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recent Monte Carlo programs. Such a scheme correctly describes subleading soft

contributions to multiplicity distributions. However we find that a simple receipt
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Preface

We share opinion of our late friend Bo Anderson who once bitterly complained about

two aspects of scientific publishing that became standard in recent decades: 1) shying

away from expressing emotions and 2) not making public an outcome of a study that

produced a negative, undesired results. The present paper is moderately emotional;

at the same time it is perfectly in line with the second Bo’s demand: it reports the

finding that the authors did not plan, and would rather not want, to arrive at.

The answer to the question that is posed in this paper suggests that a formulation

of Monte Carlo event generation based on the multiplication picture of energy ordered

colour dipoles is plugged by a serious problem.
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1. Introduction

Generation of events using Monte Carlo methods is an indispensable tool for plan-

ning, running and analysing the results of modern high energy experiments. A

possibility to generate multi-particle production as a Markov chain of successive

independent parton splittings is based on the general property of factorization of

collinear singularities which is characteristic for logarithmic field theories (quantum

field theories with dimensionless coupling).

Event generation is necessarily an approximate procedure. Strictly speaking, in

order to predict the cross section dσn for production of n partons in a hard interaction

with the hardness scale Q2, one needs to plug in the QCD matrix element of the (at

least) nth order of the perturbation theory. Instead, one repeats n times the basic

1 → 2 splitting process of the first order in αs. By so doing one correctly samples

the major part of the n-parton phase space, though not all of it. It is this part that

gives the dominant, maximally collinear enhanced contribution to, e.g., the inclusive

particle distribution, D(n) = O (αn
s log

nQ2). This approximation known as leading

logarithmic (LLA) can be systematically improved by including higher order parton

splitting processes. Thus, the next-to-leading logarithmic accuracy corresponding

to the series αn+1
s lognQ2 is achieved by incorporating 1 → 3 parton splittings, etc.

For inclusive parton distributions this leads to the DGLAP evolution equations [1]

whose generalisation to multi-particle distributions can be achieved in the spirit of

jet-calculus [2], with additional account of soft gluon coherence.

Beyond the one loop “evolution Hamiltonian” it starts to matter how one or-

ganises the parton chain, that is, what one chooses as “parton evolution time”. In

particular, due to the presence of soft gluons one encounters corrections of the type

(αs log
2 x)k which are formally subleading (non-collinear) but become explosively

large in the x ≪ 1 limit (here x is the gluon energy fraction). This eventuality

can be cured by an appropriate tuning of the evolution time parameter. Namely,

for time-like parton multiplication (jets) one has to choose the angular ordering [3].

This choice corrects the “naive” fluctuation time ordering (dictated by an examina-

tion of Feynman denominators in a cascading process) by taking into clever account

collective effects leading to destructive interference in soft gluon radiation (for more

details see, e.g., [4–8]).

An alternative way of dealing with soft gluon interference effects for time-like

parton multiplication (jets) is provided by the “dipole scheme” [4, 9] in which an

independently radiating parton, 1 → 2, is replaced by a colourless dipole formed

by two partons neighbouring in the colour space, 2 → 3. Gluon radiation off a

dipole is automatically suppressed at angles exceeding the dipole opening angle thus

reproducing the angular ordering. Colour suppressed contributions O (1/N2
c ) that

lie beyond the scope of the dipole approach are numerically small and difficult to

trigger experimentally [10].
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Within the standard coherent parton cascade picture [5, 8] it is the small-angle

multiplication processes populating jets that enjoy full all-order treatment (get “ex-

ponentiated”). The dipole formulation offers a possibility to improve this treatment

by taking into consideration logarithmically enhanced effects due to multiple emis-

sion of soft gluons at large angles with respect to jets. Non-collinear soft gluons

dominate inter-jet particles flows in various hard processes. They also complicate

the analysis of the so-called nonglobal QCD observables [11–13], i.e. in observables

in which recorded radiation is confined in geometrically definite phase space regions.

It is then interesting to involve these corrections into a Monte Carlo, code based on

dipole emission, including soft radiation awy from jets.

In this paper we discuss a dipole based scheme (in the large-Nc approximation)

which is well suited for deriving improved analytic predictions for observables like

mean multiplicities, inclusive soft particle spectra and energy flows, correlations, etc.,

that incorporate large-angle soft gluon radiation effects as in [11–13]. At the same

time, we observe that once one aims at beyond the no-recoil (soft) approximation,

treating colour dipoles as independently evolving entities is likely to conflict the

collinear factorization. It does not lead to the correct DGLAP equation.

The paper is organised as follows. We start by constructing in Section 2 an

evolution equation for the generating functional that describes soft gluon content

of e+e− annihilation events. No recoil is included. This equation is based on the

factorization of the multi-soft gluon distribution, in the planar limit, and uses the

centre-of-mass energy as an “evolution time”. Contrary to what is done normally,

no angular variable enters the evolution time here. The evolution equation in the

integral form we interpret as a Markov process of successive dipole branchings, which

interpretation leads to a Monte Carlo chain process for probabilistic event generation.

As a first example, we solve the evolution equation for mean gluon multiplicity

to analyse subleading corrections due to large-angle soft gluon radiation. Here we

work in the soft approximation meaning: 1) small energies of emitted gluons and 2)

neglecting the energy-momentum loss (recoil) by the primaries.

These two aspects of the “soft gluon approximation” do not necessarily go to-

gether. In Section 3 we consider an inclusive energy distribution of the leading quark

in the quasi-elastic limit, (1 − x) ≪ 1, where emitted gluons ought to be soft but

the quark recoil is essential. At the beginning, in the construction of the evolution

equation no recoil effects were included. They are incorporated later by using the

recoil strategy that seems natural for a dipole multiplication scheme, see [14]. We

find, however, that the quark fragmentation function so obtained deviates essentially

from the collinear resummation result given by the DGLAP evolution equation. This

is in contrast to what is happening in Monte Carlo schemes based on angular ordered

time-like cascades where collinear singularities are correctly resummed [5, 15].

Discussion of the problem encountered is relegated to the Conclusions section.

– 3 –



2. Multiple soft gluons and Monte Carlo

The method of generating functionals makes it straightforward to generate exclusive

events using Monte Carlo techniques. We start from the known n-gluon distribution

in the soft limit and construct the evolution equation for the corresponding generating

functional.

The generating functional for a quark-antiquark pair qq̄ plus an ensemble of n

secondary partons, γ∗ → papb q1, q2, . . . qn , is

G(Q, u) =

∞∑

n=0

∫
dΦ

(n)
ab (q1, q2, . . . , qn) uaub

n∏

i=1

u(qi)
∣∣∣M (n)

ab (q1, . . . , qn)
∣∣∣
2

. (2.1)

Here pa, pb are the final on-mass-shell momenta of the quark and antiquark produced

by the virtual photon γ∗ and qi the momenta of the secondaries. The matrix element

M
(n)
ab describes production of n+ 2 real final state partons and contains any number

of virtual ones. dΦ(n) is the full phase space factor of the ensemble of n+2 massless

particles:

dΦ
(n)
ab (q1, q2, . . . , qn) = (dpa)(dpb)

n∏

i=1

(dqi) (2π)
4δ(4)(pa + pb +

n∑

i=1

qi −Q), (2.2)

where

(dq) =
d3q

2ω (2π)3
, ω = q0 = |q| .

