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Abstract

We study the potential observation at the LHC of CP-violating effects in stop
production and subsequent cascade decays, gg → t̃it̃i, t̃i → tχ̃0

j , χ̃0
j → χ̃0

1ℓ
+ℓ−,

within the Minimal Supersymmetric Standard Model. We study T-odd asymmetries
based on triple products between the different decay products. There may be a large
CP asymmetry at the parton level, but there is a significant dilution at the hadronic
level after integrating over the parton distribution functions. Consequently, even
for scenarios where large CP intrinsic asymmetries are expected, the measurable
asymmetry is rather small. High luminosity and precise measurements of masses,
branching ratios and CP asymmetries may enable measurements of the CP-violating
parameters in cascade decays at the LHC.

http://arxiv.org/abs/0809.1607v2


1 Introduction

The Minimal Supersymmetric Standard Model (MSSM) is a particularly compelling ex-
tension of the Standard Model, that may soon be explored at the Large Hadron Collider
(LHC). Current data suggest that, if the MSSM is realised in Nature, the supersymme-
try scale should easily be within reach of the LHC design centre-of-mass energy of 14
TeV [1, 2]. If supersymmetry is discovered, many studies will be required to determine
the exact details of its realisation.

The MSSM contains a large number of (as yet) undetermined parameters that may
have non-zero phases [3,4]. Many of these phases are unphysical in the sense that they can
be absorbed into the definitions of the fields; however, not all phases can be consistently
removed in this way. In the neutralino/chargino sector of the complex MSSM, the phase of
the SU(2) gaugino mass M2 is usually absorbed, whereas the phases of the U(1) gaugino
mass M1 and the Higgsino mixing parameter µ are generally left manifest; this is the
parameterisation we use. The trilinear couplings Af can also be complex. Studies of
these CP-violating parameters in sparticle decays and via other properties measurable at
the LHC will be challenging [5, 6]. However, they are extremely important, and provide
a valuable training ground for exploring the limits of the LHC’s capabilities.

Certain combinations of the CP-violating MSSM phases are constrained by the exper-
imental upper bounds on the electric dipole moments (EDMs) of the electron, neutron
and atoms, notably 205Tl and 199Hg. Ignoring possible cancellations, the most severely
constrained individual phase in the MSSM is that of µ, which contributes at the one-loop
level. For O(100) GeV masses, one must require |φµ| . 0.1. However, this restriction can
be relaxed if the masses of the first- and second-generation squarks are large (> TeV)
while the third-generation masses remain relatively small (< TeV), or in the presence of
cancellations between the contributions of different CP-violating phases. We note that
M1 also contributes at the one-loop level, but again, if accidental cancellations are allowed
between terms, it remains essentially unconstrained. The phases of the third-generation
trilinear couplings, φAt,b,τ

have weaker constraints, as they contribute to EDMs only at
the two-loop level. Again, accidental cancellations can occur that weaken further the
constraints: see [7–17]. A comprehensive summary of the EDM constraints and other
CP-violating effects in SUSY is given in [18]. Here we study the complete range of CP
phases in order to see the general dependences exhibited by our observables, and what
luminosity might be required to observe these within the LHC environment. Therefore,
we do not calculate explicitly which values of the other phases might be required for the
points in our displayed scenarios to satisfy the EDM constraints.

The precise determination of these phases is expected to be possible only at an e+e−

linear collider, for instance at the planned International Linear Collider (ILC) or at the
Compact Linear Collider (CLIC). However, it will be crucial for such future search strate-
gies to use LHC data to learn as much as possible, as early as possible. Furthermore,
the combination of independent measurements at the LHC and a linear collider will be
important to determine the underlying model.

In this paper we concentrate on the potential for observing unique CP-violating effects
in decay chains at the LHC, and investigate the circumstances under which a determina-
tion of the complex MSSM phases may be achievable, possibly with the support of other
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LHC measurements.
Specifically, we consider the LHC process gg → t̃̄t̃, with subsequent decay t̃ → tχ̃0

2,
χ̃0
2 → ℓ+ℓ−χ̃0

1. We consider the situation where the χ̃0
2 decay is a three-body decay; this

leads to CP violation as there is a non-negligible contribution from interference diagrams.
This process involves the three phases φM1

, φµ and φAt ; we discuss below the combinations
to which this process is sensitive. We extract information on the phases using triple
products formed from the decay products of the stop. Such T-odd variables have also
been studied in the context of heavy squark and stau decays in [6, 19–23]. Other related
studies are [24–34].

The first CP-odd asymmetry we consider is formed from Tt = pt · (pℓ+ × pℓ−). This
quantity has been studied at the parton level in [6], assuming pure gaugino-like neutrali-
nos. In our current study we provide analytic expressions for the squared amplitude of
the cascade process including full spin correlations and general neutralino mixing, and
also provide an analytic expression for the phase space in the laboratory system. We also
incorporate parton density functions (pdfs) and discuss the CP-odd observables at both
the parton and the hadronic levels. Transition to the latter level has a big dilution effect
on the measurability of a CP-odd asymmetry. We include the possible LHC uncertainties
in masses and asymmetries and discuss the extent to which CP-violating phases may be
constrained in such cascade decays at the LHC.

In [21], further CP sensitive asymmetries formed from the momentum of the b quark
in the top decay were studied under the assumption of 2-body neutralino decays into
on-shell sleptons, namely Tb = pb · (pℓ+ × pℓ−) and Ttb = pb · (pt × pℓ±). These variables
are sensitive to φM1

and φAt , but have different dependences on the CP-violating phases
as described in Section 2.3. Therefore, a combination of all three observables would in
principle allow one to disentangle the influences of all three phases.

Since T-odd observables can also be generated by final-state interactions at the one-
loop level, one should in principle combine the asymmetry for a process with that one of its
charge-conjugated process. If a non-zero asymmetry is then observed in this combination,
it must correspond to a violation of CP symmetry. For the triple product, Tb, this is
experimentally possible as long as the associated W decays into a final-state lepton,
which enables us to determine the change of the t̃. Regarding the other triple products,
we require information from the opposite decay chain to identify the charge. In all the
scenarios we consider, the decay t̃ → χ̃+

i b, is dominant, enabling charge identification in
principle. However, a detailed simulation including all combinatorial aspects and also
other background processes would be required to validate this possibility.

We begin by describing the process under consideration in Section 2, including the
phases involved and their various effects. In Section 3 we present numerical results for
three specific benchmark scenarios and discuss the potential for a measurement at the
LHC. The Appendices contain details of the Lagrangian, the expression for the squared
amplitude including full spin correlations, and the kinematics of the phase space in the
laboratory system.
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2 Formalism

2.1 The process studied and its squared amplitude

We study the dominant stop production process at the LHC, namely

gg → t̃i˜̄ti, (1)

with the subsequent decay chain

t̃i → χ̃0
j + t → χ̃0

1ℓ
+ℓ− +Wb. (2)

At tree level, the production process (1) proceeds via g exchange in the direct channel and
t̃ exchange in the crossed channel, and via a quartic coupling, as shown in Fig. 1. Another
possible source of t̃1s is their production in gluino decays, g̃ → t̃t. However this leads to
an experimentally more complex topology than the direct production and consequently
we do not investigate this channel. The Lagrangian and the resulting neutralino and stop
mixings and couplings are described in Appendix A.

Since gluons do not couple to off-diagonal combinations of stop mass eigenstates of
opposite chirality, and similarly for stop exchange and the quadratic couplings, t̃1

¯̃t2 pro-
duction occurs only at the loop level, and we do not consider it here. We focus here
on t̃1

¯̃t1 production, since the reconstruction of full decay chains of t̃1 seems achievable,
even in the complex experimental environment at the LHC. With the exception of the stop
mass eigenvalues, see Appendix A, no effects from supersymmetric CP-violating couplings
occur in the tree-level production process.

The first step in the cascade decay chain is the two-body process t̃i → tχ̃0
2. Here

CP-violating couplings of the t̃1 enter as well as those of the χ̃0
2, and are dominated

by the phases φAt and φM1
, see Appendix B.1 1. Since constraints from electric dipole

measurements constrain strongly φµ, we set φµ = 0 in our study [35–37]. We consider
spectra where the second steps in the cascade decay chains are the three-body decays of
the neutralino, χ̃0

2 → χ̃0
1ℓ

+ℓ− (cf. Appendix B.2) and the dominant top decay t → Wb (cf.
Appendix B.3). The neutralino decay occurs via Z0 exchange in the direct channel and
via ℓ̃L,R exchanges in the crossed channels, cf. Fig. 2. It is very sensitive to CP-violating
supersymmetric couplings, and its structure has been studied in detail in [38, 39]. The
phase φM1

(and also φµ, which has been set to zero here) affects the mass of the χ̃0
2, as

well as its couplings and decay rates.

