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Abstract

We consider a classical source, moving on the 4-D boundary of a 5-D ADS
space, that is coupled to quantum fields residing in the bulk. Bremsstrahlung-
like radiation of the corresponding quanta is shown to occur and the S-matrix
is derived assuming that the source is sufficiently massive so that recoil effects
are negligible. As an illustrative example, using the ADS hard-wall model,
we consider vector mesons coupled to a heavy nucleus that is moved around
at high speed in an accelerator ring. The meson radiation rate is found
to be finite but small. Much higher accelerations, such as when a pair of
heavy ions suffer an ultra peripheral collision, cause substantial emission of
various excited vector mesons. Predictions are made for the spectrum of this
radiation. A comparison is made against existing photon-pomeron fusion
calculations for the transverse momentum spectra of rho mesons. These
have the same overall shape as the recently measured transverse momentum
distributions at RHIC.

1

http://arxiv.org/abs/0809.1977v1


The gauge/gravity correspondence1 is a powerful means for extracting
information about four-dimensional strongly coupled gauge theories by map-
ping them onto gravitational theories in five dimensions where, because of the
weak coupling, they may be solved much more easily. A highly prized goal
is to learn about non-perturbative QCD from some 5-D theory. This goal is
still some distance away because the gravity theory actually dual to QCD is
not yet known. Nevertheless, using variants of the N = 4 supersymmetric
models, there have been a large number of interesting applications . These
include hard QCD scattering and deep inelastic structure functions,2 low
lying hadron spectra,3 chiral symmetry breaking,4 vector-meson couplings5;
meson form factors6 moments of generalized parton distribution,7 kaon de-
cays,8 etc. There are many valid criticisms of the holographic approach9 but,
on the whole, the reasonable agreement with experiment suggests that ADS
ideas deserve further exploration.

This work aims at extending the range of problems to which ADS ideas
have been applied. Since this is an illustrative calculation, for simplicity
we shall use the well-known hard-wall model. This uses an abrupt cutoff in
ADS space. While unsatisfactory in describing meson Regge trajectories, it
is the simplest way of enforcing confinement in this ”bottom-up” approach.
However, it should be possible to generalize the contents of this paper to the
”soft-wall”, designed to give the correct Regge behaviour.4 We choose vector
fields since they have the simplest ADS description.

Let us quickly review the standard ADS approach to QCD: the gravity
theory is defined on a (d+1)-dimensional Anti-de Sitter AdSd+1 space with
a d-dimensional asymptotic boundary at z = 0. The fields Φ(z, x) propagate
in AdSd+1 and approach the conformal field theory (CFT) fields Φ0(x) on
the boundary. Various QCD composite operators J(x), which are built from
quark and gluon operators and exist only on z = 0, act as sources for Φ(z, x).
They essentially serve as mathematical devices by which to probe the bulk.
On the gravity side the generating functional is,

Zgrav = eiSeff [Φ] =

∫
DΦeiΦ,

while on the CFT side, in the presence of the operator probes J(x),

ZCFT = eiSCFT [Φ0] =

∫
DΦeiSQCD+i

R

ddxJ(x)Φ0(x).
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The duality between the physics on the boundary and in the bulk is then
succinctly expressed by the equality,

Zgrav[Φ → Φ0] = ZCFT [Φ0]

In the supergravity approximation, Zgrav is easily calculated. Functional
differentiation with respect to J(x) yields the desired correlation functions
of fields such as 〈Φ0(x)Φ0(x

′)〉 . With J(x) having served its purpose, it can
be set equal to zero.

The approach taken here will be slightly different. We shall take J(x) to
be an isovector source that excites fields in the bulk with the right quantum
numbers. However it will be a ”real” source, not a fictitious one. This is anal-
ogous to a time varying electrical current that couples to the electromagnetic
field and radiates photons. Provided that the energy radiated is small, the
recoil is negligible. Similarly, we shall assume that the back-reaction on the
iso-vector source radiating vector mesons can also be ignored. The limitaions
of this approach will be discussed.

