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Abstract

Within the Hamiltonian approach in Coulomb gauge the ghost and gluon propa-
gators are determined from a variational solution of the Yang–Mills Schrödinger equa-
tion showing both gluon and heavy quark confinement. The continuum results are in
good agreement with lattice data. The ghost form factor is identified as the dielectric
function of the Yang–Mills vacuum and a connection between the Gribov–Zwanziger
scenario and the dual Meissner effect is established. The topological susceptibility is
calculated.

1 Introduction

The aim of the talk is the microscopic description of infrared properties of QCD like confine-
ment. We would like to see, for example, the emergence of the colour flux string between
static colour charges. For this purpose, I will use the Hamiltonian approach to Yang-
Mills theory in Coulomb gauge. The organisation of my talk is as follows: In section 2, I
will briefly summarise the essential ingredients of the Hamiltonian approach to Yang-Mills
theory in Coulomb gauge. Then I will present a variational solution of the Yang-Mills
Schrödinger equation in section 3, which will result in a set of coupled Dyson-Schwinger
equations. I will present the analytic solutions to these equations in the infrared and ultravi-
olet and the numerical solution for the full momentum range. The resulting propagators will
then be compared to the available lattice data. Then I will focus on two non-perturbative
properties of the Yang-Mills vacuum: the dielectric constant in section 4 and the topological
susceptibility in section 5. Finally, a summary is provided.

2 Canonical quantisation of Yang-Mills theory

In the canonical quantisation approach the gauge fields Aa
µ(x) are considered as the (carte-

sian) coordinates and the corresponding conjugate momenta are defined by

Πa
µ(x) =

δS

δ∂0Aa
µ(x)

, (1)
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where S is the action of the Yang-Mills field. The explicit calculation yields

Πa
i (x) = Ea

i (x) , Π
a
0
(x) = 0 , (2)

where Ea
i (x) is the colour electric field. To avoid the problems arising from the vanishing

temporal component of the canonical momentum, one imposes Weyl gauge Aa
0
(x) = 0. The

Yang-Mills Hamiltonian is then given by

H =
1

2

∫

d3x
(

Π2(x) +B
2(x)

)

. (3)

The canonical quantisation is carried out in the standard fashion by imposing the canonical
commutation relation [Aa

i (x),Π
b
j(y)] = δijδ

abδ3(x − y), which promotes the canonical mo-
mentum to the operator Πa

i (x) = δ/iδAa
i (x). By imposing Weyl gauge one loses Gauss’ law

from the Heisenberg equation of motion and Gauss’ law has to be imposed as a constraint
on the wave functional

D̂ ·Π(x)ψ(x) = −gρm(x)ψ(x) , (4)

where ρm(x) is the colour charge density of the matter fields and D̂ab
i = δab∂i + gÂab

i

(Âab = facbAc) is the covariant derivative in the adjoint representation of the gauge field
with fabc being the structure constant of the gauge group. The operator on the left hand side
of Gauss’ law is nothing but the generator of time-independent gauge transformations and
in the absence of external colour charges, ρm(x) = 0, Gauss’ law expresses the invariance of
the wave functional under space-dependent but time-independent gauge transformations.

Instead of working with explicit gauge invariant wave functionals it is more convenient to
explicitly resolve Gauss’ law by fixing the gauge. Coulomb gauge is a particular convenient
choice for this purpose. We implement the Coulomb gauge, ∂ · A = 0, in the standard
fashion into the scalar product of the wave functionals by means of the Faddeev-Popov
method

〈ψ|O|φ〉 =
∫

DA⊥J(A⊥)ψ∗(A⊥)O[A⊥]φ(A⊥) , (5)

where
J = Det(−D̂ · ∂) (6)

is the Faddeev-Popov determinant. While in Coulomb gauge the gauge field is transversal
the momentum operator Π = Π|| +Π⊥ contains both longitudinal Π|| and transversal Π⊥

parts. Resolving Gauss’ law for the longitudinal part of the momentum operator yields

Π||ψ = g∂(−D̂ · ∂)−1ρψ , ρ = ρg + ρm , (7)

where
ρg = Â⊥ ·Π⊥ (8)

is the colour charge density of the gauge field. With this result the Hamiltonian in Coulomb
gauge is found to be

H =
1

2

∫

(

J−1Π⊥JΠ⊥ +B
2
)

+HC , (9)

where

HC =
1

2

∫

J−1Π‖JΠ‖ =
g2

2

∫

J−1ρ(−D̂ · ∂)−1(−∂
2)(−D̂ · ∂)−1Jρ (10)

is the so-called Coulomb Hamiltonian, which arises from the longitudinal part of the kinetic
energy after resolving Gauss’ law. The Hamiltonian (9) was first derived in Ref. [1].
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Figure 1: Ghost form factor d(k) (left) and gluon energy ω(k) from the variational solutions
presented in [2].