Using the formalism of [39, 40], the squared amplitude |T |2 of the full process can be

factorized into the processes of production gg → t̃1
¯̃t1 and the subsequent decays t̃1 → tχ̃0

2,
χ̃0
2 → χ̃0

1ℓ
+ℓ− and t → Wb, with the second t̃1 being unobserved. We apply the narrow-

width approximation for the masses of the intermediate particles, t̃1, χ̃
0
2 and t, which is

appropriate since the widths of the respective particles are in all cases much smaller than
their masses, cf. Table 3.1. the squared amplitude can then be expressed in the form

|T |2 = 4|∆(t̃1)|2|∆(χ̃0
2)|2|∆(t)|2P (t̃1t̃1){P (χ̃0

2t)D(χ̃0
2)D(t) +

3∑

a=1

Σa
P (χ̃

0
2)Σ

a
D(χ̃

0
2)D(t)

1Their structure has also been studied in detail in [21].
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Figure 1: Feynman diagrams for the production process gg → t̃1t̃1.
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Figure 2: Feynman diagrams for the three-body decays χ̃0
i → χ̃0

kℓ
+ℓ−.

+

3∑

b=1

Σb
P (t)Σ

b
D(t)D(χ̃0

2) +

3∑

a,b=1

Σab
P (χ̃0

2t)Σ
a
D(χ̃

0
2)Σ

b
D(t)}, (3)

where a = 1, 2, 3 refers to the polarisation states of the neutralino χ̃0
i and top quark,

which are described by the polarisation vectors sa(χ̃0
i ), s

b(t) given in Appendix B.1. In
addition,

• ∆(t̃1), ∆(χ̃0
2) and ∆(t) are the ‘propagators’ of the intermediate particles which lead

to the factors Et̃1
/mt̃1

Γt̃1
, Eχ̃0

2
/mχ̃0

2
Γχ̃0

2
and Et/mtΓt in the narrow-width approxi-

mation.

• P (t̃1t̃1), P (tχ̃0
2), D(χ̃0

i ) and D(t) are the terms in the production and decay that are
independent of the polarisations of the decaying neutralino and top, whereas
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• Σa
P (χ̃

0
i ), Σ

b
P (t), Σ

ab
P (χ̃0

2t) and Σa
D(χ̃

0
i ), Σ

b
D(t) are the terms containing the correlations

between production and decay spins of the χ̃0
2 and t.

According to our choice of the polarisation vectors sa(χ̃0
i ) [s

b(t)], see eqs. (60)–(65) in
Appendix B.1, Σ3

P /P is the longitudinal polarisation, Σ1
P/P is the transverse polarisation

in the production plane, and Σ2
P/P is the polarisation perpendicular to the reference plane

of the neutralino χ̃0
i [top quark t].

2.2 Cross section for the whole process at parton level

The differential cross section in the laboratory system is

dσ =
1

8E2
b

|T |2(2π)4δ4(p1 + p2 −
∑

n

pn)dlips(pn), (4)

where Eb is the beam energy of the gluons, p1 and p2 are the momenta of the incoming glu-
ons, the pn are the momenta of the outgoing particles and dlips(pn) is the Lorentz-invariant
phase space element. Integrating over all angles, all spin-dependent contributions are can-
celled and the cross section for the combined process of production and decay is given
by

σ = σ(gg → t̃1
¯̃t1)×BR(t̃1 → tχ̃0

2)× BR(χ̃0
2 → χ̃0

1ℓ
+ℓ−)×BR(t → Wb)

=
|∆(t̃1)|2|∆(χ̃0

2)|2|∆(t)|2
2E2

b

×
∫

P (t̃1t̃1)P (χ̃0
2t)D(χ̃0

2)D(t)(2π)4δ4(p1 + p2 −
∑

n

pn)dlips(pn). (5)

The explicit expression for the phase space in the laboratory system is given in Ap-
pendix C.

2.3 Structure of the T-odd asymmetries

Suitable tools to study CP-violating effects are T-odd observables based on triple products
of momenta or spin vectors of the involved particles. In this paper we study the following
T-odd observables:

Tt = ~pt · (~pℓ+ × ~pℓ−) , (6)

Tb = ~pb · (~pℓ+ × ~pℓ−) , (7)

Ttb = ~pt · (~pb × ~pℓ±). (8)

The T-odd asymmetries are defined as

ATf
=

NTf+ −NTf−

NTf+ +NTf−

=

∫
sign{Tf}|T |2dlips∫

|T |2dlips , f = t, b and tb, (9)

where NTf+, NTf− are the numbers of events for which Tf is positive and negative respec-
tively, and the second denominator in (9),

∫
|T |2dlips, is proportional to the corresponding
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cross section, namely σ(gg → t̃1˜̄t1 → tχ̃0
1ℓ

+ℓ−) in eq.(6) and σ(gg → t̃1˜̄t1 → Wbχ̃0
1ℓ

+ℓ−)
in eqs. (7) and (8). In the second numerator in (9), only the triple-product correlations
enter via the spin-dependent terms, as explained in eq. (11) and the following sections.

The observable ATb
has the advantage that it is not necessary to reconstruct the mo-

mentum of the decaying t quark. However, as explained below, in order to disentangle the
effects of both phases of At and M1, it will be necessary to study all possible observables.

The asymmetry ATf
, eq. (9), is odd under the näıve time-reversal operation. It is the

difference of the number of events with the final top quark or b-jet above and below the
plane spanned by ~pℓ+ × ~pℓ− in eqs. (6) and (7), and by ~pb × ~pℓ± in eq. (8), normalised by
the sum of these events.

As can be seen from the numerator ofATf
, in order to identify the T-odd contributions,

we have to identify those terms in |T |2, eq. (3), which contain a triple product of the form
shown in eqs. (6)–(8). Triple products follow from expressions iǫµνρσa

µbνcρdσ, where a,
b, c, d are 4-momenta and spins of the particles involved, which are non-zero only when
the momenta are linearly independent. The expressions iǫµνρσa

µbνcρdσ are imaginary and
when multiplied by the imaginary parts of the respective couplings they yield terms that
contribute to the numerator of ATf

, eq. (9). In our process, T-odd terms with ǫ-tensors
are only contained in the spin-dependent contributions to the production, Σab

P (χ̃0
j t), and in

the spin-dependent terms in neutralino decay, Σa
D(χ̃

0
j ). It is therefore convenient to split

Σab
P (χ̃0

jt) and Σa
D(χ̃

0
j ) into T-odd terms Σab,O

P (χ̃0
jt) and Σa,O

D (χ̃0
j) containing the respective

triple products, and T-even terms Σab,E
P (χ̃0

j t) and Σa,E
D (χ̃0

j) without triple products:

Σab
P (χ̃0

jt) = Σab,O
P (χ̃0

j t) + Σab,E
P (χ̃0

jt), Σa
D(χ̃

0
j) = Σa,O

D (χ̃0
j) + Σa,E

D (χ̃0
j ). (10)

The other spin-dependent contributions Σa
P (χ̃

0
j) and Σb

P (t), as well as Σ
b
D(t), are T-even.

When multiplying these terms together and composing a T-odd quantity, the only
terms of |T |2, eq. (3), which contribute to the numerator of ATf

are therefore

|T |2 ⊃
3∑

a,b=1

[
Σab,O

P (χ̃0
jt)Σ

a,E
D (χ̃0

j)Σ
b
D(t) + Σa,E

P (χ̃0
j)Σ

a,O
D (χ̃0

j) + Σab,E
P (χ̃0

j t)Σ
a,O
D (χ̃0

j )Σ
b
D(t)

]
.(11)

The first term in eq. (11) is sensitive to the T-odd contributions from the production of
the top and the neutralinos χ̃0

j . Comparing eq.(67) with eqn.(79) and (92) leads to the
following possible combination of contributing momenta

Σab,O
P (χ̃0

j t)Σ
a,E
D (χ̃0

j )Σ
b
D(t) ∼ ǫµνρσs

a,µ(χ̃0
j)p

ν
χ̃0
j
sb,ρ(t)pσt × (p[ℓ+,ℓ−]s

a)(p[b,W ]s
b). (12)

The second term and third terms in eq. (11) are only sensitive to T-odd contributions
from the neutralino χ̃0

j decay. The second term depends only on the polarization of
χ̃0
j , comparing eq.(86) with eq.(57) therefore leads to the only possible combination of

momenta

Σa,E
P (χ̃0

j)Σ
a,O
D (χ̃0

j) ∼ (pts
a)× ǫµνρσs

aµpνχ̃0
j
pρ
ℓ−
pσℓ+ . (13)

Since the third term depends on the polarization of both fermions, χ̃0
j and t, the possible

combinations, comparing eq.(86) with eqn.(66) and (92), are

Σab,E
P (χ̃0

j t)Σ
a,O
D (χ̃0

j )Σ
b
D(t) ∼ (pts

a)(pχ̃0
j
sb)(sbp[b,W ])× ǫµνρσs

aµpνχ̃0
j
pρ
ℓ−
pσℓ+ (14)

and (sasb)(sbp[b,W ])× ǫµνρσs
aµpνχ̃0

j
pρ
ℓ−
pσℓ+. (15)
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As can be seen by substituting eqs. (60)–(65) into eq. (67) in Appendix B.1, Σab,O
P (χ̃0

j t)
vanishes for the combinations (ab) = (11), (22), (33), (13), (31), because they contain cross
products of three linearly-dependent vectors. Only for the remaining combinations, (ab) =
(12), (21), (23), (32) , do we get a T-odd contribution to the production density matrix.