The “source functions” u are attached to each parton in (2.1). They help to extract

an arbitrary final state observable once the functional is known. The fully inclusive

measurement, that is when one allows for production of any number of particles

with arbitrary momenta, corresponds to setting all u=1. This gives G(Q, u=1) = 1

corresponding to normalization to the total cross section. In this section we work in

the no-recoil approximation.

2.1 Generating functional in the soft limit

In the large-Nc (“planar”) approximation the squared matrix element can be approx-

imated at tree level as

∣∣∣M (n)
ab (q1, . . . , qn)

∣∣∣
2

≃ (4π2ᾱs)
n

n!

∑

perm

Wab(qi1 , . . . , qin) ·
∣∣∣M (0)

ab

∣∣∣
2

ᾱs =
Ncαs

π
,

(2.3a)

where Wab is the “multiple antenna” function [4] describing the production proba-

bility of n soft real gluons qi:

Wab(q1, q2, . . . , qn) =
(papb)

(paq1)(q1q2) · · · (qnpb)
. (2.3b)
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This result holds in the soft gluon approximation qi ≪ pa, pb. In invariant terms,

(qipa), (qipb) ≪ (papb), (2.4)

or, equivalently, (qi, pa + pb) ≪ 2(papb) = Q2 giving

ωi ≪ Ea ≃ Eb ≃ Q/2, (2.5)

with Ea, Eb and ωi the energies in the centre-of-mass of the “dipole” (ab). In this

approximation the phase space can be simplified as

dΦ
(n)
ab (q1, . . . , qn) ≃ (dpa)(dpb)(2π)

4δ4(pa+pb−Q) ·
n∏

i=1

(dqi) ≡ dΦ
(0)
ab ·

n∏

i=1

(dqi) . (2.6)

The expression (2.3) was derived implying strong ordering of gluon energies:

ωin ≪ ωin−1
≪ . . .≪ ωi2 ≪ ωi1 ≪ Q/2.

The answer, however, is symmetric with respect to momenta of participating gluons.

Therefore, we may ignore the ordering between gluons and set a common upper

bound E = 1
2
Q for gluon energies.

Extracting the quarks whose momenta in the soft gluon approximation are not

affected by radiation, we may write

G(u;Q) ≃
∫
dΦ

(0)
ab u(pa)u(pb) |M

(0)
ab |2 · G(pa, pb; 1

2
Q). (2.7)

The functional G(pa, pb;E) describes production of any number of gluons with ener-

gies limited from above by some value E, off the dipole formed by the quarks with

momenta pa, pb. By setting E = 1
2
Q we obtain the multi-gluon generating functional

describing e+e− annihilation process with s = Q2.

The generating functional contains proper virtual factors for each n-gluon con-

tribution. Omitting for the moment the virtual corrections, we have

G(real)(pa, pb;E) ≡
∑

n

∫
Wab(q1, . . . , qn)

n∏

i=1

[
ωidωi

dΩ

4π
ᾱs · u(qi) · ϑ(E−ωi)

]
. (2.8)

Due to the symmetric structure of the antenna function (2.3) one may chooseWab(q1 . . . qn)

to represent any energy ordered ensemble of gluons and drop the symmetry factor

1/n!.

2.2 Evolution equation

To obtain an evolution equation for the generating functional we need to exploit the

structure of the multi-gluon antenna distribution (2.3) and to deduce a recurrence

relation. To construct a recurrence relation one should select an “evolution variable”
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to order emitted gluons. In the logic of the collinear approximation this is done by

ordering the angles of successive gluon emissions, which ordering takes full care of

the destructive interference contributions in the soft region [3–5,8] and preserves the

probabilistic parton multiplication picture. In particular, this procedure was applied

to the expression (2.8) to construct the HERWIG event generator [5, 15].

However, as was already stated, the distribution (2.3) is valid in the soft limit

for arbitrary angles , and one is tempted to use this property in order to lift off the

collinear approximation. The derivation of the evolution equation avoiding the small

angle approximation was done in [11–13] where the upper bound E on gluon energies

in the event centre-of-mass was treated as the “evolution time” parameter. Let us

recall the corresponding construction employing the energy as an evolution variable.

2.2.1 Energy as an evolution variable

We take the ordering in the energy of emitted gluons in the center-of-mass of the

event (2.5) and deduce an evolution equation for the soft generating functional. The

evolution equation follows from the exact recurrence relation — the factorization

property of the multi-gluon antenna function (2.3b) — which reads

Wab(q1, q2, . . . , qn) = Wab(qℓ) ·Waℓ(q1, . . . qℓ−1)Wℓb(qℓ+1, . . . , qn), (2.9)

where ℓ is any gluon. To construct the evolution equation one takes ℓ to be the most

energetic among the gluons.

Introducing the scaled antenna function

Ŵab(q) ≡ ω2 ·Wab(q) =
ξab

ξaq ξbq
, ξik = 1− cosΘik ,

which depends only on the angles between partons, we obtain

E∂EG(pa, pb;E) =
∫
dΩ

4π
ᾱs Ŵab(q)

[
u(q)G(pa, q;ω)G(q, pb;ω)−G(pa, pb, ω)

]

ω=E

. (2.10)

Here the subtraction term takes care of virtual corrections, so that taking all u(q) = 1

one derive the desired normalization

G(pa, pb;E)|u=1 = 1 . (2.11)

No recoil was included up to now; it will be considered later.

2.2.2 Integral evolution equation and Monte Carlo

By exponentiating the total one-gluon emission probability we obtain the Sudakov

form factor which describes the probability that the dipole does not radiate gluons

with energies up to a given value E:

S(pa, pb;E) = exp

{
−
∫ E dω

ω

dΩ

4π
ᾱs(q

ab
t ) Ŵab(q)ϑ(q

ab
t −Q0)

}
. (2.12)
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Here qabt is the invariant transverse momentum of the gluon with respect to the pair

of quarks:

(qabt )2 =
2(paq)(pbq)

(papb)
=

2

Wab(q)
, (2.13)

and an arbitrary parameter Q0 has been introduced as a collinear cutoff. By con-

structing the logarithmic derivative of the Sudakov form factor over the maximal

gluon energy,

E∂E lnS(pa, pb;E) = −
∫

dΩ

4π
ᾱs(q

ab
t ) Ŵab(q)ϑ(q

ab
t −Q0)

∣∣∣∣
ω=E

, (2.14)

and plugging this expression into (2.10) we can trade the virtual subtraction term

for the Sudakov factor. By so doing we arrive at the equivalent equation for the soft

generating functional in the integral form:

G(pa, pb;E) = S(pa, pb;E) +

∫ E dω

ω

∫
dΩ

4π
u(q) · S(pa, pb;E)

S(pa, pb;ω)

· ᾱs(q
ab
t ) Ŵab(q)ϑ(q

ab
t −Q0) · G(pa, q;ω)G(q, pb;ω).