I. S-Matrix

With R as the curvature of the AdS5 space, the metric has the conven-

tional form,

ds2 =
R2

z2
(ηµνdx

µdxν − dz2), for z0 > z > 0. (1)

where ηµν = (1,−1,−1,−1), z = 0 is the 4-dimensional world sheet, and z0 is
the distance at which the AdS5 ends. The indices µ, ν run from 0 to 3 while
AdS5 indices, denoted by m,n run over 0, 1, 2, 3, z. Limiting our attention
to vector mesons, the bulk action is,

S = − 1

4g25

∫
d5xTr[FmnFmn] (2)

Fmn = ∂mAn − ∂nAm − i[Am, An]. (3)
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The field Am transforms under flavour SU(N), Am = Aa
mt

a. Suppressing
the flavour index, and with the gauge choice Az(z, x) = 0, the linearized
equation of motion reads,

[z∂z(z
−1∂z)−�]Aµ = 0 (4)

with � = ∂µ∂µ being the usual D’Alembertian operator. As the boundary
condition, we require that Aµ(0, x) = 0 and that Fmn vanish at z = z0. The
latter implies the Neuman boundary condition, ∂Aµ

∂z
= 0. Both conditions are

satisfied by Aµ = εµe−ik·xzJ1(kz) for any k that satisfies J0(kz0) = 0. Since
k2 = kµkµ = m2, this implies a tower of vector mesons with masses given by
mp =

χp

z0
, where J0(χp) = 0, p = 1, 2, · · ·

Thus, the most general solution of Eq. 4 is,

Aµ(z, x) =
∞∑

p=1,λ

∫
d4k

(2π)4
ap(k, λ)ε

µ(k, λ)e−ik·xzJ1(kz)2πδ(k
2 −m2) + cc. (5)

Canonical quantization now follows in a rather obvious way10 by imposing
the commutation relation,

[
ap(k, λ), a

†
p′(k

′, λ′)
]
= δpp′δλλ′δ3(k − k′). (6)

This leads to,

[
Aµ(z, x), Aµ′

(z′, x′)
]
= zz′

∞∑

p=1

1

z20c
2
p

△µµ′

p (x− x′)J1(kpz)J1(kpz
′), (7)

△µµ′

p (x) =

∫
dk̃p

(
e−ik·x − eik·x

)
(−gµµ

′

+
kµkµ′

k2
), (8)

c2p =

∫ 1

0

dyyJ2
1 (χpy) (9)

dk̃p =
d3k

(2π)32ωp

with ω2
p =

∣∣∣
−→
k
∣∣∣
2

+m2
p. (10)

The above sum over momenta is restricted to discrete values, kp =
χp

z0
.

The field in the bulk arising from a source Jµ(x) placed on the z = 0
boundary is,

Aµ(z, x) = g

∫
d4xG(z, x− x′)Jµ(x′), (11)
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where the Green’s function G(z, x − x′) is a sum of retarded and advanced
parts, G = GR + GA. It will be computed using the basis provided by the
solutions of Eq. 4.

To this end, let us find solutions to

[z∂z(z
−1∂z)−�]G(z, x) = δ4(x− x′). (12)

After Fourier transformation, the solution can be written as,

G(z, x) =

∫
d4k

(2π)4
e−ik·xzf(k, z), (13)

where f(k, z) obeys,
[
z2

d2

dz2
+ z

d

dz
+ (k2z2 − 1)

]
f(k, z) = z. (14)

With the boundary conditions f(k, 0) = 0 and (zf)′(z = z0) = 0 , Eq. 14
yields a complete, orthogonal set of solutions {J1(kpz)} which allow for the
delta function expansion,

1

z
δ(z − z′) =

1

z20

∞∑

p=1

J1(kpz)J1(kpz
′). (15)

Using this, the solution of 14 is then easily seen to be,

f(k, z) =

∞∑

p=1

1

z20c
2
p

∫ z0

0

dz′
J1(kpz)J1(kpz

′)

k2 − k2
p

. (16)

Thus, one arrives at the following final form for the Green’s function,

G(z, x) =
1

z0

∞∑

p=1

αpGp(x)zJ1(kpz) (17)

where,

Gp(x) =

∫
d4k

(2π)4
e−ik·x

k2 − k2
p

, (18)

αp =

∫ 1

0
dxJ1(xχp)∫ 1

0
dxxJ2

1 (xχp)
(19)
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We shall now follow the procedure described by Itzykson and Zuber to
find the S-matrix that connects the fields before and after interaction with a
time-dependent source.11 So imagine that the source, which obeys ∂µJ

µ = 0,
is turned on for a finite time −T < t < T . The ”in” and ”out” fields, defined
as Aµ

in = limt→−∞ Aµ and Aµ
out = limt→∞Aµ, are related by,

Aµ
out(z, x) = Aµ

in(z, x) +

∫
d4x′G−(z, x− x′)Jµ(x′), (20)

where G− ≡ GR − GA and GR, GA are, respectively, the retarded and ad-
vanced Green’s functions. G− is trivially obtained from Eq.17 in terms of
the Green’s functions for individual modes,