Similarly, the expression for the T-even contributions, Σab,E
P (χ̃0

jt), eq. (66) in Appendix
B.1, has non-zero components for a = 1, 3 but vanishes when a = 2. These expressions
are multiplied by Σa,O

D (χ̃0
j), eq. (86), and therefore only Σ1,O

D (χ̃0
j ) and Σ3,O

D (χ̃0
j ) contribute.

In the following section we derive the three triple products, study their different de-
pendence on phases and provide explicitly a strategy for determining φAt and φM1

and
disentangling their effects.

2.4 Strategy for determining φAt
and φM1

2.4.1 Derivation of the triple products

In order to describe the spin of a fermion f in general, we introduce three four vectors,
saµ(f), a = 1, 2, 3, such that the sa and the momentum and mass of the fermion p/m form
an orthonormal set of four-vectors [40];

p · sa = 0, (16)

sa · sb = −δab, (17)

saµs
a
ν = −gµν +

pµpν
m2

, (18)

where repeated indices are implicitly summed over.
Applying eq.(18) on eqs.(12)–(15) lead to kinematic expressions that contain only

explicit momenta. Expanding terms with ǫµνρσ in time- and space- components gives
scalar triple products between three momenta.

In our process we can classify the terms of eq.(11) as follows:

• The terms of eq.(12) lead to a combination between Ttb and Tb.

• The terms of eq.(13) lead only to Tt.

• The terms of eq.(14) lead again only to Tt but terms of eq.(15) produce Tt as well
as Tb, due to interference effects between both spin vectors of pt and pχ̃0

j
.

2.4.2 T-odd terms sensitive to Tt

We consider first Tt, eq. (6). As this includes the reconstructed top quark momentum,
there are no spin terms from the decay of the top quark and the contributing terms are
the second and third term in eq. (11) as explained in the previous paragraphe. The CP-
sensitive terms of the decay density matrix are given by eqs. (86)–(89) and the contributing
kinematical factor is ga4 , eq.(90),

ga4 = imkǫµνρσs
aµpνχ̃0

j
pρ
ℓ−
pσℓ+ . (19)

We note that ga4 is purely imaginary. When inserted, for instance, in eq. (88) it is mul-
tiplied by the factor i · Im{fL

ℓjf
L∗
ℓk O

′′L∗
kj }, which depends on the phases φM1

(and φµ) and

8



contributes to Σa,O
D . Analogous contributions follow from eqs. (87) and (89). The cor-

responding T-even terms of the production density matrix also entering in eq. (11) are
obtained from eq. (57).

2.4.3 T-odd terms sensitive to Ttb

For the triple product Ttb, eq. (8), only the first term in eq. (11) contributes, but the
kinematics is complicated by the fact that we need to include the decay of the t in addition
to that of the χ̃0

2. This comes from the fact that the kinematical term that generates the
triple product is fab

4 , eq.(68):

fab
4 = ǫµνρσs

a,µ(χ̃0
j)p

ν
χ̃0
j
sb,ρ(t)pσt . (20)

As both sa,µ(χ̃0
j ) and sb,ρ(t)pσt are contained in this term, we need to include their decays

in order to to produce a non-zero contribution.
This term occurs only once in the t̃ decay amplitude, eq. (67), and is multiplied by

the complex pre-factor g2Im(aijb
∗
ij), eq. (69). Both aij and bij contain terms from the t̃

and χ̃0
j mixing matrices, and so are sensitive to both the phases φAt and φM1

(and φµ).

2.4.4 T-odd terms sensitive to Tb

The triple product Tb, eq. (7), is the most complicated, as it contains contributions from
both the t̃ and χ̃0

2 decays (the first and third terms in eq. (11)). The kinematics is rendered
more complex by the need to multiply each T-odd contribution by the terms from the
other two decays. Each T-odd component is generated through ga4 and fab

4 , as for the
other two triple products. As a consequence of having a dependence on both the t̃ and
χ̃0
2 decays, Tb is also sensitive to both phases φAt and φM1

(and φµ).

2.4.5 Disentangling of effects of φAt and φM1

The T-odd asymmetries, eq.(9), are determined by those CP-violating couplings that are
multiplied with the respective triple product. Under the assumption that φµ is small,
the neutralino sector depends only on φM1

and the stop sector only on φAt . Since the
involved triple product momenta show different dependence on the CP-violating phases,
as discussed above, it is possible in principle to disentangle the effects of φAt and φM1

in
our process and to determine the phases separately.

The decoupling is possible as the triple product Tt, can only be produced by the term,
Σa,E

P (χ̃0
j )Σ

a,O
D (χ̃0

j ), cf. section 2.4.1. The T-odd contribution in this term comes from the
decay of the χ̃0

j and consequently is only sensitive to the phase φM1
. Once we have used

the triple product Tt to determine the phase φM1
we can then use the value as an input

for the triple products, Ttb and Tb, in order to determine the phase φAt .
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3 Results

3.1 Scenarios

In this Section we analyse numerically the various triple-product asymmetries introduced
in eqs. (6)–(8) at both the parton level and with the inclusion of parton distribution
functions (pdfs) to study the discovery potential at the LHC. In particular, we study
the dependences of these triple-product asymmetries on the MSSM parameters M1 =
|M1|eiφM1 and At = |At|eiφAt . We also analyse the effects of these parameters on the
masses and branching ratios of the particles involved in our process.

For our numerical analysis we study in detail at both the partonic and pdf level a
reference scenario, A, where the χ̃0

1 is a gaugino-higgsino mixture. For comparison, we
also study at the partonic level a non-universal Higgs masses (NUHM) scenario, B, and a
third scenario, C, in which the χ̃0

2 is higgsino-like. The particle spectra for these scenarios
have been computed with the program SPheno [44]. These three scenarios have been
chosen to have similar masses, as displayed in Table 3.1, so that the kinematic effects are
similar in each case. We perform our studies using our own program based on the analytic
formulae we have derived for the various cross sections and spin correlations. The program
uses the VEGAS [45,46] routine to perform the multi-dimensional phase-space integral. We
constrain ourselves to cases where mχ̃0

2
< mχ̃0

1
+mZ0 and mχ̃0

2
< mℓ̃L,R

, so as to forbid the

two-body decay of the χ̃0
2. The branching ratios for both processes have been calculated

with Herwig++ [47, 48] 2.
The feasibility of measuring these asymmetries at the LHC depends heavily on the

integrated luminosity at the LHC. For this reason we look closely at the cross section,
σ = σ(gg → t̃1

¯̃t1) × BR(t̃1 → tχ̃0
2) × BR(χ̃0

2 → χ̃0
1ℓ

+ℓ−) × BR(t → Wb) and determine
the nominal luminosity required to observe a statistically significant result.

3.2 CP asymmetry at the parton level

3.2.1 Dependence of mχ̃0
1
and AT on φM1

and φAt

We start by discussing the dependence onM1 = |M1|eiφM1 of the parton-level asymmetries
for each of the three scenarios. In order to see the maximum dependence upon φM1

, we
use the reconstructed t quark momentum and the triple product Tt = ~pt · (~pℓ+ × ~pℓ−) .
It should be noted from the following plots that the asymmetry is obviously a CP-odd
quantity that in addition to a measurement of the phase, also gives the sign, as seen
in Fig. 3(a). In comparison, using CP-even quantities, for example the mass, it is not
possible to determine if the phase is positive or negative, as seen in Fig. 3(b).