(2.15)

Iteration of this equation can be interpreted as parton branching which can be re-

alised as a Monte Carlo (Markov) process. To see this, observe that the iteration

kernel

dP(pa, pb, q;E) =
dω

ω

dΩ

4π

S(pa, pb;E)

S(pa, pb;ω)
· ᾱs(q

ab
t ) Ŵab(q)ϑ(q

ab
t −Q0) (2.16)

can be written as the product of two probability distributions (here the boundary

qabt > Q0 is implicit):

dP(pa, pb, q;E) = dP(1)
ab (ω,E) · dP

(2)
ab (Ωq) ,

P(1)
ab (ω,E) =

S(pa, pb;E)

S(pa, pb;ω)
, dP(2)

ab (Ωq) = ᾱs
dΩq

4π

ξab
ξaqξqb

(∫
ᾱs
dΩ

4π

ξab
ξaqξqb

)−1

.

(2.17)

In the Monte Carlo process one tries to generate emission of a gluon with momentum

q off a given dipole. The first distribution, dP(1), provides the gluon energy ω, if the

transverse momentum bound is satisfied, and the second one, dP(2), its direction Ωq.

If the boundary is not satisfied, the dipole does not emit. One has

∫
dP(pa, pb, q, E) = 1− S(pa, pb;E), (2.18)

which shows that the Sudakov factor gives the probability of not emitting a soft

gluon within the resolution qabt > Q0.
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2.3 Mean multiplicity

By construction the generating functional (2.15) embeds only soft gluon radiation.

Incorporating double logarithmic (simultaneously soft- and collinear-enhanced) con-

tributions, it also contains single logarithmic effects due to emission of soft gluons at

large angles.

Here we demonstrate an application of the dipole-based evolution to the calcu-

lation of subleading large-angle soft gluon corrections. In the collinear approach,

such corrections are treated as due to “multi-jet” configurations (contributing to the

“coefficient function”) rather than jet evolution (“anomalous dimension”), see [8].

Consider mean gluon multiplicity. In order to obtain an equation for the multi-

plicity of secondary partons, one applies to (2.10) the variational derivative over the

probing function u(k) and integrates over k, while setting u ≡ 1 for all remaining

probing functions (one-particle inclusive measurement):

E∂EN(ξab, E) =

∫
dΩ

4π
ᾱs(k

ab
t ) Ŵab(q)

[
1 +N(ξqa, E) +N(ξqb, E)−N(ξab, E)

]

ω=E

.

(2.19)

Introducing N = 1 +N we have [16]

N ′(ξab) = E∂EN (ξab) =

∫
dΩ

4π
ᾱs(k

ab
t ) Ŵab(q)

[
N (ξqa) +N (ξqb)−N (ξab)

]
. (2.20)

In order to illustrate the difference with the standard approach based on the angu-

lar ordering we will analyse (2.20) in the double logarithmic approximation which

neglects hard parton splittings and recoil effects. For the time being we will ignore

the running of the coupling; the corresponding corrections will be addressed later.

Representing the integrand on the r.h.s. of (2.20) as

ξ

ξ1ξ2

[
N (ξ1)+N (ξ2)−N (ξ)

]
=

1

ξ2

[
ξ

ξ1
N (ξ1)−N (ξ)

]
+

1

ξ1

[
ξ

ξ2
N (ξ2)−N (ξ)

]
−ξ − ξ1 − ξ2

ξ1ξ2
N (ξ),

and using the 1 ↔ 2 symmetry, we obtain

N ′(ξ) =

∫
dΩ

4π
ᾱs

{
2

ξ2

[
ξ

ξ1
N (ξ1)−N (ξ)

]
− ξ − ξ1 − ξ2

ξ1ξ2
N (ξ)

}
. (2.21)

We can perform the integration over the azimuth of q around the direction of pa,

∫
dΩ

4π
=

1

2

∫ 2

0

dξ1 ·
∫
dφ1

2π
.

Using the relation 〈
1

ξ2

〉
≡
∫
dφ1

2π

1

ξ2
=

1

|ξ − ξ1|
,
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we get 〈
ξ − ξ1 − ξ2

ξ1ξ2

〉
=

1

ξ1

(
ξ − ξ1
|ξ − ξ1|

− 1

)
= − 2

ξ1
ϑ(ξ1 − ξ). (2.22)

As a result,

N ′(ξ) = ᾱs

∫ 2

0

dξ1
|ξ − ξ1|

[
ξ

ξ1
N (ξ1)−N (ξ)

]
+ ᾱs

∫ 2

ξ

dξ1
ξ1

N (ξ), (2.23)

with the E dependence implicit. The first contribution we split into integrals over

small and large angles, 0 ≤ ξ1 ≤ ξ and ξ < ξ1 ≤ 2. Introducing the integration

variable η = ξ1/ξ ≤ 1 in the first region and η = ξ/ξ1 in the second, 1
2
ξ ≤ η ≤ 1, the

equation (2.23) takes the form [16]

N ′(ξ) =

∫ 1

0

dη ᾱs

1− η

[
1

η
N (ηξ)−N (ξ)

]
+

∫ 1

1
2
ξ

dη ᾱs

1− η

[
N
(
η−1ξ

)
−N (ξ)

]
. (2.24)

This result we represent as a sum of two terms,

E∂EN (ξ) =

∫ 1

0

dη ᾱs

η
N (η ξ) + ∆(ξ), (2.25a)

where

∆(ξ) =

∫ 1

0

dη ᾱs

1− η

[
N (η ξ)−N (ξ)

]
+

∫ 1

1
2
ξ

dη ᾱs

1− η

[
N
(
η−1ξ

)
−N (ξ)

]
. (2.25b)

The first integral term on the r.h.s. of (2.25a) generates the standard DL anoma-

lous dimension for the mean multiplicity; the second one constitutes a subleading

correction.

2.3.1 The main term

We have to solve the equation

E∂ENDL(ξ;E) =

∫ 1

0

dη ᾱs

η
NDL(η ξ;E) (2.26)

with the initial condition

N (ξ;E)|E√
2ξ=Q0

= 1.

The solution is a function of a single variable Qξ ≡ E
√
2ξ (the maximal transverse

momentum of partons radiated by the dipole).

