layer phase in
finite temperature for any temperature different from zdrbe existence of the layer phase is
based strongly on the existence of the Coulomb phase fer0. However there is no Coulomb

phase for3’ = 0 atT # 0 as itis argued in ref[ [13]. We also confirm this result (sdesgation
3.2).

8We refer to the case of the plafe, 8') at1/L, = 0.5 in Fig. 6.
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4.1 Moving along the lines'=0.20

We begin the investigation of the 5D anisotropic pure U(l)ggmodel at finite temperature
with what used to be called as a 5D strong-layer phase transit zero temperature (Fig. 1). We
utilize the helicity modulug(3), h. () in order to bring out the features of the transition and
compare them with the T=0 artl = 0 cases. As it is shown in Fig. 3 the first deviation from
the zero temperature case comes from the fact that now,ahsition line boundary between
the two phases, is found at a lower valugiof 0.90 in contrast with the value of = 1.001113
for T' = 0 case. Another observation is that the values obtained logreeeningh,(5) are of
the same order of magnitude as the ones, forthe 0 case; the only difference is the slight
movement of the critical region to a value between 0.85 a@d.0.

Moving now to a discussion of Fig. 7 and the spatial helicitydulush,(3) we encounter
many similarities with the results of subsection 3.2 :
i) There is a pseudocritical value.(L,) for each lattice size, witth; equal to zero for3 <
Be(Ls), signal of spatial confinement. For> 5.(L;) the spatial helicity moduluk, increases
with 5, as one would expect from a Coulomb phase. But the trangioamt moves to higher
and higher values of as the spatial extent of the latticé,j grows. What we see here is only
a finite size effect that ceases to exist in the thermodyndmie> oo limit.
i) The magnitude ofh (), calculated on a single 4d layer, decreases WitHor the same
value of g for 3 > f.(Ls), following the ratio~ LL So we expect, as in the 4d case for
3" = 0, that the spatial helicity modulus tends to zero for all eslofs asL, — oo (indicating
spatial confinement); the phase transition to a Coulombeptissppears together with the layer
phase in the infinite volume limit. We mention also that thatgd-transverse helicity modulus
(hss5(B)) remains zero throughout the transition.

B’ =0.20 4d-layer

0.7

Ls=4 "——
0.6 | Ls=8 v

LS=16 -t
05

L x
0.4 Lo X

X
)=

03
x X *
~ 02} 3 % 7

0.1 - I

01 *

-0.2

-0.3

Figure 7: The spatial helicity modulus is strictly zero for each volum& = 2 x L? until
the pseudo-critical valug.(L;) is approached. Fo¥ > §.(Ls) the h tends to zero a%; for
constants.
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In Fig. 8(a) we present the temporal helicity modulys also, in Fig. 8(b) we present
the temporal-transverse helicity modullyg versusg, for three different volumes. The two
guantities have the same behavior: both take values equaktofor s < 0.85 and non-zero
for § > 0.85 and they increase with the lattice sizg, indicating a coulombic behavior in the
temporal direction. We also note that the Polyakov loop entdmporal direction, a result not
shown here, is zero fgf smaller than a critical value/f. ~ 0.85) and tends to one fo# > £..
The transition, for the three quantitiés, h,; and< |P;| >, concerning the strong confining
phase ¢ < 0.85) to the deconfining phasg (> 0.85) is a continuous one . Although we do not
analyze further the order of this phase transition we maggtigat it may not be the case of a
first order phase transition.

All of the results obtained so far advocate to the disappea@f the layer phase at fi-
nite temperature. The layer gives its place to a phase slgaavoonfining behavior in the 4d
subspaces (formed by the three spatial coordinates andahgverse one) and a coulombic
behavior along the temporal direction.