We see in Fig. 3(a) that the biggest asymmetry appears in scenario A, which attains
|ATt |max ≈ 12% when φM1

≈ 0.3π. One aspect of the plot that may be surprising is that
the asymmetry is not largest at the maximal value of the phase (φM1

= π
2
). This is due

to the coupling combinations and interferences and can be seen from the equations in

2Beyond the Standard Model physics was produced using the algorithm of [49] and, in the running of
αEM , the parametrization of [50] was used.
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Scenario A: Reference B: NUHM - γ C: Higgsino

M1 109 97.6 105

M2 240 184 400

µ 220 316 -190

tan β 10 20 20

ML 298 366 298

ME 224 341.7 224

MQ3 511 534.5 511

MU3 460 450 460

At -610 -451.4 -610

Mt̃1
396.5 447.8 402.6

Mt̃2
595 609.6 591.6

Mχ̃±

1
177 172.8 186.3

Mχ̃±

2
301.6 346.05 421.1

mℓ̃L
302.4 369.8 303.1

mℓ̃R
229.2 345.2 229.2

φM1
0 π 0 π 0 π

mχ̃0
1

100.8 106.1 94.8 96.3 99.2 97.6

mχ̃0
2

177.0 171.3 167.1 166.6 186.2 179.8

mχ̃0
3

227.9 231.8 323.8 325.5 199.4 206.2

mχ̃0
4

299.1 297.6 343.4 341.8 419 418.9

Γt̃1
3.88 3.88 3.48 3.48 5.29 5.29

Γχ̃0
2

1.4×10−4 1.4×10−4 2.3×10−5 2.3×10−5 3.0×10−3 3.0 ×10−3

Table 1: Parameters and spectra for the three scenarios A, B, C considered in this paper.
We display the input parameters |M1|, M2, |µ|, tan β, mℓ̃L

and mℓ̃R
and the resulting

masses mχ̃0
i
, i = 1, . . . , 4, for (φM1

, φµ) = (0.5π, 0) and (0.5π, 0.5π). The parameters
M2, |µ| and tan β in scenario B are chosen as for the scenario SPS1a in [41]. We used
mt = 171.2 GeV [42] and the SM value for the top width Γt ∼ 1.5 GeV [43] for our study.
All masses and widths are given in GeV.

Sections 2.4.2. In Fig. 3(b), the dependence of the masses of the neutralinos is shown. It
can be seen clearly that the variations are too small to be used to determine the phase.

In the cases of the two other scenarios shown in Fig. 3(a), the dependence of the
asymmetry on the phase φM1

is similar but slightly smaller. In the case of scenario B
(NUHM), the peak asymmetry is |ATt|max ≈ 9% when φM1

≈ 0.3π and in scenario C
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Figure 3: The asymmetry at threshold for the production process gg −→ t̃t̃ for scenarios
A, B and C for (a) ATt as a function of φM1

, and (b) the masses of the neutralinos as
functions of φM1

.
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Figure 4: (a) The asymmetry ATb at threshold for the production process gg −→ t̃t̃ for
scenarios A, B and C, and (b) the asymmetry ATb at threshold, both as functions of φAt .

(Higgsino) it is |ATt |max ≈ 7% when φM1
≈ 0.25π. Again, the asymmetry does not peak

when the phase is maximal.
To study the dependence upon φAt we need to use the triple products sensitive to this

phase, Tb = ~pt ·(~pℓ+×~pℓ−) and Ttb = ~pt ·(~pb×~pℓ±) . Fig. 4(a) shows ATb and we see that the
biggest asymmetry again occurs in Scenario A, but the maximal asymmetry is only about
half of |ATt |max with |ATb|max ≈ 6%. Scenario C produces a very similar asymmetry to
Scenario A, with |ATb|max ≈ 5.5%, whereas the asymmetry in Scenario B is much smaller:
|ATb|max ≈ 2.5%. Fig. 4(b) shows that the general shape of the asymmetries for ATtb is
similar to that of ATb apart from a difference in sign and that all the asymmetries are
actually slightly larger. In fact, for Scenario C, the largest asymmetry is generated using
Ttb with ATtb ≈ 8% when φAt ≈ 0.3π.

In the subsequent analysis, we concentrate on the favourable Scenario A, with just a
few remarks on the others.
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3.2.2 Contour Plots of ATt and ATtb
for Variable M1 and At

ATt, Scenario A (φAt = 0),
√
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= 0),
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Figure 5: Contours in scenario A (in %) of the parton-level asymmetries (a) ATt for the
triple product Tt = pt · (pℓ+ × pℓ−), as functions of the variables M1 and φM1

, and (b)
ATtb

for the triple product Ttb = pℓ+ · (pt ×pb), as functions of the variables M1 and φAt .

If we now lift the restriction of the GUT relation for |M1|, we can see how the asym-
metry varies with |M1| while leaving all the other parameters the same, for Scenario
A. Fig. 5(a) shows that the asymmetry peaks at |M1| ≈ 130 GeV and φM1

≈ 0.25π
when |ATt | ≈ 15%. Importantly though, the asymmetry can remain above 10% between
|M1| = 110 GeV and |M1| = 190 GeV, which is most of the range allowed in this scenario.

By including the decay of the t quark that was produced in the t̃ decay, we can
also study the effect of φAt on our asymmetries. As the spin-correlation information is
now carried by the t quark, we have to change the triple product used to measure the
asymmetry, eq. (9). It is found that the largest asymmetry can be measured using the
triple product, Ttb = pℓ+ ·(pt×pb) where |ATtb

|max ≈ 8.5% when φAt ≈ 0.5π in Scenario A,
as seen in Fig. 5(a). It may be noted that this asymmetry is slightly smaller than those
of [21] that can be reconstructed experimentally. In that paper scenarios were chosen
where the χ̃0

2 decays via a two-body process, whereas here we concentrate on scenarios
where the χ̃0

2 decays via a three-body process, so to maximise the sensitivity to φM1
. This

phase dependence can also be seen with the triple product Tb = pb · (pℓ+ ×pℓ+) although
the asymmetry is found to be smaller here with |ATb

|max ≈ 6%, see Fig. 6(a).
We have also considered the dependence of the asymmetry on a common trilinear

coupling, A = At = Ab = Aτ , in scenario A, as shown in Fig. 6(b). It can be seen that
the asymmetry is stable for the bulk of the region scanned, and only decreases near the
edge of the acceptable region for our scenario. The peak is now |ATtb

|max ≈ 9%, when
At ≈ −500 GeV, and the region where |ATtb

| > 8% extends from At ≈ −650 GeV to
At ≈ −250 GeV.

We now consider the effect on the asymmetry of varying simultaneously both the
phases φM1

and φAt . The triple products Tb = ~pb · (~pℓ+ × ~pℓ−) and Ttb = ~pt · (~pb× ~pℓ±) can
have contributions from both phases, so we concentrate on these. For Tb, Fig. 7(a) shows
that the area of parameter space where φM1

and φAt constructively interfere is actually
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ŝ ∼ 2mt̃

(a)

φAt/π

M1/GeV
 100  120  140  160  180  200

 0

 0.2

 0.4

 0.6

 0.8

 1

-20-2-4-6

ATtb, Scenario A (φM1
= 0),

√
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Figure 6: Contours in scenario A (in %) of the asymmetries (a) Ab for the triple product
T = pb · (pℓ− × pℓ+), as functions of the variables M1 and φAt and (b) Atb for the triple
product T = pℓ+ · (pt × pb), as functions of the common variables A = At = Ab = Aτ

and φAt .
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Figure 7: Contours (in %) of the asymmetry at the parton level in scenario A with
M1 = 109 GeV for the triple products (a) Tb = pb ·(pℓ+×pℓ−) and (b) Ttb = pℓ+ ·(pb×pt)
for varying phases φM1

and φAt.

quite small and peaked around φM1
≈ 0.2π and φAt ≈ 0.5π. Apart from this area, varying

both phases generally results in a reduction in the asymmetry observed, caused by the
neutralino and squark mixing entering the couplings, Section 2.4.3. Importantly when
φM1

≈ π or φAt ≈ π the asymmetry vanishes, as it should. Fig. 7(b) demonstrates that,
for this scenario, φM1

generates virtually no asymmetry for Tb. However, φM1
can still

significantly reduce the asymmetry that φAt can produce and, again, when φM1
≈ π we

see that |ATtb
| ≈ 0 as expected.

If we now modify scenario A slightly by setting |M1| = 160 GeV, this results in a more
interesting scenario as the phases φM1

and φAt can interfere constructively to produce an
asymmetry larger than that seen before. When φM1

≈ 0.4π and φAt ≈ 1.8π, we observe
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Figure 8: Contours (in %) of the asymmetries in scenario A at the parton level with
M1 = 160 GeV for the triple products (a) Tb = pb ·(pℓ+×pℓ−) and (b) Ttb = pℓ+ ·(pb×pt),
as fucntions of the varying phases φM1

and φAt .

a peak asymmetry, |ATb
| ≈ 7% for the triple product Tb, as seen in Fig. 8.

3.3 Dependences of branching ratios on φM1
and φAt
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Figure 9: Contours (in %) of branching ratios in scenario A as functions of M1 and φM1
:

(a) BR(t̃1 → χ̃0
2t) and (b) BR(χ̃0

2 → χ̃0
1ℓ

+ℓ−), ℓ = e or µ.