The argument of the running coupling in (2.26) can be approximated as

ᾱs(k
ab
t ) = ᾱs

(
E

√
2ξ1ξ2
ξ

)
≃ ᾱs

(
E
√

2ξ1

)
.
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The correction to this approximation turns out to be negligible since the logarithmic

factor ln(ξ2/ξ) vanishes in the collinear limit ξ1 → 0:

∝
∫
dξ1
ξ1

(
β0ᾱ

2
s

)
· ln ξ2

ξ
= O

(
ᾱ2
s

)
.

Thus we obtain the double differential equation

(
d2

d lnQξ

)2

NDL(Qξ) = 2ᾱs(Qξ)NDL(Qξ), Qξ = E
√

2ξ, (2.27)

with the initial conditions N (Q0) = 1 and N ′(Q0) = 0. Its solution for the fixed

coupling case reads

NDL(Qξ) = cosh

(
γ ln

Qξ

Q0

)
≃ 1

2

(
Qξ

Q0

)γ

, (2.28)

where the anomalous dimension γ is given the correct expression

γ = ᾱs

∫ 1

0

dη

η
· η

1
2
γ = ᾱs ·

2

γ
=⇒ γ =

√
2ᾱs .

2.3.2 The correction term

Let us analyse the correction term (2.25b) keeping the contributions of the order of

ᾱ
3/2
s while neglecting contributions O (ᾱ2

s). The answer depends on the value of the

opening angle ξ.

Small opening angles (ξ ≪ 1). It is the region of small opening angles that gives

a dominant contribution to the integral determining the DL anomalous dimension

in (2.26). In this entire region the correction (2.25b) does not contribute at the ᾱ
3/2
s

level. Indeed, substituting the solution (2.28) into the expression (2.25b) and setting

ξ → 0 in the lower limit of the second integral we get

∆(ξ;E)

N (ξ;E)
= ᾱs

∫ 1

0

dη

1− η

[
ηγ/2 + η−γ/2 − 2

]

= ᾱs ·
[
2ψ(1)− ψ(1 + 1

2
γ)− ψ(1− 1

2
γ)

]
= ᾱs · 1

4
γ2 ψ′′(1) + . . . ≃ 1

2
ᾱ2
s ψ

′′(1).

(2.29)

Large opening angle (ξ ≃ 2). At the same time, ∆ contributes to the multiplicity

of the “fully open” dipole, ξ = 2. The expression (2.25b) for ∆(2;E) contains one

integral:

∆(2;E) = ᾱs

∫ 1

0

dη

1− η

[
N (η · 2;E)−N (2;E)

]
.

Expanding the difference of the multiplicity factors,

N (η · 2;E)−N (2;E) = E∂EN (2;E) · 1
2
ln η + . . . ,
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we derive

∆(2;E) ≃ E∂EN (2;E) · ᾱs

∫ 1

0

dη

1− η
· 1
2
ln η = −π

2

12
ᾱs · E∂EN (2;E).

Integrating this correction over energy we finally obtain an order αs correction to

the dipole multiplicity due to emission of two soft energy ordered gluons:

N (2;E) = NDL(2;E) ·
(
1− π2

12
ᾱs + . . .

)
. (2.30)

In the standard approach, this correction belongs to the coefficient function and

originates from a “four-jet” configuration with two large-angle energy ordered soft

gluons as additional “jets” [8].

2.3.3 Other observables sensitive to large-angle gluon effects

There is a variety of observables that are sensitive to soft gluon radiation at large an-

gles. Among them one can mention production of heavy quark pairs in jets [16], non-

global jet observables [11] including various particle distributions and correlations

related with particle flows in the inter-jet regions [12, 13, 17–21]. The dipole-based

evolution equation (2.15) is well suited for taking into account single logarithmic

correction effects due to multiple soft gluons in these observables and elsewhere.

At the same time, it remains insufficient for building a realistic Monte Carlo event

generator which is impossible without incorporating full parton decay probabilities,

including hard parton splittings, and of the recoil effects to ensure energy–momentum

conservation.

3. Attempt to include recoil in dipole multiplication

Generally speaking, a gluon emitted by a dipole cannot be ascribed as offspring to

either of the two partons that form the dipole. However, in the collinear limit when

the gluon momentum q is quasi-parallel to one of the two hard partons, say, pa,

it is the parton a that can be said to “independently split” into two, sharing its

momentum, Pa → pa + q. A small change in the “spectator” momentum Pb → pb
which is necessary to compensate for the virtuality of the (a, q) pair, vanishes in the

collinear limit. A general recoil strategy has to be formulated in such a way that

in the collinear limit the answer reduces to the standard DGLAP parton splitting

function Pa → pa + q that includes hard momentum configurations, pa ∼ q. This is

a source of a significant single-logarithmic correction, this time not from soft gluon

radiation at large angles but from hard collinear-enhanced emission.

Thus, in order to properly formulate a recoil strategy, one must split the soft

dipole radiation function Wab(q) into two pieces, W
(a)
ab (q) and W

(b)
ab (q), each of which
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incorporates the collinear singularity when q ||pa or q ||pb, respectively:

Wab(q) =
(papb)

(paq)(qpb)
= W

(a)
ab (q) +W

(b)
ab (q), (3.1a)

or, graphically,

q

pa

pb

= +

(3.1b)

One can do this differently, for example by introducing [14]

W
(a)
ab (q) =

(papb)

(paq)(pa + pb, q)
, W

(b)
ab (q) =

(papb)

(pbq)(pa + pb, q)
. (3.2)

Another possibility to split the dipole is given by the “conditional probabilities” [5,6]

W
(a)
ab (q) = Wab(q) · 1

2

[
1 +

(qpa)(pbQ)− (qpb)(paQ)

(papb)(qQ)

]
=

1

2ω2 ξqa

[
1 +

ξab − ξqa
ξqb

]
.

(3.3)

The distribution (3.3) produces the exact angular ordering upon averaging over the

azimuthal angle φ of the gluon momentum q around the singular direction pa:

〈
W

(a)
ab

〉
φq,pa

=
1

ω2ξqa
· ϑ
(
ξab − ξaq

)
. (3.4)

Note that in all cases the distributions W
(c)
ab (q) (c = a, b) fall fast and essentially

become irrelevant when the emission angle exceeds the opening angle of the parent

dipole, ξqc > ξab, that is away from the angular ordered kinematics.

3.1 Recoil strategy

Consider the elementary process

Pa + Pb =⇒ pa + pb + q .

One ascribes definite recoil pattern separately to the two terms in (3.1). Thus, for

the first term W
(a)
ab which is collinear singular in the direction q ||pa, we choose,

following the Catani–Seymour prescription [14]

p
(a)
b = (1− y)Pb.
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It defines the two light-like vectors Pa, Pb that represent the momenta of the parent

partons prior to the gluon emission:

p(a)a = zPa + (1− z)yPb − kt, (3.5a)

q = (1− z)Pa + zyPb + kt, (3.5b)

where kt is ortogonal to Pa and Pb. The on-mass-shell condition p2a = 0 gives

(Pa + yPb − q)2 = 0 =⇒ y =
(qPa)

(Pa − q, Pb)
. (3.6)

The light-cone fraction z of the parent momentum Pa carried by the final quark pa
is given by the expression

1− z =
(qPa)

(PaPb)
.