G−(z, x) =
1

z0

∞∑

p=1

αpG
−
p (x)zJ1(kpz), (21)

G−
p (x) = GR

p −GA
p

= i

∫
dk̃p

(
e−ik·x − eik·x

)
(22)

The incoming and outgoing fields are also connected through a unitary
operator S,

Aµ
out(z, x) = S−1Aµ

in(z, x)S, (23)

for which the following ansatz can be made,

S = e−i
R

d4xdzh(z)Jµ(x)Aµ(z,x) (24)

where h(z) is as yet an unknown function. From the field commutation
relation in Eq.7, and from the Baker-Campbell-Haussdorf relation, eABe−A =
B + [A,B] (which holds for [A, [A,B]] = 0), it follows that,

Aµ
out(z, x) = S−1Aµ

in(z, x)S = Aµ
in(z, x)+ (25)

∞∑

p=1

∫
d4x′dz′f(z′)

zz′

z20c
2
p

J1(kpz)J1(kpz
′)G−

p (x− x′)Jµ(x′).

Setting equal the expressions for Aµ
out(z, x) in Eq.20 and Eq.25 forces the

choice h(z) = z−1 and leads to the important result,

S = e−i
R

d4x dz
z
Jµ(x)Aµ(z,x). (26)
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From the asymptotic behaviour of J1(kz) for small z, it is clear that the
integrand above does not contain any singularity.

From the S-matrix derived in Eq.26 above one can compute the amplitude
for the current Jµ(x) to produce any number of vector mesons. Because
Aµ(z, x) in Eq.5 contains both creation (inside A−

µ ) and destruction (inside
A+

µ ) operators, it is first necessary to separate these by using the identity

eA+B = eAeBe−[A,B]/2. This gives,

S = e−ig
R

d4x dz
z
Jµ(x)A−

µ (z,x)e−ig
R

d4x dz
z
Jµ(x)A+

µ (z,x) (27)

× e−g2
P

∞

p=1
β2
p

R

dfkp
−→
J ∗(k)·

−→
J (k) (28)

where,

β2
p =

[∫ 1

0
dxJ1(xχp)

]2

∫ 1

0
dxxJ2

1 (xχp)
, (29)

and
−→
J (k) is the 4-d Fourier transform of

−→
J (x),

−→
J (k) =

∫
d4xe−ik·x−→J (x). (30)

Note that
−→
J∗(k) =

−→
J (−k) and that only the physical polarizations have

entered the calculations.

The probability for producing a single vector meson with polarization
λ,excitation p, and located in the momentum space element d3k is easily
obtained from Eq.27 ,

dP = |A|2 dk̃p = |A|2 d3k

(2π)32ωp

(31)

A = −igβp
ε(k, λ) · J(k)

Exp[g2
∑∞

p=1 β
2
p

∫
dk̃p

−→
J ∗(k) · −→J (k)]

. (32)

The probability for emission of subsequent mesons, whether of the same type
or different, is uncorrelated with the first emission and is trivially obtained
from the above. Note that there is no delta function that conserves energy
and momentum in the final state. This follows from having assumed a heavy
source that does not suffer back reaction as it emits particles while moving
on a predetermined path.
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II. Synchrotron Radiation

What we have developed above is really a theory of bremsstrahlung by

a classical source coupled to quantum fields. The source, located in 4-d
spacetime, excites modes in the 5-d bulk that correspond to the excitation
of various vector meson states. In electrodynamics, the no-recoil assump-
tion limits the applicability of semi-classical bremsstrahlung theory to heavy
charged particles radiating soft zero-mass photons. But here, the lightest
particle that can be radiated has a mass around 770MeV/c2! So is there any
hope that vector meson bremsstrahlung can be observed?