3 Variational solution

We wish to solve the Schrödinger equation

Hψ = Eψ (11)

by the variational principle
〈ψ|H|ψ〉 → min (12)

with suitable ansätze for the wave functional ψ(A⊥). This approach has been studied
resently in Refs. [3, 4]. Inspired by the wave functional of a massless particle moving
in a spherically symmetric potential in an s-state ψ = φ(r)/r, where r = J1/2(r) is the
Jacobian of the transformation from the cartesian to the spherical coordinates for zero
angular momentum we choose the following ansatz [4]

ψ(A⊥) =
1

√

J(A⊥)
exp

(

−1

2

∫

d3xd3yA⊥a
i (x)ω(x, y)A⊥a

i (y)
)

, (13)

where the kernel ω(x, y) is determined from the variational principle (12). In practice the
so resulting equation for ω(x, y) is converted into a set of Dyson-Schwinger equations for
the gluon propagator

〈A⊥a
i (x)A⊥b

j (y)〉 = δabtij(x)
1

2
ω−1(x, y) , (14)

with tij(x) = δij − ∂i∂j
∂2 being the transverse projector, and the ghost propagator

G(x, y) =
〈

(

−D̂ · ∂
)−1

〉

= 〈x|d(−∆)(−∆)−1|y〉 . (15)

Here we have introduced the ghost form factor d(−∆), which describes the deviation of
the QCD ghost propagator from the QED case, where d(−∆) ≡ 1. The resulting Dyson-
Schwinger equations need renormalisation, which is well under control. Fig. 1 shows the
solution of the Dyson-Schwinger equation for the gluon energy ω(k) and the ghost form
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Figure 2: Left: Heavy quark potential given by eq. (18). Right: Running coupling constant.

factor d(k), as shown in Ref. [2]. An analytic infrared and ultraviolet analysis of the
Dyson-Schwinger equation shows the following asymptotic behaviour [4, 5]

IR (k → 0) : ω(k) ∼ 1

k
d(k) ∼ 1

k
UV (k → ∞) : ω(k) ∼ k d(k) ∼ k0 . (16)

At large momenta the gluon behaves like a photon, which is in agreement with asymptotic
freedom, while at small momenta the gluon energy diverges, which implies the absence
of gluon states in the physical spectrum. This is nothing but a manifestation of gluon
confinement. The infrared divergence of the ghost form factor is a consequence of the
horizon condition

d−1(k = 0) = 0 , (17)

which has been used as input in the renormalisation of the ghost Dyson-Schwinger equation.
This is a necessary condition for the Gribov-Zwanziger confinement scenario. In fact, one
can show there is a sum rule relating the infrared exponents of the ghost and the gluon
propagator and an infrared divergent gluon energy requires also an infrared divergent ghost
form factor, i.e. the horizon condition (17), see Ref. [5]. Fig. 2 shows the non-Abelian
Coulomb potential

V (|x− y|) = g2
〈

〈x|(−D̂ · ∂)−1(−∂
2)(−D̂ · ∂)−1|y〉

〉

→ σC |x− y| , (18)

which for large distance indeed increases linearly [2] as the infrared analysis reveals. The
Coulomb string tension σC sets the scale of our approach. Also shown in Fig. 2 is the
running coupling constant which is infrared finite, for details see Ref. [5]. Fig. 3 shows the
continuum results for the gluon energy and the ghost form factor in D = 2 + 1 dimensions
[6] together with the corresponding lattice results, Ref. [7]. The agreement is not perfect
but, given the approximation involved, quite satisfactory.

In D = 3 + 1 dimensions, previous lattice calculations performed in Coulomb gauge in
Ref. [8, 9] showed an anomalous UV behaviour of the gluon propagator — IR : ω(k) ∼
k0 , UV : ω(k) ∼ k3/2 — which is in strong conflict with the continuum result. However,
one should mention that these lattice calculations assumed multiplicative renormalisability
of the 4-dimensional gluon propagator, which give rise to scaling violations in the static
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Figure 3: Results for the ghost form factor d(k) (left) and the gluon energy ω(k) in 2 + 1
dimensions, as shown in [6].

propagator. Furthermore, these calculations did not fix the gauge completely, i.e. the
residual time-dependent gauge invariance left after Coulomb gauge fixing was left unfixed.
Furthermore, the Coulomb gauge fixing was done on a single time-slice, which is sufficient for
the calculation of static (time-independent) propagators. However, one should keep in mind
that in Coulomb gauge topologically non-trivial gauge configurations, which presumably are
responsible for confinement, are discontinuous in time [10] and as a consequence on a small
lattice different results are obtained from different time slices.