In order to determine whether an asymmetry could be observed at the LHC, we
need to calculate the cross section for the total process. Important factors in the total
cross section are the branching ratios BR(t̃1 → χ̃0

2t) (for CP-violating case see [51]) and
BR(χ̃0

2 → χ̃0
1ℓ

+ℓ−) [38]. Both of these change considerably with φM1
and φAt, altering

the statistical significance of any measurement of |ATf
|. Analyzing first the variation

with M1, seen in Figs. 9 and 10(a), we see that the branching ratio BR(t̃1 → χ̃0
2t) is

indeed sensitive to variation of the phase, but can vary more strongly with |M1|. For
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Figure 10: Contours (in %) of the branching ratio BR(t̃1 → χ̃0
2t), in scenario A as

functions of varying (a) M1 and φAt and (b) the common trilinear coupling At = Ab = Aτ

and the phase of the top-quark trilinear coupling φAt.

example, if φM1
= π when |M1| ≈ 150 GeV then BR ≈ 11%, but if we keep the phase

the same and change to |M1| ≈ 180 GeV then BR ≈ 4% (i.e., it drops by almost a factor
of four), as seen in Fig. 9(a). The general reduction of BR(t̃1 → χ̃0

2t) as M1 increases is
to be expected as the character of χ̃0

2 will be less gaugino-like. Similar large differences
are found in BR(χ̃0

2 → χ̃0
1ℓ

+ℓ−) which varies between 3% for M1 < 135GeV and 9% for
M1 ≈ 165GeV Fig. 9(b).

The phase φAt does not enter BR(χ̃0
2 → χ̃0

1ℓ
+ℓ−), but can have a large effect on

BR(t̃1 → χ̃0
2t). In scenario A, we see in Fig. 10 that BR ≈ 8% at φAt = 0 but increases

to BR ≈ 24% at φAt = π (i.e. a factor of 3 increase). The branching ratio BR(t̃1 → χ̃0
2t)

also has a dependence on |At| an this is shown in Fig. 10(b). We see that if φAt = 0
then the branching vary between, BR ≈ 4% when |At| ≈ −750GeV and BR ≈ 12% when
|At| ≈ −100GeV.

In the range of M1 = |M1|eiφM1 and At = |At|eiφAt studied, we find that BR(t̃1 → χ̃0
2t)

varies between 4% and 24% and BR(χ̃0
2 → χ̃0

1ℓ
+ℓ−) between 2.5% and 9% for scenario A.

Similar plots can also be produced for scenarios B and C but are not presented here. It
is found that BR(t̃1 → χ̃0

2t) varies between 4% and 14% for scenario B and between 8%
and 35% for scenario C. For BR(χ̃0

2 → χ̃0
1ℓ

+ℓ−) the variation is between 3% and 12% for
scenario B and between 2% and 5% for scenario C.

3.4 Influence of parton distribution functions (pdfs) on CP asym-
metries

So far we have studied the triple-product asymmetries only when the production process
is close to threshold, and the t̃1 pair is produced almost at rest in its centre-of-mass frame;
triple-product effects due to spin effects are usually greatest close to threshold. However,
production at the LHC is not in general close to threshold, and we must include pdfs in
our analysis to see how an initial boost to the t̃1 affects the asymmetry. We focus on
scenario A: similar results are obtained in Scenarios B and C.
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Figure 11: (a) Asymmetry ATt for scenario A as a function of the t̃ momentum. (b) Total

cross section for scenario A for gg −→ t̃t̃ as a function of the parton-parton centre-of-mass
energy.

Fig. 11(a) shows the asymmetry |ATt | as a function of the t̃1 momentum, and shows
clearly that the asymmetry is peaked at the threshold for t̃1 production, where the stops
are produced almost at rest, and that it falls sharply as the energy increases. Fig. 11(b)

shows the total cross section in 14 TeV collisions at the LHC for gg → t̃1t̃1 as a function
of the parton-parton centre-of-mass energy, and demonstrates that the peak production
occurs close to threshold with a long tail of production at high energy. In addition, even
when production occurs at a low parton-parton centre-of-mass energy, in the majority
of cases one gluon may be carrying significantly more momentum than the other in the
collision. Consequently the produced t̃1 can have a large longitudinal component to its
momenta. Both these factors mean that the asymmetry observed at the LHC will be
substantially smaller than if the all t̃1 were produced at threshold 3. In should be noted
that similar results were found for all asymmetries and scenarios, and this ‘dilution’ factor
is always present.

We use the MRST 2004LO pdf set [52] in our analysis of the asymmetry, and plot the
integrated asymmetry |ATt | as a function of φM1

and φAt at the LHC in Fig. 12(a), as the
solid line. We see that the inclusion of the pdfs reduces the asymmetry by about a factor
of four in this case. This reduction is unsurprising, given the reduction in asymmetry
when one moves away from threshold shown in Fig. 11(a), though the dilution factor does
depend on the scenario4.

Using the production cross sections and branching ratios we can then estimate the
integrated luminosity required to observe an asymmetry at the LHC. We assume that
NT ±, the numbers of events where T is positive and negative as in eq. (9), are binomially

3Both these effects could be overcome if one could measure the stop-stop invariant mass and tag the
stop momenta, but this is unlikely to be possible with great accuracy.

4These results have been checked independently using Herwig++ [47, 48] with three-body spin corre-
lations included, a feature that is currently not available in an official release of the code, but will be
included in a future version.
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Figure 12: Integrated asymmetries with parton density functions included in the pro-
duction process. The dotted and dashed lines indicate the asymmetry required in order
to observe a 1σ deviation from zero with the indicated luminosities, see the text: (a)
Tt = pt · (pℓ+ × pℓ−) in scenario A as a function of φM1

with M1 = 130 GeV, and (b)
Ttb = pℓ+ · (pt × pb) in scenario A as a function of φAt with M1 = 109 GeV.
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Figure 13: Integrated asymmetries with parton density functions included in the pro-
duction process. The dotted and dashed lines indicate the asymmetry required in order
to observe a 1σ deviation from zero with the indicated luminosities, see the text: (a)
Tb = pb · (pℓ+ × pℓ−) in scenario A as a function of φAt with M1 = 109 GeV.

distributed, giving the following statistical error [53]:

∆(AT )
stat = 2

√
ǫ(1− ǫ)/N, (21)

where ǫ = NT +/(NT ++NT −) =
1
2
(1+AT ), and N is the number of selected events. This

can be rearranged to give the required number of events for a desired significance.
Figs. 12 (a), (b) and 13(a) show the expected levels of the integrated asymmetries in

scenario A with pdf effects included (solid line) together with dotted and dashed lines
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showing the level of asymmetry one would need with the corresponding integrated lumi-
nosity in order to obtain a statistical error AT > ∆(AT ). In other words, the asymmetry
could only be seen at the level of 1σ where the solid line is above the relevant dotted or
dashed line. For example, in scenario A after 100 fb−1, the asymmetry could only be seen
for a small area of parameter space around φM1

= 0.35π and 1.7π. Figs. 12 (a) and (b)
show that even if φM1

or φAt has a value that produces a maximal asymmetry, we require
a substantial integrated luminosity if we are to find a statistically significant result. In
addition, it must be noted that we have not included any detector effects into our analysis,
and one could expect that the required integrated luminosity would rise substantially after
the inclusion of backgrounds, trigger efficiencies, etc. A measurement of an asymmetry
with an accuracy of a few % might be possible with 100 fb−1 of integrated luminosity, but
it would probably be insufficient to constrain significantly the model parameter space.
However, an interesting measurement could be made with an integrated luminosity above
300 fb−1, which is targeted by the proposed LHC luminosity upgrade.

3.5 Determination of the CP-violating phases

As we have shown, it will be challenging to determine the phases φM1
and φAt in our

process using the triple-product asymmetries alone. However, it would be very worthwhile,
as a non-zero measurement of a T-odd asymmetry would provide unique evidence of CP
violation. In the rest of this section, we examine briefly the potential for a measurement
using other variables, again concentrating on Scenario A.

3.5.1 Observables: masses, cross sections and CP asymmetries
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Figure 14: (a) The mass of the stop squarks t̃j , j=1,2 as functions of φAt/π, and (b)
contour plot showing the areas of the (M1, φM1

) parameter plane consistent with a mass
difference between χ̃0

2 and χ̃0
1 of 20, 40 and 60 GeV respectively. The bands assume a 1%

error in experimental measurement of the mass difference and a 5% error in M2.

Fig. 4(b) showed how the masses of the χ̃0
i s vary with φM1

and Fig. 14(a) shows how
the masses of the t̃i vary with φAt in scenario A. Unfortunately, the variations in both
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of these observables are only about 1 − 2 GeV, which are significantly smaller than the
experimental errors expected for these measurements. A far more accurate measurement
at the LHC will be the mass difference between χ̃0

2 and χ̃0
1, as this can be determined

in our scenario with a clear dilepton end-point. The accuracy of this measurement is
expected to be < 1% and, if we assume that M2 can be determined to 5% [54], we find
the regions plotted in Fig. 14(b). At the smaller values allowed for M1 in scenario A, we
see that this observable does not depend sensitively enough on φM1

for a measurement
to become possible. However, as M1 increases we see that the sensitivity to φM1

becomes
much clearer. Importantly, in scenario A, it is only possible to have a mass difference,
χ̃0
2 − χ̃0

1 . 40 GeV if φM1
is present.