The fundamental requirement of a non-recoiling source can possibly be
met by a large nucleus, such as Au, where the entire nucleus - rather than just
individual nucleons - couples to mesons. Indeed, coherent meson production
from nuclei by photons and other particles is a well-studied phenomenon.
Let us therefore consider a point source moving along a definite trajectory
x(τ) labelled by the proper time τ . The current is,

Jµ(t,−→y ) =

∫
dτ

dxµ

dτ
δ4(y − xµ(τ))

=

∫
d4k

(2π)4
e−ik·yJµ(k), (33)

where,

Jµ(k) =

∫
dτ

dxµ

dτ
eik·x(τ). (34)

Consider a heavy nucleus moving on a circular path in the x−y plane with
radius R and with frequency ω0. The coordinates of the particle are xµ =
(t, R cosω0t, R sinω0t, 0) implying that Jz(k) = 0.We choose axes such that
kµ = (ω, k sin θ, 0, k cos θ). Using various Bessel identities it is straightforward
to show that,

Jx(k) = πω0R
n=∞∑

n=nmin

in [Jn+1(kR sin θ) + Jn−1(kR sin θ)] δ(ω − nω0) (35)

Jy(k) = iπω0R

n=∞∑

n=nmin

in [Jn+1(kR sin θ)− Jn−1(kR sin θ)] δ(ω − nω0). (36)

Since ω2 = k2+m2
p, ω has a minimum value equal to the mass of the produced

meson and so nmin = mp/ω0 = mpR. This reflects the fact that the agency
which keeps the source in motion must pay the price of creating the meson.
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Using Eqs.31-32 let us work towards calculating the emission probability,
summed over final spins, to radiate a meson. This is proportional to,

g2β2
p

d3k

(2π)32ωp

(
|Jx(k)|2 + |Jy(k)|2

)

= δ(0)g2β2
p

1

4

n=∞∑

n=nmin

[
J2
n+1(kR sin θ) + J2

n−1(kR sin θ)
]
dθ sin θ. (37)

The δ(0) is a consequence of the fact that the source has been in motion for
an arbitrarily long time. It can be replaced by t/(2π) thus yielding a rate of
emission proportional to,

d2P

dtdθ
∝ g2β2

p

1

8π
sin θ

n=∞∑

n=nmin

kn
[
J2
n+1(knR sin θ) + J2

n−1(knR sin θ)
]
, (38)

where,

kn =
√
n2ω2

0 −m2
p (39)

ω0R = v =

√
1− 1

γ2
(40)

The proportionality constant in Eq.38 is the square of the denominator in
Eqs.32. The periodicity of the source motion implies that the spectrum of
the radiated particles is discrete. Unfortunately there does not seem to be a
closed form for the series. However, one can readily check that it is convergent
provided for any finite γ although the convergence becomes increasingly slow
as the source speed approaches that of light. The series diverges for v= c = 1.
Since nmin = mp/ω0 is a large number, the sum can be replaced by an integral,

d2P

dtdθ
∝

g2β2
p

4π
sin θ

∫ ∞

mp
ω0

dyk(y)J2
y [k(y)R sin θ] , (41)

with k(y) =
√

y2ω2
0 −m2

p.

With this compact form, the emission rate for every member of the tower
of vector mesons can be estimated. The integral in Eq.41 cannot be per-
formed in closed form nor by some straightforward numerical integration.
To obtain a rough estimate, we use Duhamel’s formula for Bessel functions,

Jn(n sinα) =

(
ecosα tan α

2

)n

(2nπ cosα)1/2
, (42)
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from which, at θ = π
2
, the rate from a single nucleus is proportional to,

γ3e−
2

3
γ3mpR. (43)

For a typical vector meson, and with R ∼ 250 metres, mpR ∼ 1018. This
requires γ ∼ 105 for reasonable emission rates. This is far greater than the γ
of a heavy nucleus at RHIC, which is around 1.5×102. Thus, the unfortunate
conclusion is that vector meson bremsstrahlung will be hard to detect in an
accelerator ring. Nevertheless, there are lessons to be learned here that will
be useful in the next section.

III. Ultraperipheral Collisions

Particle accelerators have large turning radii of the order of kilometers

so that charged orbiting particles can have low acceleration and energy loss
from bremsstrahlung is therefore minimized. From the point of view of the
formalism developed in this paper, this has the unfortunate implication that
meson bremsstrahlung is strongly suppressed. To test our ideas we shall now
turn to the ultraperipheral high-energy collision (UPC) of two heavy ions. In
an UPC the two ions interact electromagnetically rather than hadronically,
requiring that the impact parameter b > 2R. After colliding and producing a
ρ0 the colliding nuclei can remain in the ground state, or perhaps transit to an
excited state. For either case, the STAR collaboration has recently measured
ρ0 and direct π+π− production in Au-Au collisions at

√
s = 200GeV /nucleon

collisions at RHIC.12 UPCs are part of the heavy ion program at ALICE,
ATLAS, and CMS at CERN. For a review, the reader is referred to refs,13.14