Recently, we have done improved lattice calculations with a complete gauge fixing [11].
In these studies, the energy dependence of the 4-dimensional gluon propagator could be
explicitly extracted and it was found that the static gluon propagator is multiplicatively
renormalisable and shows a perfect scaling. Fig. 4 (left panel) shows the results for the
gluon propagator of these calculations together with the continuum results. It is assumed
here that the Coulomb string tension σC is identical to the string tension σ from the Wilson
loop. There is a very good agreement, in particular the ultraviolet and infrared behaviour
matches perfect for lattice and continuum. What is also remarkable that the lattice result
can be very well fitted by Gribov’s original formula for the gluon energy

ω(k) =

√

k2 +
M4

k2
(19)

with M = 0.88(1)GeV.

4 The colour dielectric constant

Consider the electric field generated by a charge density ρ in electrodynamics

E = −∂φ , φ = (−∆)−1ρ . (20)

The longitudinal electric field resulting from the resolution of Gauss’ law in the Yang-Mills
case is given by a similar expression

E = 〈Π〉 = −∂φ
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Figure 4: Left: Lattice data for ω(k), compared to the solution of the Dyson-Schwinger
equations. Right: Dielectric function ǫ(k).

φ =
〈

(

−D̂ · ∂
)−1

〉

ρ = d(−∆)(−∆)−1ρ (21)

except that the Green’s function of the Laplacian is replaced by the ghost propagator (15).
The last expression has the form of the scalar potential in the presence of a dia-electric
medium

φ = ǫ−1(−∆)−1ρ (22)

and the inverse of the ghost form factor d(k) can thus be identified as the dielectric function
of the Yang-Mills vacuum

ǫ(k) = d−1(k) . (23)

Fig. 4 (right panel) shows the so defined dielectric function. It satisfies 0 < ǫ(k) < 1, which
is a manifestation of anti-screening while in QED we have ǫ(k) > 1, which corresponds to
ordinary Debye screening. Furthermore, at zero momentum the dielectric function vanishes,
showing that in the infrared the Yang-Mills vacuum behaves like a perfect colour dia-electric
medium. The vanishing of the dielectric function in the infrared is not an artifact of our
solutions of the Dyson-Schwinger equations but is guaranteed by the horizon condition,
which is a necessary condition for the Gribov-Zwanziger confinement scenario. A perfect
colour dia-electric medium ǫ = 0 is nothing but a dual superconductor. (Here, “dual”
refers to an interchange of electric and magnetic fields and charges.) Recall in an ordinary
superconductor the magnetic permeability vanishes µ = 0. This shows that the Gribov-
Zwanziger confinement scenario implies the dual Meissner effect [12].

5 Topological susceptibility

As first shown by Adler [13] and Bell and Jackiw [14], the UA(1) symmetry is anomalously
broken which gives rise to an extra mass term to the η′, which by the Witten-Veneziano
formula

m2

η′ +m2

η − 2m2

K =
2Nf

F 2
π

χ (24)
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Figure 5: Topological susceptibility χ as a function of the ratio σc/σ.

is expressed by the topological susceptibility

χ = −i
∫

d4x〈0|q(x)q(0)|0〉 , (25)

which is the correlation function of the topological charge density

q(x) =
g2

32π2
F a
µν(x)F̃

aµν(x) . (26)

Furthermore, in eq. (24) Nf denotes the number of flavours and Fπ ∼ 93MeV is the
pion decay constant. χ vanishes in all orders of perturbation theory and is thus an ideal
observable to test the non-perturbative content of our vacuum wave functional. In the
Hamiltonian approach one finds the following expression for the topological susceptibility
[15]

V χ =

(

g2

8π2

)2 [

〈0|
∫

B
2(x)|0〉 − 2

∑

n

|〈n| ∫ B ·Π|0〉|2
En

]

. (27)

Here |n〉 denotes the exact excited states of the Yang-Mills Hamiltonian with energies En.
These eigenstates are of course not known. We work out the matrix elements in eq. (27) to
two-loop order. In this order only two and three quasi gluon states

aa
†

i (x)ab
†

j (y)|0〉 , aa
†

i (x)ab
†

j (y)a
c†

k (z)|0〉 (28)

contribute where our vacuum state is annihilated by the operators aai (x), i.e. a
a
i (x)|0〉 = 0.