3.5.2 Inclusion of branching ratios

Other observables sensitive to the phases φM1
and φAt are the branching ratios BR(χ̃0

2 →
χ̃0
1ℓ

+ℓ−) and BR(t̃1 → χ̃0
2t), as discussed in Section 3.3. As is the case for the masses,

though, our current expectation of the accuracy of this measurement at the LHC looks
insufficient to constrain the phases. Fig. 15(a) shows in the context of scenario A that, if
a measurement BR(χ̃0

2 → χ̃0
1ℓ

+ℓ−) = 0.4 is made and we assume that the accuracy at the
LHC is 50% (∆1), then the constraints on M1 and φM1

are rather weak. However, if the
accuracy could be improved to 10% (∆2), a determination of M1 and φM1

looks possible
if this analysis is combined with information from the χ̃0

2, χ̃
0
1 mass difference and that of

the triple-product correlations. For the branching ratio, BR(t̃1 → χ̃0
2t), the conclusion

is similar, as seen in Fig. 15(b). With a measurement at 50% (∆1), we again see that a
determination of the CP-violating parameter is not possible but, if a measurement can be
made with an accuracy of 10% (∆2), then a determination of φAt would be more plausible.

BR(χ̃0
2 → χ̃0

1ℓ
+ℓ−) = 0.04,

Scenario A (φAt = 0)
BR(t̃1 → χ̃0

2t) = 0.1,
Scenario A (φM1

= 0)

φM1
/π

M1/GeV

φAt/π

M1/GeV

∆2

∆1

∆1∆2

∆1

∆1

∆2

∆1

(a) (b)
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Figure 15: Parameter space allowed when the experimental accuracy of the branching
ratio measurement is 50% (∆1) or 10% (∆2) for (a) BR(χ̃0

2 → χ̃0
1ℓ

+ℓ−) = 0.04 and (b)
BR(t̃1 → χ̃0

2t) = 0.1.

Thus, we may be able to to pin the model parameters down with greater accuracy by
combining information on the CP-violating asymmetries with this and other information.
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4 Conclusions

We have studied direct stop production followed by the decay t̃1 → tχ̃0
2, χ̃

0
2 → ℓ+ℓ−χ̃0

1,
where the latter is a three-body decay and provide compact analytical expressions for
the amplitude and phase space. We have specifically concentrated on measuring the
CP-violating phases of the parameters M1 and At.

We have provided a thorough analysis of the contributions to this process which lead
to non-zero asymmetries in the parameters Tt, Tb and Ttb formed from triple products
of reconstructable final-state particles. These are sensitive to different combinations of
the phases mentioned above. We studied three spectra which had different neutralino
characteristics at the parton level and also studied the (large) effect of including pdfs
which had previously only been roughly estimated in the literature.

We found that with the design integrated luminosity of the LHC of 100 fb−1, the
statistical errors would probably remain too great to distinguish a non-zero asymmetry
measurement from zero for most of the ranges of φM1

and φAt, and we recall that this
initial study did not include detector or background effects. However, with a luminosity
upgrade, the accuracy will improve and it could be possible either to measure a non-zero
value or else to provide limits on the possible phases.

Triple products are not the only variables sensitive to the phases of the parameters.
We found that a good measurement of the mass difference between the χ̃0

2 and χ̃0
1 neu-

tralinos could constrain significantly the (M1,φM1
) parameter space. It is possible that

measurements of the two branching ratios BR(t̃1 → χ̃0
2t) and BR(χ̃0

2 → χ̃0
1ℓ

+ℓ−) could
also constrain both φM1

and φAt, although this is heavily dependent on the experimental
accuracy achieved. However, the disadvantage of both mass differences and branching
ratios is that a non-zero value can potentially be faked by other values of the real param-
eters. This is in contrast to the asymmetries from triple products which are uniquely due
to CP violation. Therefore, even though these will be challenging measurements at the
LHC, they are worthwhile experimental objectives.

Acknowledgements

We are grateful to Martyn Gigg, David Grellscheid and Peter Richardson for their assis-
tance in the use of Herwig++ for these studies. JT thanks Martin White and Dan Tovey
for useful discussions. JMS and JT are supported by the UK Science and Technology
Facilities Council (STFC).

Appendices

A Lagrangian and couplings

The interaction Lagrangian terms for the production processes are

Lggg = gs∂
νGa

µg
µρfabcG

b
νG

c
ρ, (22)
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Lq̃q̃g = igsT
a
rsδijG

a
µq̃

∗
jr

↔

∂µ q̃is, (23)

Lq̃q̃gg =
1
2
g2s(

1
3
δab + dabcT

c)Ga
µG

bµq̃∗j q̃i. (24)

The interaction Lagrangian terms for χ̃0
2 decay are

LZ0ℓ+ℓ− = − g

cosΘW

Zµℓ̄γ
µ[LℓPL +RℓPR]ℓ, (25)

LZ0χ̃0
mχ̃0

n
=

1

2

g

cosΘW

Zµ
¯̃χ
0
mγ

µ[O′′L
mnPL +O′′R

mnPR]χ̃
0
n, (26)

Lℓℓ̃χ̃0
k
= gℓ̄(aℓ̃jkPR + bℓ̃jkPL)χ̃

0
kℓj + h.c., (27)

where the couplings aℓ̃jk and bℓ̃jk are given by

aℓ̃ik =
2∑

n=1

(Rℓ̃
in)

∗Aℓ
kn, bℓ̃ik =

2∑

n=1

(Rℓ̃
in)

∗Bℓ
kn, (28)

Here Rℓ̃
in is the mixing matrix of the squarks and

Aℓ
k =

(
f ℓ
Lk

hℓ
Rk

)
, Bℓ

k =

(
hℓ
Lk

f ℓ
Rk

)
, (29)

with

f ℓ
Lk = −

√
2 eℓ sin θWNk1 −

√
2 (T3ℓ − eℓ sin

2 θW ) Nk2

cos θW
, (30)

f ℓ
Rk = −

√
2 eℓ sin θW (tan θWN∗

k2 −N∗
k1), (31)

hℓ
Lk = −Yℓ (N

∗
k3 sin β −N∗

k4 cos β) , (32)

= (hℓ
Rk)

∗ (33)

O′′L
mn = −1

2
(Nm3N

∗
n3 −Nm4N

∗
n4) cos 2β − 1

2
(Nm3N

∗
n4 +Nm4N

∗
n3) sin 2β, (34)

O′′R
mn = −O′′L∗

mn , (35)

Lℓ = T3ℓ − eℓ sin
2ΘW , Rℓ = −eℓ sin

2ΘW , (36)

where PL,R = 1
2
(1 ∓ γ5), Yt = mt/(

√
2mW sin β). Here, g is the weak coupling constant

(g = e/ cosΘW , e > 0), eℓ and T3ℓ are the charge (in units of e) and the third component
of the weak isospin of the fermion ℓ, ΘW is the weak mixing angle and tanβ = v2/v1 is
the ratio of the vacuum expectation values of the Higgs fields. The unitary (4×4) matrix
Nmk that diagonalises the complex symmetric neutralino mass matrix is given in the basis
(γ̃, Z̃0, H̃0

1 , H̃
0
2 ) by [55]:

N =




M1e
iφM1c2W +M2s

2
W (M1e

iφM1 −M2)sW cW 0 0
(M1e

iφM1 −M2)sW cW M1e
iφM1c2W +M2s

2
W MZ 0

0 MZ µeiφµs2β −µeiφµc2β
0 0 −µeiφµc2β −µeiφµs2β


 . (37)
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where the abbreviations sW = sin θW , cW = cos θW , s2β = sin 2β, c2β = cos 2β have been
used.