’ ' 4
B =0.20 4d-layer [3‘ =0.20 Y=2 X L;

T T T T T p
= - . *
Ls'4 —— Ls‘4 —— .
— PRV *| - [Ev— *
0l Ls—8 x e 01 LS_8 *
Lg=16 -« L Le=16 -x-
* #
8 0.08
— 6 ~~ 006
= Q
. X =
= . x X 2
< 4t x X L o004
e %k xox oo x XXX 0
S 0.02 ? . X X
+ Tt E3
¥ I Foos
0 * 0 g R B ®
2 . . 002 . . . .
0.4 0.6 08 1 12 14 16 0.4 0.6 0.8 1 12 14 16

Figure 8: The temporal helicity modulus (a) and the temporal-transverse helicity modulus
hss (b) for L, = 2 and3” = 0.20 versusB. Theh, is evaluated on the 4d-subspacés ¢ L?)
and scales a&, for 5 > (.. Thehy is evaluated on the whole lattice and scaled agor

B> Be.

4.2 Moving along the lineg = 1.10

As we have seen in the previous sections the system undeago@#inuous phase transition
from the strong, confining phase, to a new phase. The trangitint fors" = 0 is shown to be
B. ~ 0.90 and for3" = 0.20 it is slightly smaller being in the interval85 < 3, < 0.90 region.
In order to study the nature and the extent of the new phaseha@se to keep fixed at the
value of 1.10 and leg’ to vary. In Figs. 9(a) and 9(b) we present the spatial hglitibdulus
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hs(") and the spatial-transverse helicity modulys(3’) for three values of the volume. The
hs andh,; are zero, within the statistical error, f6r smaller than 0.445 signaling disordering
in the spatial and transverse directions. This phase isdhtruation of the3' = 0 phase to
non zero values of . The 3d U(1) theory obtained through dimensional redudiors’ = 0,
is extended (fop < ' < 0.445) to a 4d dimensionally reduced U(1) theory in the confining
phase. We observe that the layer phase, consisting of a natrdn of 4d Coulomb phase and
confinement in the extra dimension, becomes a deconfine@ phas
There is a critical region defined in the interval445 < 5 < 0.450) in which a finite
discontinuity in both quantitiesi{, h.s) is shown up . FoB' > /3. the spatial helicity modulus
is non zero and almost constant which is a characteristic@b@omb phase. The value of
hes(B) increases linearly witls', following the lattice weak coupling expansion, approaghi
hs(ﬁ') asf — B. The values oh, andh,; in Fig. 9 are divided by, and are independent of
the spatial lattice siz&,. The spatial helicity modulus gives the renormalized cgpt, = e%
of the 5D U(1) theory in the Coulomb phase which is fixed by taki& of 5 = 1.10[4]. "’
The temporal and the temporal-transverse helicity moduhet shown here), remain non
zero and increase with'. Also the temporal Polyakov loop is non zero which is a sigria
finite temperature phase.

5D B=1.10 5D = 1.10
09 : : : : T : 07 : : : : T T
0.8 ’LS=12’_'_‘ TR, 7 o5 ,Ls=12
07 [ Lg=16 < B Lg=16 -
06 | Ls=20 = 05 1 Lg=20 -
. 05 - 1 - 04
“en 04f (o)
=) S o
03 [7/]
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0.2 1 02 "
01 B 01
o 1 whop 2 X,g%(
I 0 s
o1
R o1 0z 03 oa , os o5 o7 o8 09 ) 01 02 03 04 05 06 07 08 09

Figure 9: The spatial helicity modulus (a) and the spatatgverse helicity modulus (b) as a
function of 3’, measured for the temporal lattice size= 2. The critical value of3’ remains
constant with the lattice volume.