In the collinear limit y → 0. In the soft limit both y → 0 and z → 1.

We now recast the phase space element in terms of the “parent momenta”:

dΦab(q) = (dpa)(dpb)(dq)(2π)
4δ(4)(pa + pb + q −Q)

= (dPa)(dPb)(2π)
4δ(4)(Pa + Pb −Q) · (dq)× J

(a)
ab (q) ≡ dΦ

(0)
ab · (dq) J (a)

ab (q).

(3.7)

The Jacobian of this transformation reads

J
(a)
ab (q) =

(
1− (qPa)

(Pa − q, Pb)

)(
1− (qPb)

(PaPb)

)−1

=
1− y

z
. (3.8)

The gluon radiation probability we represent as a sum of two contributions:

dΦab(q) ·Wab(q) ⇒ dΦ
(0)
ab · (dq)

[
W

(a)
ab (q) J

(a)
ab (q) + W

(b)
ab (q) J

(b)
ab (q)

]
. (3.9)

Finally, the evolution equation in the differential form becomes

E∂E G(Pa, Pb;E) =

∫
dΩ

4π
ᾱs(q

ab
t )ϑ(qabt −Q0)

×
∑

c=a,b

J
(c)
ab (q)Ŵ

(c)
ab (q)

[
u(q)G(p(c)a , q;E)G(q, p(c)b ;E) − G(Pa, Pb;E)

]
E=ω

.
(3.10a)

In the graphic form it can be represented as

+

pb

pa

=

b

c
E

d
dE −

a

−

(3.10b)

This evolution equation is the modification of (2.10) that includes recoil as described

above. The gluon radiation function Ŵab(q) = ω2Wab(q) is split according to (3.9)
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into the two pieces which are collinear singular when q is parallel to pa or to pb,

correspondingly, see [14]. The energy of the hardest real gluon q0 ≡ ω = E plays the

rôle of the evolution parameter.

By introducing the Sudakov form factors this equation can be recast in an integral

form as it has been done in the soft case in (2.15).

G(Pa, Pb;E) = S(Pa, Pb;E) +

∫ E dω

ω

∫
dΩ

4π
u(q) · S(Pa, Pb;E)

S(Pa, Pb;ω)
ϑ(qabt −Q0)

× ᾱs(q
ab
t )
∑

c=a,b

J
(c)
ab (q)Ŵ

(c)
ab (q) · G(p(c)a , q;ω)G(q, p(c)b ;ω).

(3.11)

This equation generalizes (2.15) by taking into account the energy–momentum recoil

and again satisfies the normalization G(PA, Pb;E) = 1 for all u(q) = 1 (cf. (2.11)).

An iterative solution of this integral equation defines a Monte Carlo process for

generating multi-parton ensembles with account of collinear non-enhanced single-

logarithmic corrections due to large-angle soft gluon emission.

Now we are going to check if the dipole recoil scheme described above is consistent

with known analytical results concerning the collinear resummation. The simplest

observable of this type is an inclusive energy distribution of the final-state quark.

3.2 The non-singlet quark energy distribution

The non-singlet quark fragmentation function is obtained by taking the derivative

of the generating functional Gab with respect to the quark source u(pa) and setting

all the remaining source functions u = 1. This way we obtain the distribution in

the momentum of the quark a accompanied by any number of gluons. If the quark

energy is taken large, (1 − x) ≪ 1, all radiated gluons are soft and the analysis

simplifies significantly. The problem becomes essentially Abelian1 and is described

by multiple independent radiation of soft gluons by the quark.

3.2.1 Collinear approximation

We shall restrict ourselves to configurations in which all radiated gluons have small

emission angles with respect to the quark direction. This — quasi-collinear — ap-

proximation is sufficient for the analysis of the anomalous dimension which accumu-

lates collinear (“mass”) singularities of the fragmentation function in all orders and

describes the scaling violation.

In this kinematics the measured variable x is given by

x = 1−
∑

i

yi , ωi = yiE , pa ≃ xPa. (3.12)

1Non-Abelian effects due to final state cascading of gluons reduce to making the effective coupling

in the radiation probability of a primary gluon k run with k2
⊥
.
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What matters is the total energy 1−x carried, on average, by an ensemble of radiated

soft gluons.

Looking for collinear singular contributions — the terms of the type ᾱs ln(1 −
x) · lnQ0 — we may omit the two last terms on the r.h.s. of the equation (3.10b)

that contain the factor W
(b)
ab (q) which is non-singular when the gluon momentum q

becomes collinear to pa.

One is then left with contributions involving only the singular antenna piece

W
(a)
ab (q):

a

p

=

b

p

b

c
E

d
dE −

a (3.13)

Since our observable is inclusive, we may use unitarity arguments to simplify the

equation. Indeed, by the nature of the adopted recoil strategy, production of gluons

by the “upper” dipole (bc) in (3.13) does not affect the momentum of the quark a.

Therefore, since such emissions do not affect the measurement, they are subject to

real–virtual cancellation and can be neglected.

One is left to consider only gluons emitted in the lower blob involving the parton

a:

= − cc

aa

b

a

E
d

dE

(3.14)

This equation generates multiple gluon emissions off the quark.

By construction, successive emissions are ordered in gluon energies. And here

comes the crucial observation: as we have discussed above, the emission angle of

the gluon c is essentially limited from above by the aperture of the parent dipole,

ξab, see (3.4). Therefore, soft gluons generated by the evolution equation (3.14)

turn out to be ordered, simultaneously, in energies and angles with respect to the

radiating quark. Instead we know that the DGLA equation is obtaine from ordering

only in collinear variables, disregarding the relative energies of emitted partons. The

corresponding equation in the present dipole-formulation looks as follows.

3.2.2 Evolution equation with dipole recoil strategy

Since the radiated gluons are soft, we use the distribution W
(a)
ab (q) defined in (3.3)

which describes the soft part of the gluon radiation probability (splitting function).

We may also approximately set J
(a)
ab (q) = 1.