The resulting expression for the topological susceptibility is ultraviolet divergent and needs
renormalisation. For this aim we exploit the fact that χ vanishes to all order perturbation
theory and renormalise the expression (27) for χ by subtracting each propagator by its
perturbative expression. This renders χ (27) finite. Furthermore, since the momentum
integrals in this expression are dominated by the infrared part we replace the coupling
constant, which, in principle, should be the running one, by its infrared value. The results
obtained in this way for the topological susceptibility are shown in Fig. 5 (right panel) as a
function of the ratio σC/σ. Choosing σC = 1.5σ which is the value favoured by the lattice
calculation [8] we find with

√
σ = 440MeV

χ = (240MeV )4 . (29)

This value is somewhat larger than the lattice prediction χ = (200− 230MeV )4.
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6 Summary and Conclusions

I have presented a variational solution of the Yang-Mills Schrödinger equation in Coulomb
gauge using a Gaussian type of ansatz for the vacuum wave functional. We find a gluon
energy which is infrared divergent, which is a manifestation of gluon confinement. Further-
more, we have found a static colour charge potential which at large distances rises linearly,
as one expects for a confining theory. The propagators calculated within this approach are
all in satisfactory agreement with the lattice data. I have then shown that the inverse of the
ghost form factor can be interpreted as the colour dielectric function of the QCD vacuum.
The horizon condition, a necessary condition for the Gribov-Zwanziger confinement sce-
nario to work, implies that in the infrared the QCD vacuum is a perfect colour dia-electric
medium, which is nothing but a dual superconductor. In this way the Gribov-Zwanziger
confinement scenario implies the dual Meissner effect. Finally I have presented results for
the topological susceptibility calculated in the Hamiltonian approach with our vacuum wave
functional. For reasonable values of the Coulomb string tension we find results close to but
somewhat larger than the lattice data. The results obtained so far in this approach are
quite encouraging for further investigations. A natural next step would be the inclusion of
dynamical quarks.

References

[1] N. H. Christ and T. D. Lee, Phys. Rev. D22, 939 (1980).

[2] D. Epple, H. Reinhardt, and W. Schleifenbaum, Phys. Rev. D75, 045011 (2007),
hep-th/0612241.

[3] A. P. Szczepaniak and E. S. Swanson, Phys. Rev.D65, 025012 (2001), hep-ph/0107078.

[4] C. Feuchter and H. Reinhardt, Phys. Rev. D70, 105021 (2004), hep-th/0408236.

[5] W. Schleifenbaum, M. Leder, and H. Reinhardt, Phys. Rev. D73, 125019 (2006),
hep-th/0605115.

[6] C. Feuchter and H. Reinhardt, Phys. Rev. D77, 085023 (2008), 0711.2452.

[7] L. Moyaerts, A numerical study of quantum forces, PhD thesis, Univ. of Tübingen,
Germany, 2004.

[8] K. Langfeld and L. Moyaerts, Phys. Rev. D70, 074507 (2004), hep-lat/0406024.

[9] M. Quandt, G. Burgio, S. Chimchinda, and H. Reinhardt, PoS LAT2007, 325 (2007),
arXiv:0710.0549 [hep-lat].

[10] R. Jackiw, I. Muzinich, and C. Rebbi, Phys. Rev. D17, 1576 (1978).

[11] G. Burgio, M. Quandt, and H. Reinhardt, (2008), 0807.3291.

[12] H. Reinhardt, (2008), 0803.0504, Phys. Rev. Lett., in press.

[13] S. L. Adler, Phys. Rev. 177, 2426 (1969).

[14] J. S. Bell and R. Jackiw, Nuovo Cim. A60, 47 (1969).

[15] D. R. Campagnari and H. Reinhardt, (2008), 0807.1195.

8

http://arxiv.org/abs/hep-th/0612241
http://arxiv.org/abs/hep-ph/0107078
http://arxiv.org/abs/hep-th/0408236
http://arxiv.org/abs/hep-th/0605115
http://arxiv.org/abs/hep-lat/0406024
http://arxiv.org/abs/0710.0549

	Introduction
	Canonical quantisation of Yang-Mills theory
	Variational solution
	The colour dielectric constant
	Topological susceptibility
	Summary and Conclusions