The interaction Lagrangian for t̃ decay is

Lqq̃χ̃0
k
= gq̄(aq̃ikPR + bq̃ikPL)χ̃

0
kq̃i + h.c., (38)

where the couplings aq̃ik and bq̃ik are given by

aq̃ik =
2∑

n=1

(Rq̃
in)

∗Aq
kn, bq̃ik =

2∑

n=1

(Rq̃
in)

∗Bq
kn. (39)

Here Rq̃
in is the mixing matrix of the squarks and

Aq
k =

(
f q
Lk

hq
Rk

)
, Bq

k =

(
hq
Lk

f q
Rk

)
, (40)

with

f q
Lk = −

√
2 eq sin θWNk1 −

√
2 (T3q − eq sin

2 θW ) Nk2

cos θW
, (41)

f q
Rk = −

√
2 eq sin θW (tan θWN∗

k2 −N∗
k1), (42)

ht
Lk = Yt (N

∗
k3 sin β −N∗

k4 cos β) (43)

= (ht
Rk)

∗. (44)

We also use the following relations from [21]. The left-right mixing of the stop squarks is
described by a hermitian 2× 2 mass matrix which reads as follows in the basis (t̃L, t̃R):

Lt̃
M = −(t̃†L, t̃

†
R)




M2
t̃LL

e−iφt̃ |M2
t̃LR

|

eiφt̃ |M2
t̃LR

| M2
t̃RR






t̃L

t̃R


 , (45)

where

M2
t̃LL

= M2
Q̃
+ (

1

2
− 2

3
sin2ΘW ) cos 2β m2

Z +m2
t , (46)

M2
t̃RR

= M2
Ũ
+

2

3
sin2ΘW cos 2β m2

Z +m2
t , (47)

M2
t̃RL

= (M2
t̃LR

)∗ = mt(At − µ∗ cot β), (48)

φt̃ = arg[At − µ∗ cot β]. (49)

Here tan β = v2/v1 with v1(v2) being the vacuum expectation value of the Higgs field
H0

1 (H
0
2 ), mt is the mass of the top quark and ΘW is the weak mixing angle, µ is the

Higgs–higgsino mass parameter and MQ̃, MŨ , At are the soft SUSY–breaking parameters

of the stop squark system. The mass eigenstates t̃i are (t̃1, t̃2) = (t̃L, t̃R)Rt̃T with

Rt̃ =




eiφt̃ cos θt̃ sin θt̃

− sin θt̃ e−iφt̃ cos θt̃


 , (50)
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where

cos θt̃ =
−|M2

t̃LR
|

√
|M2

t̃LR
|2 + (m2

t̃1
−M2

t̃LL
)2
, sin θt̃ =

M2
t̃LL

−m2
t̃1√

|M2
t̃LR

|2 + (m2
t̃1
−M2

t̃LL
)2
. (51)

The mass eigenvalues are

m2
t̃1,2

=
1

2

(
(M2

t̃LL
+M2

t̃RR
)∓

√
(M2

t̃LL
−M2

t̃RR
)2 + 4|M2

t̃LR
|2
)
. (52)

We note that we have φt̃ ≈ φAt for |At| ≫ |µ| cotβ.

B Explicit expressions for the squared amplitude

B.1 Neutralino production t̃i → χ̃0
jt

Here we give the analytic expression for the production density matrix:

|M(t̃i → χ̃0
j t)|2 = P (χ̃0

jt) + Σa
P (χ̃

0
j ) + Σb

P (t) + Σab
P (χ̃0

jt), (53)

whose spin-independent contribution reads

P (χ̃0
jt) =

g2

2

{
(|aij |2 + |bij |2)(ptpχ̃0

j
)− 2mtmχ̃0

j
Re(aijb

∗
ij)
}
, (54)

where pt and pχ̃0
k
denote the four-momenta of the t-quark and the neutralino χ̃0

k. The
coupling constants can be simplified and shown to be

(|aij |2 + |bij |2) = |ht
Rj |2 + cos2 θt̃|f t

Lj|2 + sin2 θt̃|f t
Rj |2

+2 sin θt̃ cos θt̃Re
[
e−iφt̃ht∗

Rj(f
t
Rj + f t

Lj)
]
, (55)

Re(aijb
∗
ij) = cos2 θt̃Re(f t

Rjh
t
Rj) + sin2 θt̃Re(f t∗

Rjh
t
Rj)

+1
2
sin 2θt̃Re

[
eiφt̃ |ht

Rj |2 + e−iφt̃f t
Ljf

t∗
Rj

]
, (56)

where φt̃ is given in eq. (49).
The spin-dependent contributions are T-even and are given by

Σa
P (χ̃

0
2) =

g2

2

{
(|bij |2 − |aij |2)mχ̃0

j
(pts

a(χ̃0
j))
}
, (57)

Σb
P (t) =

g2

2

{
(|bij |2 − |aij |2)mt(pχ̃0

j
sb(t))

}
, (58)

where sa(χ̃0
j ) (s

b(t)) denote the spin-basis vectors of the neutralino χ̃0
j (t-quark). Again

the coupling constant can be simplified as

(|bij |2 − |aij|2) = cos 2θt̃|ht
Rj|2 − cos2 θt̃|f t

Lj|2 + sin2 θt̃|f t
Rj |2

−2 sin θt̃ cos θt̃Re
[
e−iφt̃ht∗

Rj(f
t
Rj + f t

Lj)
]
. (59)
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The three spin-basis four-vectors s1, s2 and s3 form a right-handed system and provide,
together with the momentum, an orthogonal basis system. They are chosen as:

s1(χ̃0
j) =

(
0,

(~pχ̃0
j
× ~pt̃i)× ~pχ̃0

j

|(~pχ̃0
j
× ~pt̃i)× ~pχ̃0

j
|

)
, (60)

s2(χ̃0
j) =

(
0,

~pχ̃0
j
× ~pt̃i

|~pχ̃0
j
× ~pt̃i |

)
, (61)

s3(χ̃0
j) =

1

mχ̃0
j

(
|~pχ̃0

j
|,
Eχ̃0

j

|~pχ̃0
j
|~pχ̃0

j

)
. (62)

The spin-system for the top quark has been chosen analogously:

s1(t) =

(
0,

(~pt × ~pχ̃0
j
)× ~pt

|(~pt × ~pχ̃0
j
)× ~pt|

)
, (63)

s2(t) =

(
0,

~pt × ~pχ̃0
j

|~pt × ~pχ̃0
j
|

)
, (64)

s3(t) =
1

mt

(
|~pt|,

Et

|~pt|
~pt

)
, (65)

and Et and Eχ̃0
j
denote the energies of the top quark and the neutralino χ̃0

j , respectively.

The terms that depend simultaneously on the spin of the top quark and of the neu-
tralino can be split into T-even, Σab,E

P (χ̃0
2t), and T-odd, Σab,O

P (χ̃0
2t), contributions:

Σab,E
P (χ̃0

2t) =
g2

2

{
2Re(aijb

∗
ij)[(s

a(χ̃0
j )pt)(s

b(t)pχ̃0
j
)− (ptpχ̃0

j
)(sa(χ̃0

j )s
b(t))]

+mtmχ̃0
j
(sa(χ̃0

j)s
b(t))(|aij|2 + |bij |2)

}
, (66)

Σab,O
P (χ̃0

2t) = −g2Im(aijb
∗
ij)f

ab
4 , (67)

where the T-odd kinematical factor is given by

fab
4 = ǫµνρσs

a,µ(χ̃0
j)p

ν
χ̃0
j
sb,ρ(t)pσt , (68)

and the coupling constant by

Im(aijb
∗
ij) = cos2 θt̃Im(f t

Rjh
t
Rj) + sin2 θt̃Im(f t∗

Rjh
t
Rj)

+1
2
sin 2θt̃Im

[
eiφt̃ |ht

Rj |2 + e−iφt̃f t
Ljf

t∗
Rj

]
. (69)

B.2 Neutralino three-body decay χ̃0
j → χ̃0

kℓ
+ℓ−

Here we give the analytical expressions for the different contributions to the decay den-
sity matrix for the three-body decay, where we sum over the spins of the final-state
particles [39]. The contributions independent of the polarisation of the neutralino χ̃0

j

D(χ̃0
j) = D(ZZ) +D(Zℓ̃L) +D(Zℓ̃R) +D(ℓ̃Lℓ̃L) +D(ℓ̃Rℓ̃R), (70)
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are given by

D(ZZ) = 8
g4

cos4ΘW

|∆(Z)|2(L2
ℓ +R2

ℓ )
[
|O′′L

kj |2(g1 + g2) + (ReO
′′L
kj )

2 − (ImO
′′L
kj )

2)g3

]
, (71)

D(Zℓ̃L) = 4
g4

cos2ΘW

LℓRe
{
∆(Z)

[
fL
ℓjf

L∗
ℓk ∆

t∗(ℓ̃L)(2O
′′L
kj g1 +O

′′L∗
kj g3)

+ fL∗
ℓj f

L
ℓk∆

u∗(ℓ̃L)(2O
′′L∗
kj g2 +O

′′L
kj g3)

]}
, (72)

D(ℓ̃Lℓ̃L) = 2g4
[
|fL

ℓj|2|fL
ℓk|2(|∆t(ℓ̃L)|2g1 + |∆u(ℓ̃L)|2g2)

+Re{(fL∗
ℓj )

2(fL
ℓk)

2∆t(ℓ̃L)∆
u∗(ℓ̃L)}g3

]
, (73)

where ∆(Z) and ∆t,u(ℓ̃L) denote the propagators of the virtual particles in the direct
channel and in both crossed channels (labelled t, u, cf. Fig.2).