In going from the generating functional G(Pa, Pb;E) in (3.10) to the single par-

ticle distribution, we express the latter as a function of the angle between the par-

tons ξab, the energy scale E ≃ Ea and the energy fraction of the triggered quark:

D(ξab, E, x).
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Performing integration over the azimuthal angle φaq (see (3.4)) one deduces from

(3.10)

D(ξ;E; x) = δ(1− x)+

∫ 1 dy

y

∫ ξ dξ′

2ξ′
ᾱs ϑ

(
yE
√
ξ′ −Q0

)

×
[
D

(
ξ′, yE,

x

1− y

)
−D (ξ′, yE, x)

]
,

(3.15a)

where ξ = ξab is the angular aperture of the original dipole (ab) while ξ′ = ξac is the

aperture of the secondary (ac)–dipole, and for the sake of simplicity we have restricted

ourselves to the soft part of the gluon radiation probability, dy/y. Equivalently one

may write2

D(ξ;E; x) = δ(1− x)S(E
√
ξ)

+

∫ 1 dy

y

∫ ξ dξ′

2ξ′
ᾱs ϑ

(
yE
√
ξ′ −Q0

) S(E
√
ξ)

S(yE
√
ξ)
D

(
ξ′, yE,

x

1− y

)
,

(3.15b)

with the Sudakov form factor given by the expression

lnS(E
√
ξ) = −

∫ 1 dy

y

∫ ξ dξ′

2ξ′
ᾱs ϑ

(
yE
√
ξ′ −Q0

)
. (3.16)

The distribution D describing real gluon emission in the integrands of (3.15) is

evaluated at ξ′ since a gluon produced by the dipole (ac) has an angle with respect

to a effectively bounded from above by ξac, see (3.4).

It is worth noticing that going from the equation for the generating functional

(3.10) to that for the inclusive quark spectrum, we have replaced the full angle aper-

ture ξ = ξab by the opening angle ξ′ of the (ac) dipole in the virtual (subtraction)

term as well. In so doing we followed the preceding observation according to which

virtual radiation of gluons constituting the “wider” dipole (bc) had been already can-

celled by corresponding real emissions, without affecting the energy of the triggered

quark.

Equations (3.15) correctly satisfy the sum rule for the first moment: integrating

over x one obtains 1 for the number of quarks a (to see this one uses (2.18)). However,

they are in conflict with the Poisson nature of the multiple soft gluon radiation and

contradict the collinear resummation result leading to the DGLAP equation.

3.2.3 Analysis of the equation

Introducing the transverse momentum scale variable Q = E
√
ξ and the correspond-

ing integration variable q = ω
√
ξ′ we get

D(x,Q) = δ(1− x) +

∫ 1

Q0/Q

dy

y

∫ yQ

Q0

dq

q
ᾱs

[
D

(
x

1− y
, q

)
−D (x, q)

]
, (3.17)

2The y integration in (3.15b) is actually limited from above by y = 1− x since the distribution

D(ξ,Q, z) ∝ Θ(1− z)
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or, in terms of the standard Mellin moment representation,

DN(Q) = 1 +

∫ 1

Q0/Q

dy

y

∫ yQ

Q0

dq

q
ᾱs

[
(1− y)N − 1

]
DN (q) . (3.18)

In the region of large x, such that 1 − x ≪ 1 (but 1 − x ≫ Q0/Q), the essential

Mellin moments are large, N ∼ (1− x)−1, and cut from below the y-integral:

DN(Q) ≃ 1−
∫ 1

1/N

dy

y

∫ yQ

Q0

dq

q
ᾱsDN (q) . (3.19)

By iterating this equation one obtains an oscillating double logarithmic series in lnQ

and lnN ,

D
(n)
N (Q) ∼ (−ᾱs lnN lnQ)n

(n!)2
+ . . . .

Here one combinatorial factor 1/n! comes from the kinematical ordering of gluon

energies, and the second 1/n! from the ordering of the angles with respect to the

quark of the successively radiated gluons. This series sums up into a Bessel function

instead of an exponent in lnQ with the well known DGLAP “anomalous dimension”

D
(n)
N (Q) ∼ (−ᾱs lnN lnQ)n

n!
, DN(Q) ∝ Q−ᾱs lnN ,

where we have neglected for the sake of simplicity the running of the coupling.

In general (whether the coupling runs or not), the anomalous dimension γN is

defined as

γN(ᾱs(Q)) =
d

d lnQ
lnDN(Q).

For ᾱs = const this gives

DN(Q) =

(
Q

Q0

)γN (ᾱs)

.

Substituting this ansatz into (3.19) and evaluating the logarithmic derivative, we

obtain an equation for the new anomalous dimension:

γN(ᾱs) ≃ −ᾱs

∫ 1

1/N

dy yγN−1 = −ᾱs
1− exp(−γN lnN)

γN
. (3.20)

Perturbatively, when ᾱs ln
2N ≪ 1, we have the correct one loop expression

γN(ᾱs) ≃ −ᾱs lnN +O
(
ᾱ2
s ln

3N
)
, (3.21)

while in higher loops it starts to deviate significantly from the DGLAP answer. In

general, introducing the variable w

γN = − w

lnN
,
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the anomalous dimension is given by the solution of the equation

ᾱs ln
2N =

w2

ew − 1
. (3.22)

The r.h.s. hits the maximum at certain w = w0, so that in the region of large moments

N , starting from ᾱs ln
2N = const, the anomalous dimension becomes complex valued

and the distribution starts to oscillate.

The origin of the failure of the energy ordering strategy can be understood al-

ready at the level of two emitted gluons.

3.2.4 Two gluon emission

Consider the emission of two soft gluons p1, p2 off the parton q of the qq̄ dipole. The

antenna functions that potentially contribute in the collinear limit (recall that we

keep all gluon angles with respect to the quark a = q to be small) are displayed here:

q

q

q q

q q
(c)

2

(b)

1
2

(a)

2
1 1

(3.23)

The first two graphs correspond to the splitting of the dipole (a1):

W
(a)
a1 (2) → ϑ(ξa1 − ξa2) and W

(1)
a1 (2) → ϑ(ξa1 − ξ12),

while the third one,

W
(1)
1q̄ (2) → ϑ(ξ1q̄ − ξ12),

is the relevant part of the large-aperture dipole (1q̄). Due to the local recoil prescrip-

tion used, only the contribution (a) affects the momentum of the quark q. In the

two remaining ones, (b) and (c), the gluon 2 borrows its energy–momentum from

the gluon 1 and does not produce any quark recoil. Therefore, these contributions

cancel against corresponding virtual corrections in the inclusive quark measurement.

In conclusion, within the adopted recoil strategy, only the graph (a) should be kept,

and we obtain the following phase space for the two-gluon emission:

ξa2 ≪ ξa1 ≪ ξaq̄ and ω2 < ω1 ≪ E. (3.24)

The first condition comes from the angular ordering in the graph (3.23)(a), and the

second condition — from the energy ordering of successive emissions.

We know, however, that in order to obtain the DGLAP equation that properly

resums collinear singular contributions, one needs to assemble angular (or, trans-

verse momentum) ordered emissions (the first ordering), regardless to the order of
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gluon energies (the second one). At the same time, the dipole logic is leading us

to the double-ordered gluon ensemble, according to (3.24). As a result, instead of a

simple Poisson distribution of soft radiation (1/n!) we obtain something like a Bessel

function distribution (1/(n!)2).