By close inspection of Fig. 43 = 0) and Fig. 7 ' = 0.20), it becomes obvious that for
a constant value aof the spatial helicity modulus is non-zero for some of the nuds that we
used and it vanishes as the spatial volume increases beyaefthae value. Fog = 1.10, for
example, the lattice size, = 16 is enough to show the correct thermodynamic limit behavior.
If we move to larger values of, like 5 = 1.40, we have to use a spatial size of the order
L, > 24 in order to find the correct behavior. This is beyond our quro®mputer capabilities.
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In Fig. 10 we sketch, roughly, the phase diagramipe= 2 in the (3, 5') plane. There are
three phases with different behavior of the observablessed:u

1. 5D confining phase with?, = 0, h; = 0, hys = hys = 0 andh, =0
2. Finite temperature 5D Coulomb phage:# 0, hy, hg, hys andhgs # 0

3. Dimensionally reduced 4d confining phase-temporal Guobl®; # 0, h; # 0 ,hy; # 0

andhyg, hys = 0
1.4 T AN
13 |
12+ Puhyhigz0 A finite temperature
hg,hg5=0 5D Coulomb phase
1 = Pohg.hpheshis? O
1 VAN
(ea
094 N N A R
NN
08 5D confining phase A
Puhg,hyhgs,his=0
0.7 A
06 - A
05 . . . . .
0 0.2 0.4 , 0.6 0.8 1

Figure 10: A rough sketch for the phase diagram of the modelfo= 2. There are three
different phases, a 5D confining phase, a 5D Coulomb phasaiia femperature and a new
one characterized as temporal Coulomb-4d confining.

From the discussion in section 3.2 f6r = 0 we argue that the critical temperature for
the appearance of the phase diagram of Fig. 10 it is the zerpeature. The reason is that
the layer phase strongly depends on the existence of the ptaassition in the Coulomb phase
for 5© = 0. All the results we have presented in section 3.2%For- 0 and3 = 0 point to
a 3d confining phase, in the infinite volume limit, fdrlarger than a critical valug.(L;). A
Coulomb phase does not seem to be the case. From this anag/sisnclude that the phase
diagram presented in Fig. 10 is reproduced for every tenyrerdigger than zero. Especially
for 8 > B.(L,) and0 < 3' < S.(L,) we have a 4d confining-temporal coulombic phase instead
of a layer phase. Two charges are not anymore localized (@a)fion a three dimensional
subspace (brane) but the temperature gives the possililitaving interactions between the
neighbor three dimensional subspaces. It seems that thergva characteristic correlation
lengths in this deconfining phase. The correlation lengtbrgby the spatial string tension and
a second one characterising the thickness of the brane lgyvéte interaction in the transverse
direction and the temperature. We did not study quantgatithese two correlation lengths at
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finite temperature but we may easily see from the Fig. 6 whapéas in two limiting cases.
For L, = 1 (infinite temperature) we have a 4d U(1) gauge theory in tlengtconfining phase
and the two correlation lengths are indistinguishable gmut@ach each other. For the zero
temperature case on the other hand, there is no spatiaj gtnsion; we get a massless photon
on the branes. Note that in this case the branes are chazadtey zero thickness. In between
these two limiting cases we expect a continuous change ihghavior depending strongly on
the temperature.

5 Discussion

The extra dimensional models, like the brane models, arkstvglied mainly in the zero tem-
perature case. But if we imagine that our brane world is a giatthe Universe history then
a study of the brane models at high temperature is requiredhi$ paper we tried to do a
first approach to this open problem, namely the behavior afidmodels in high temperature
(though neglecting the gravity effects). We believe thattoy model of five dimensional U(1)
anisotropic lattice gauge theory has all the required esd@maracteristics. This model has a
very rich phase diagram with respect to the temperatureti@egiscussion in Sections 3 and 4)
summarized in Figures 6 and 10.

Concluding we could note that the layer phase for zero teatpey (with a massless photon
on the brane and confinement in the extra dimensions) giggdate to a deconfined phase
at non-zero temperature. In this phase the three spatiardiilbons and the transverse one
form a 4d subspace with confining properties, while the tempdirection shows a coulombic
behavior.
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