In the normal QCD analysis, the colliding nuclei in a UPC are the source
of an intense pulse of photons, the equivalent photon flux being determined
from the Fourier transform of the electromagnetic field of the moving charges.
These photons produce various mesons from elementary photon-photon and
photon-pomeron vertices. Rather than individual nucleons, the entire nucleus
produces the photon and pomeron flux, i.e. the nucleons act coherently and
cooperatively without betraying the internal nuclear structure. Our picture
of meson production will be apparently very different, but in fact it will be
fairly similar. Each nucleus is the means for providing acceleration to the
other through Coulomb repulsion. Moreover, since the entire nucleus turns

10



without breaking up or excitation, it can be considered as a point particle.
Because the ”turning radii” are over nuclear length scales rather than the
macroscopic scales, the accelerations can be sufficiently large to cause copious
meson emission.

Consider, therefore, two identical ultrarelativistic point charges moving
towards each other and then scattering through a small angle θ. Both have
charge Ze, mass M, and four-velocities vµ1and vµ2 . The transverse separation
between the charges (impact parameter) is b. The classical trajectory for non-
relativistic charges is, of course, hyperbolic. This undergoes modification in
the relativistic case. However, even for non-releativistic motion, the integrals
needed for calculating the k-space current are formidably difficult. We shall,
therefore, use a caricature of the actual classical path by demanding that the
charges collide at proper time τ = 0 after which they suddenly change their
(constant) four-velocities from vµ1 and vµ2 to v′µ1 and v′µ2 respectively,

xµ
1 = vµ1τ +

1

2
bµ τ < 0 (44)

x′µ
1 = v′µ1 τ +

1

2
bµ τ > 0 (45)

xµ
2 = vµ2τ − 1

2
bµ τ < 0 (46)

x′µ
2 = v′µ2 τ − 1

2
bµ τ > 0 (47)

The current in Fourier space follows from Eq.34,

Jµ(k) = Jµ
1 (k) + Jµ

2 (k)

= i

(
v′µ1

k · v′1
− vµ1

k · v1

)
e

i
2
k·b + i

(
v′µ2

k · v′2
− vµ2

k · v2

)
e−

i
2
k·b. (48)

Only the square of the 3-vector
−→
J needs to be computed. This has direct

terms corresponding to vector meson emission from each nucleus separately,
as well as an interference term corresponding to simultaneous emission from
both nuclei,

|J |2 =
∣∣∣
−→
J 1

∣∣∣
2

+
∣∣∣
−→
J 2

∣∣∣
2

+ 2 cos(
−→
k · −→b )

∣∣∣
−→
J 1

∣∣∣
∣∣∣
−→
J 2

∣∣∣ . (49)

With x̂ and ẑ denoting unit vectors as usual, we now make a definite choice
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of velocity vectors:

vµ1 = γ(1, ẑV ) v′µ1 = γ(1, ẑV cos θ + x̂V sin θ) (50)

vµ2 = γ(1,−ẑV ) v′µ2 = γ(1,−ẑV cos θ − x̂V sin θ) (51)

For ultrarelativistic nuclei, V ≈ 1. As before, kµ = (ω,
−→
k ) with ω2 = k2+m2

and bµ = b(0, x̂). For an UPC, the nuclei undergo scattering through very
small angles only. With θ << 1, a compact form results for |J |2 . The direct
term is,

θ2
{

1

(ω − kz)2
+

1

(ω + kz)2
+

k2
x

(ω − kz)4
+

k2
x

(ω + kz)4

}
,

and the interference term is,

− 2θ2

(ω2 − k2
z)

{
1 +

k2
x

(ω2 − k2
z)

}
cos(kxb). (52)

Expressed in terms of the rapidity variable y,

y =
1

2
log

ω + kz
ω − kz

(53)

|J |2 = 2θ2
{
m2(cosh 2y − cos kxb) + k2

x(cosh 4y + cosh 2y)

(m2 + k2
x)

2

}
. (54)

From Eq.48 or the subsequent results, we see that |J |2 ∝ 1/k2 and hence
the total crossection is logarithmically divergent at the upper momentum
limit. This is a consequence of the discontinuous change in the velocity; a
continuous hyperbolic path would not suffer from this problem. Indeed, we
can see that the circular motion case would lead to finite crossections.