What is missing here is actually the coherence of QCD radiation. As well known,

a soft gluon ω2, with ω2 ≪ ω1 ≪ Ea, could be emitted at large angles (ξa2 ≫ ξa1)

directly by the original parton q + p1 ≃ q. In the language of Feynman amplitudes,

such radiation occurs as a coherent sum of the graphs (b) and (c).

Another way to discuss this point is the following. The dipole radiation pattern

of soft gluon 2 off the composite antenna (a1q̄) can be represented as follows:

Wa1(2) +W1q̄(2) =

[
Wa1(2) +W1q̄(2)−Waq̄(2)

]
+Waq̄(2). (3.25a)

Beyond the large-Nc approximation, the latter term (corresponding to emission of

the gluon 2 by the quark-antiquark dipole) acquires a N2
c -suppressed correction,

Nc → Nc − 1/Nc:

Nc

2

(
Wa1(2)+W1q̄(2)

)
=⇒ Nc

2
·
[
Wa1(2)+W1q̄(2)−Waq̄(2)

]
+CF ·Waq̄(2). (3.25b)

This is in line with the collinear factorization theorem. Indeed, the factor in square

brackets is non-singular when p2 becomes parallel to the direction of the quark or

antiquark momentum so that these collinear enhancements are contained by the

quark dipole term Waq̄(2) and must be proportional to the “colour charge” (Casimir

operator) CF of the quark.

The only collinear singularity of the first contribution on the r.h.s. is that of p2

parallel to p1 which suggest an interpretation of this term as independent emission

of the gluon 2 by the previous generation (harder) gluon 1. The full two soft gluon

emission probability takes the form

dw(1, 2) ∝ CF
Nc

2
·Waq̄(1)

[
Wa1(2)+W1q̄(2)−Waq̄(2)

]
+C2

F ·Waq̄(1)Waq̄(2). (3.26)

In the large-Nc limit, this is identical to the original dipole expression. At the same

time, the representation (3.26) suggests a different recoil strategy when it comes to

incorporating the energy–momentum conservation.

The first term in (3.26) describes cascade gluon multiplication: qq̄ → 1 followed

by 1 → 2. In the inclusive quark distribution this is subject to the real–virtual

cancellation. Energy ordered configurations, ω2 ≪ ω1 cancel leaving no trace; “hard”

gluon splittings with ω2 ≃ ω1 modify one gluon emission by giving rise to αs(k
2
1⊥)

for the radiation intensity of the primary gluon 1 by the quark.
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The second term describes independent radiation of two gluons off the quark

— the second order term of the Poisson distribution of primary gluons — which is

necessary to correctly recover the DGLAP quark fragmentation function.

Equation (3.26) provides a probabilistic representation for the two-gluon produc-

tion in terms of a combination of independent and cascade gluon emissions. With

account of hard parton splittings and of the natural energy recoil prescription, it

served as the base for constructing the HERWIG parton event generator [5,15]. The

corresponding probabilistic representation for production of three and four energy

ordered gluons was developed in [6] and described in [8], which resulted in a formu-

lation of the parton multiplication scheme based on the exact angular ordering of

successive parton splittings.

The difference between the two strategies becomes transparent. In the dipole

scheme, successive gluons borrowing the energy from the quark were ordered in

emission angles,

W
(a)
aq̄ (1)W

(a)
a1 (2) , ξ2a < ξ1a < 1,

while in (3.26) the angle of the softest gluon is not bounded, and the two emissions

are totally independent,

W
(a)
aq̄ (1)W

(a)
aq̄ (2) , ξ2a < 1, ξ1a < 1.

Let us see how this has happened, from the point of view of the gluon–gluon splitting.

In the quasi-collinear configuration, ξa1 ≪ 1, the radiation pattern of the softest

gluon 2 consists of a “narrow” and a “wide-angle” dipoles, (a1) and (1q̄). When,

within the dipole recoil strategy, the “wide-angle” antenna W1q̄(2) is split into the

pieces collinear singular with respect to the directions of the first generation gluon

(1) and of the antiquark,

W1q̄(2) = W
(1)
1q̄ (2) +W

(q̄)
1q̄ (2),

the contribution W
(1)
1q̄ (2) is looked upon as radiation of the gluon 2 by the gluon

1, whichever the kinematical configuration of the gluon 1 with respect to its parent

quark (dipole factorization). At the same time, within the HERWIG logic (collinear

factorization), the gluon–gluon multiplication occurs only in a restricted angular

aperture, ξ21 < ξ1a. Indeed, in the kinematical region ξ1a ≪ ξ21 ≪ 1 the two last

terms in the combination
[
Wa1(2) +W1q̄(2)−Waq̄(2)

]

on the r.h.s. of (3.25) cancel:

lim
ξ1a→0

ξ21a ·
[
W1q̄(2)−Waq̄(2)

]
= O

(
ξ1a
ξ12

)
→ 0
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(while the first antenna term, Wa1(2), is restricted in angle on its own).

Physically, the gluon 2 radiated off the gluon 1 in the “wide” dipole (3.23)(c) at

relatively large angles, ξ21 > ξ1a, is produced by the grandparent parton a (quark).

Correspondingly, it must borrow energy from the quark rather than locally from

the dipole (1q̄) to which it belongs from the point of view of the colour connection

topology.

Reformulating this way the local dipole recoil prescription modifies the energy

ordered evolution equation. The modification reduces to substituting the full dipole

opening angle ξ = ξab for the running angle parameter ξ′ in the argument of the

distribution D on the r.h.s. of (3.15). As demonstrated in the Appendix, this way

one recovers the approximate DGLAP equation for the quark fragmentation function.

4. Conclusions

Monte Carlo generation of QCD events is a quarter century old business, based on

the structure of resummation of collinear enhanced Feynman diagram contributions.

The probabilistic parton cascade picture was first established for one-particle inclu-

sive quantities (DGLAP evolution equations for DIS structure functions and e+e−

fragmentation functions, [1]), generalised via “jet-calculus” [2] and, with account of

the soft gluon coherence [3–5,8], has laid the base for probabilistic description of the

internal structure of parton jets and their ensembles.

The corresponding coherent branching Monte Carlo schemes (HERWIG, in par-

ticular) reproduce correctly both the leading double logarithmic effects (LL) in var-

ious QCD observables as well as subleading single logarithmic collinear-enhanced

terms. One may recall as examples NLL corrections to the mean particle multiplic-

ity [22] and to the inclusive particle spectra from light parton [7,23] and heavy quark

initiated jets [24], to global event shapes in e+e− annihilation [25], as well as many

other quantities sensitive to parton cascades.

Collinear-non-enhanced (“large angle”) soft gluon radiation provides significant

NNLL corrections to global event characteristics (e.g., mean particle multiplicity);

it is also responsible for inter-jet multiplicity and energy flows and determines the

structure of various non-global observables [11–13]. Effects of multiple soft gluon

radiation at large angles lie beyond the scope of the standard (collinear) approach

and must be treated order by order in perturbation theory (while collinear enhanced

contributions are resummed in all orders).