The quantities D(Zℓ̃R), D(ℓ̃RẽR) can be derived from eqs. (72), (73) by the substitu-
tions

Lℓ → Rℓ, ∆t,u(ℓ̃L) → ∆t,u(ℓ̃R), O
′′L
kj → O

′′R
kj , fL

ℓj,k → fR
ℓj,k. (74)

The kinematical factors are

g1 = (pχ̃0
k
pℓ−)(pχ̃0

j
pℓ+), (75)

g2 = (pχ̃0
k
pℓ+)(pχ̃0

j
pℓ−), (76)

g3 = mjmk(pℓ−pℓ+). (77)

We can split the terms depending on the polarization of the neutralino into T-even and
T-odd contributions:

Σa
D(χ̃

0
j) = Σa,E

D (χ̃0
j ) + Σa,O

D (χ̃0
j ). (78)

The T-even contributions depending on the polarisation of the decaying neutralino χ̃0
j

Σa,E
D (χ̃0

j ) = Σa,E
D (ZZ) + Σa,E

D (Zℓ̃L) + Σa,E
D (Zℓ̃R) + Σa,E

D (ℓ̃Lℓ̃L) + Σa,E
D (ℓ̃Rℓ̃R). (79)

are

Σa,E
D (ZZ) = 8

g4

cos4ΘW

|∆(Z)|2(R2
ℓ − L2

ℓ)

×
[
− [(ReO

′′L
kj )

2 − (ImO
′′L
kj )

2]ga3 + |O′′L
kj |2(ga1 − ga2)

]
, (80)

Σa,E
D (Zℓ̃L) =

4g4

cos2 ΘW

LℓRe
{
∆(Z)

[
fL
ℓjf

L∗
ℓk ∆

t∗(ℓ̃L)(− 2O
′′L
kj g

a
1 +O

′′L∗
kj ga3)

+ fL∗
ℓj f

L
ℓk∆

u∗(ℓ̃L)(2O
′′L∗
kj ga2 +O

′′L
kj g

a
3)
]}

, (81)

Σa,E
D (ℓ̃Lℓ̃L) = 2g4

[
|fL

ℓj |2|fL
ℓk|2[|∆u(ℓ̃L)|2ga2 − |∆t(ℓ̃L)|2ga1 ]

+Re{(fL∗
ℓj )

2(fL
ℓk)

2∆t(ℓ̃L)∆
u∗(ℓ̃L)g

a
3}
]
, (82)
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where the contributions Σa,E
D (Zℓ̃R),Σ

a,E
D (ℓ̃Rℓ̃R) are derived from eqs. (81), (82) by applying

the substitutions in eq. (74) and in addition ga1,2,3 → −ga1,2,3.
The kinematical factors are

ga1 = mj(pχ̃0
k
pℓ−)(pℓ+s

a), (83)

ga2 = mj(pχ̃0
k
pℓ+)(pℓ−s

a), (84)

ga3 = mk[(pχ̃0
j
pℓ+)(pℓ−s

a)− (pχ̃0
j
pℓ−)(pℓ+s

a)]. (85)

The T-odd contributions depending on the polarisation of the decaying neutralino χ̃0
j

Σa,O
D (χ̃0

j ) = Σa,O
D (ZZ) + Σa,O

D (Zℓ̃L) + Σa,O
D (Zℓ̃R) + Σa,O

D (ℓ̃Lℓ̃L) + Σa,O
D (ℓ̃Rℓ̃R). (86)

are

Σa,O
D (ZZ) = 8

g4

cos4ΘW

|∆(Z)|2(L2
ℓ −R2

ℓ )
[
2Re(O

′′L
kj )Im(O

′′L
kj )ig

a
4

]
, (87)

Σa,O
D (Zℓ̃L) =

4g4

cos2ΘW

LℓRe
{
∆(Z)

[
− fL

ℓjf
L∗
ℓk O

′′L∗
kj ∆t∗(ℓ̃L)

+ fL∗
ℓj f

L
ℓkO

′′L
kj ∆

u∗(ℓ̃L)
]
ga4

}
, (88)

Σa,O
D (ℓ̃Lℓ̃L) = 2g4Re

{
(fL∗

ℓj )
2(fL

ℓk)
2∆t(ℓ̃L)∆

u∗(ℓ̃L)g
a
4

}
, (89)

where the contributions Σa,O
D (Zℓ̃R),Σ

a,O
D (ℓ̃Rℓ̃R) are derived from eqs. (81), (82) by applying

the substitutions in eq. (74). The kinematical factor is

ga4 = imkǫµνρσs
aµpνχ̃0

j
pρ
ℓ−
pσℓ+ . (90)

B.3 Top decay t → W+b

We provide analytical expressions for the 2-body decay of the top quark into a W -boson
and the final-state bottom quark:

D(t) =
g2

4
{m2

t − 2m2
W +

m4
t

m2
W

}. (91)

The spin-dependent contribution is T-even and reads:

Σb
D(t) = −g2

2
mt{(sb(t)pb) +

m2
t −m2

W

m2
W

(sb(t)pW )}. (92)

C Kinematics

C.1 Phase Space

The complete cross section for the process can be decomposed into the production cross
section and the branching ratios of the subsequent decays:

dσTotal = dσ(gg → t̃1t̃1)
Et̃1

mt̃1
Γt̃1

dΓ(t̃1 → tχ̃0
2) ·

Eχ̃0
2

mχ̃0
2
Γχ̃0

2

dΓ(χ̃0
2 → χ̃0

1l
+l−)

Et

mtΓt

dΓ(t → W+b) , (93)
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where the factors E/mΓ come from the use of the narrow-width approximation for the
propagators of the t̃, χ̃0

2 and t. This approximation is valid for (Γ/m)2 ≪ 1, which is
satisfied for Γt ∼ 1.5 GeV [43] and Γt̃ ∼ 4 GeV. It is also trivially satisfied in the case of
Γχ̃0

2
∼ 10−4 where the width is small because only the three-body decay is kinematically

possible.
We have:

dΓ(t̃1 → tχ̃0
2) =

2

Et̃1

P (χ̃0
2t) dΦt̃, (94)

dΓ(χ̃0
2 → χ̃0

1l
+l−) =

1

4Eχ̃0
2

D(χ̃0
2) dΦχ̃0

2
, (95)

dΓ(t → W+b) =
1

4Et

D(t) dΦt, (96)

where the phase-space factors in the laboratory system are given by:

dΦt̃ =
1

(2π)2

|p±
χ̃0
2

|2

2|Et̃|p±

χ̃0
2

| − E±

χ̃0
2

|pt̃|cosθt̃|
dΩt̃, (97)

dΦχ̃0
2
=

1

8(2π)5
El+

||pχ̃0
2
|cosθl+ − Eχ̃0

1
− El+ −El−cosα|

El−dEl−dΩl+dΩl−, (98)

dΦt =
1

(2π)2
Eb

2||pt|cosθb − EW −Eb|
dΩb. (99)

There is a subtlety in the phase-space calculation, namely that there can be two solutions
for pχ̃0

2
. If |pχ̃0

2
| < p0 where p0 = λ

1

2 (m2
t̃
, m2

χ̃0
2

, m2
t )/2mχ̃0

2
, then the decay angle, θt̃ =

∡(pt̃,pt), is unconstrained and there is only one solution. However, if pχ̃0
2
> p0, then the

angle is constrained by sinθmax
t̃

= p0/|pχ̃0
2
| and there are two physical solutions

|pχ̃0
2
| =

(m2
t̃
+m2

χ̃0
2

−m2
θ)|pt̃| cos θt̃ ± Et̃

√
λ(m2

t̃
, m2

χ̃0
2

, m2
t )− 4|pt̃|2 m2

χ̃0
2

(1− cos2 θt̃)

2|pt̃|2(1− cos2 θt̃) + 2m2
t̃

.(100)

For the region of phase space where two solutions exist the cross section becomes a
summation of the solutions for each of the subsequent decay chains.

C.2 Integration limits

When evaluating the phase-space integral at the parton level, kinematical limits need to
be determined on some of the variables and these are listed below.

If |pχ̃0
2
| < p0, where p0 = λ

1
2 (m2

t̃
, m2

χ̃0
2

, m2
t )/2mχ̃0

2
, there are two solutions for pχ̃0

2
,

eq.(100), and the decay angle of the t̃ is constrained by

sinθt̃ <
λ

1
2 (m2

t̃
, m2

χ̃0
2

, m2
t )

2|pt̃|mχ̃0
2

. (101)
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The three-body-decay phase space of the χ̃0
2 also has limits:

Eℓ− <
mχ̃0

2
−mχ̃0

1

2(Eχ̃0
2
− |pχ̃0

2
|) , (102)

cosθℓ− <
2Eχ̃0

2
Eℓ− +mχ̃0

1
−mχ̃0

2

2Eℓ−|pχ̃0
2
| . (103)
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