The scattering angle θ is determined by the impact parameter b, as can be
seen from a simple calculation using the retarded electric field of a relativistic
charge that passes by a second similar charge.15 Assuming that neither tra-
jectory deviates appreciably from a straight line, the transverse momentum
impulse is,

∆px = 2
Z2e2

b
, (55)

and hence the scattering angle is,

θ =
∆px
p

=
2Z2e2

γM

1

b
. (56)
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The kinetic energy of the non-relativistic transverse motion is,

∆E = 2× (∆px)
2

2M
=

4Z4e4

M

1

b2
, (57)

which, for small enough b, could provide sufficient energy for particle pro-
duction.

The crossection for meson production is easily computed because, hav-
ing started from the premise that there is no back-reaction on the emitting
source, it is clear that there are no complicated phase space factors. This
limits the validity of our approach to low meson momenta. In fact, appli-
cation to pion production would be more justifiable than to vector meson
production. However, as we shall soon see, there seems to be fair agreement
with data even for ρ0 production.

Since g, i.e. the coupling of vector mesons to the source, is unknown, it
is sufficient to write proportionality relations. As a first step, note that the
number of nuclei scattered per unit time (v≈ c = 1) around angle θ is,

dN ∝ 2πbdb ∝ dθ

θ3
. (58)

This is identical to the Rutherford (or Mott) crossection behaviour in the
forward direction. Multiplication by the emission probability yields,

dσ ∝ β2
p |J |2 dk̃p

dθ

θ3
. (59)

Integrating over θ or, equivalently, over b, yields the crossection in the rapid-
ity variable y and the transverse momentum k⊥ = kx,

dσ ∝
β2
p

m2
p

∫ bmax

bmin

db

b

cosh 2y − cos k⊥b+
k2
⊥

m2
p
(cosh 4y + cosh 2y)

(1 +
k2
⊥

m2
p
)2

dk̃p. (60)

An easy integration gives,

dσ

dyd2k⊥
∝

β2
p

m2
p(1 +

k2
⊥

m2
p
)2

{ [
cosh 2y +

k2
⊥

m2
p
(cosh 4y + cosh 2y)

]

× log bmax

bmin
− Ci(k⊥bmax) + Ci(k⊥bmin)

}
(61)
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Figure 1: The differential crossection dσ
dyd2k⊥

for y=0 calculated in ADS as a

function of transverse meson momentum k⊥ (solid line) compared against the
photon-pomeron fusion calculation of Hencken et al (dashed line).16 . The
vertical scale is chosen arbitrarily as normalizations cannot be calculated in
our model. Also shown are data points from the Star Collaboration12 for the
number of ρ0 counts, binned in 25 MeV intervals.

where Ci is the standard cosine integral. The lower limit, bmin = 2R ≈ 14 fm,
corresponds to the nuclei just touching each other, while the upper limit is
determined by requiring that the scattering be sufficiently hard so as to pro-
duce at least one meson, b2max ≈ 4Z4e4

Mmp
.The values of β2

p (see Eq.29)decrease

steadily with p: β2
1 = 1.28, β2

2 = 0.57, β2
3 = 0.36 showing that higher reso-

nances will be produced in lesser amounts.

In fig.1 the crossection, arbitrarily normalized, is plotted for ρ0 produc-
tion in Au-Au UPCs as a function of transverse momentum for y = 0 and
compared against an existing calculation based on photon-pomeron fusion.16

Also shown are data points from the Star Collaboration12 for the number
of ρ0 counts, binned in 25 MeV intervals. Since g is not known, absolute
magnitudes cannot be predicted in the ADS model. However, the shape of
the momentum distribution is not dissimilar from either experiment or con-
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ventional theory. The interference term is crucial, as was found earlier in
ref.16

In summary, we have calculated the quantum fluctuations induced in
the 5-D bulk when a point source coupled to vector fields in 4-D space-
time is transported along a classical trajectory. The quantum fluctuations
amount to the production of different mesons with different momenta in
4-D. Meson crossections are calculable as a function of the point source’s
motion. In principle, the motion of a heavy nucleus in an accelerator could
lead to the emission of massive particles similar to photon bremsstrahlung
but, in practice, the rate is extremely small unless the nuclei have extremely
large gamma-factors. On the other hand, for the ultraperipheral collisions
of heavy ions, the rates are appreciable. The ADS formalism allows for
the prediction of the transverse momentum spectrum. The comparison with
existing conventional calculations is fairly satisfactory, and broad features of
the existing data are reproduced reasonably well. Emission rates for various
excited meson states can be predicted with no additional parameters.
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