An elegant expression [4] for the multiple soft gluon production probability (2.3)

is valid for arbitrary angles and offers a possibility of improving the parton picture.

The structure of multi-gluon distribution (2.3) naturally suggests an interpretation in

terms of a chain of colour connected dipoles. By choosing an “evolution time” variable

this chain may be generated via a Markov process of successive dipole splittings. An

evolution time can in principle be chosen differently. We have used energy ordering of
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gluons for this purpose. The generating functional that we have constructed with the

help of the corresponding evolution equation allows one to calculate specific effects

due to multiple emission of soft gluons at large angles in the large-Nc approximation.

In order to construct a realistic Monte Carlo generator for multi-parton ensembles

it is imperative, however, to formulate an adequate recoil prescription which would

ensure energy–momentum conservation at every successive step of the parton (dipole)

multiplication.

In the present paper we addressed the question, whether the “dipole factor-

ization” extends beyond the no-recoil approximation. In other words, whether the

splitting of a colour dipole into two can be treated independently of the prehistory

of the system, that is locally in the evolution time (which is a necessary condition

for constructing a Markov process).

Having taken an inclusive energy distribution of the final quark as the simplest

example of a collinear sensitive observable, we have shown that a naive implementa-

tion of the dipole recoil strategy results in violating the collinear factorization.

However, the existing Monte Carlo implementations of the dipole picture (for

recent examples see for instance [26–28]) chose to order successive gluon emissions in

(dipole centre of mass) transverse momenta rather than in (laboratory frame) gluon

energies. Such a construction apparently prevents the problem under consideration

from appearing in the leading collinear approximation, that is in all orders in the

QCD coupling corresponding to the one-loop level in the anomalous dimension.

Indeed, as we have seen above, the problem with the quark recoil appears when

a softer gluon (2) is emitted at a large angle than its predecessor (1). The inclu-

sive quark energy distribution is sensitive to the region where the two gluons have

comparable energies. Then, a softer one that carries a slightly smaller energy but is

radiated at a large angle, acquires a larger transverse momentum, and therefore, by

construction, is looked upon as “the first” by the k⊥-ordered MC scheme. Therefore,

“the second” gluon in such a picture, that is the one with smaller transverse mo-

mentum, is automatically having a smaller emission angle; in the leading logarithmic

approximation the coherence is respected.

The problem of an interplay between energy–momentum recoil and soft gluon

coherence discussed in this paper gets postponed but should be kept in mind in view

of attempts at constructing the next-to-leading order QCD MC generators.
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A. Global recoil and correspondence with DGLAP

We have no universal recipe under sleeve for extending the dipole gluon multiplication

picture beyond the no-recoil approximation. However, for a simple example of the

inclusive quark distribution discussed in Section 3 the situation is straightforward to

cure.

As we saw from the previous discussion, the origin of the failure lay in the

fact that the softest gluon emitted at angles larger than the angle of the previous

branchings did not contribute to the quark recoil. So, it suffices, by brute force, to

permit the gluons of all generations to contribute to the quark recoil, irrespectively

to the value of their emission angles.

This amounts to replacing in the integrand of (3.15b) the distribution D eval-

uated at ξ = ξac with the distribution evaluated at the full opening angle ξ̄ = ξab.

One then has the different equation,

D(ξ̄, E; x) =δ(1− x)S(E

√
ξ̄)

+

∫ 1 dy

y

∫ ξ̄ dξ

ξ

ᾱs

2
ϑ
(
yE
√
ξ −Q0

) S(E
√
ξ̄)

S(yE
√
ξ̄)
D

(
ξ̄, yE;

x

1− y

)
,
(A.1)

which actually corresponds to the DGLAP evolution. To see this, we iterate equation

(A.1) to obtain the series

D(ξ̄, E; x) = S(E

√
ξ̄)

×
{
δ(1− x) +

∞∑

n=1

∏

i

(∫ 1 dyi
yi

∫ ξ̄ dξi
ξi

ᾱs

2
θ(yiE

√
ξi −Q0)

)
· δ
(
1− x

1−∑ yi

)
Θen−ord.

}
,

(A.2)

where

Θen−ord = Θ(yn < · · · < y1 < 1) (A.3)

is the product of with theta-functions which ensures the energy ordering of gluons.

Now, due to the symmetry of the multiple integral (A.2) with respect to energy and

angular variables, we can replace the energy ordering with the angular ordering :

Θen−ord =⇒ Θang−ord = Θ(ξn < · · · < ξ1 < ξ̄). (A.4)

Now the gluons are no longer ordered in energies (the gluon qi does not need to be

softer then qi−1) but in the emission angle with respect to the quark. In the angular

ordered form, a soft gluon radiated at a relatively large angle can be said to be

emitted before any other (harder or softer) gluons that move in a collinear bunch

around the quark. This is in accord with the colour coherence according to which

a large-angle soft gluon “sees” only the total colour charge of a collinear group of

partons.

– 23 –



To derive the DGLAP equation we replace

dωi

ωi

=
dyi
yi

=
dzi

1− zi
, 1−

∑
yi = z1 · · · zn (A.5a)

where now 1− zi is the local fraction of energy taken away by the gluon qi from the

parent parton (quark), while yi is the gluon energy fraction with respect to E, the

energy of the primary parton Pa:

yi = (1− zi)zi−1 · · · z1 . (A.5b)

We finally obtain the evolution equation

D(Q, x) = δ(1− x)S(Q) +

∫ Q2

Q2
0

dq2t
q2t

∫ 1−Q0
qt

0

dz
ᾱs(qt)

2(1− z)
· S(Q)
S(qt)

D
(
qt,

x

z

)

= δ(1− x) +

∫ Q2

Q2
0

dq2t
q2t

∫ 1−Q0
qt

0

dz
ᾱs(qt)

2(1− z)
·
(
D
(
qt,

x

z

)
−D(qt, x)

) (A.6)

with Q = E
√
ξ and qt = yE

√
ξ. The upper boundary of the z-integration, 1−Q0/qt,

can be replaced by 1 in the logarithmic collinear approximation, which results in

the integral equation that correctly gives (the soft piece of) the DGLAP anomalous

dimension.

Finally, let us mention another obstacle that one faces when trying to construct

the full realistic Monte Carlo scheme starting from the energy ordered gluon ensem-

bles.

In order to match the full DGLAP anomalous dimension, one has to include the

“hard part” of the splitting function by adding to the distributions Ŵ
(c)
ab (q) the pieces

vanishing at ω = 0. In the equation (A.6) this calls for the replacement

dyi
yi

=
dzi

1− zi
=⇒ dzi

(
1

1− zi
− 1

2
(1 + zi)

)
. (A.7)

However, while we could cast the leading soft distribution in (A.1) in terms of the

local energy fraction, dyi/yi = dzi/(1 − zi), the finite term (1 + zi) dzi cannot be

expressed locally, via the single variable yi, see (A.5).
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