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Abstract

A complete classification of tetraquark states in terms of the spin-flavor, color
and spatial degrees of freedom was constructed. The permutational symme-
try properties of both the spin-flavor and orbital parts of the quark-quark and
antiquark-antiquark subsystems are discussed. This complete classification
is general and model-independent, and is useful both for model-builders and
experimentalists. The total wave functions are also explicitly constructed in
the hypothesis of ideal mixing; this basis for tetraquark states will enable the
eigenvalue problem to be solved for a definite dynamical model. This is also
valid for diquark-antidiquark models, for which the basis is a subset of the
one we have constructed. An evaluation of the tetraquark spectrum is ob-
tained from the Iachello mass formula for normal mesons, here generalized to
tetraquark systems. This mass formula is a generalizazion of the Gell-Mann
Okubo mass formula, whose coefficients have been upgraded by means of
the latest PDG data. The ground state tetraquark nonet was identified with
f0(600), κ(800), f0(980), a0(980). The mass splittings predicted by this mass
formula are compared to the KLOE, Fermilab E791 and BES experimental
data. The diquark-antidiquark limit was also studied.

1 Introduction

Light meson spectroscopy, in particular the nature of the scalar nonet, is still
an open problem. Recently the KLOE, E791 and BES collaborations have
provided evidence of the low mass resonances f0(600) [1] [2] [3] and κ(800)
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[2] [3]. The quark-antiquark assignment to P-waves [4] has never worked
for the lowest lying scalar mesons, f0(980), a0(980), κ(800) and f0(600) [5].
Maiani et al. in Ref. [6] have suggested that these mesons could be described
as a tetraquark nonet, in particular as a diquark-antidiquark system. In the
traditional quark-antiquark scheme, the f0(980) is made up of non-strange
quarks [4] and so it is difficult to explain both its higher mass respect to the
other components of the nonet and its decay properties (see Refs. [5] [6]).
Already in the seventies Jaffe [5] suggested the tetraquark structure of the
scalar nonet and proposed a four quark bag model. Other identifications, in
particular as quasimolecular-states in Ref. [7] and as dynamically generated
resonances in Ref. [8], have been proposed (for a complete review see Refs.
[9–11] and references therein).

We present here a complete classification scheme of the two quark-two
antiquark states in terms of SU(6) sf from Ref. [12], as well as an evaluation
of the tetraquark spectrum for the lowest scalar meson nonet, obtained from
a generalization, to the tetraquark case, of the Iachello mass formula for
normal mesons published in Ref. [13].

Since the classification of the states is general, it is valid whichever dy-
namical model for tetraquarks is chosen. As an application, in section 4
we develop a simple diquark-antidiquark model with no spatial excitations
inside diquarks. In this case the states are a subset of the general case.

2 The classification of tetraquark states

In the construction of the classification scheme we shall make use of symme-
try principles without, for the moment, introducing any explicit dynamical
model. We are constrained by two conditions: the tetraquark wave func-
tions should be a colour singlet, as all physical states, and the tetraquarks
states must be antisymmetric for the exchange of the two quarks and the two
antiquarks.

First we begin with the internal (color, flavor and spin) degrees of freedom.
The allowed SU(3)f representations for the qqqq system are obtained by
means of the product [3]⊗[3]⊗[3]⊗[3] = [1]⊕[8]⊕[1]⊕[8]⊕[27]⊕[8]⊕[8]⊕[10]⊕
[10]. The allowed isospin values are I = 0, 1

2
, 1, 3

2
, 2 , while the hypercharge

values are Y = 0,±1,±2. The values I = 3
2
, 2 and Y = ±2 are exotic,

which means that they are forbidden for the qq mesons. The allowed SU(2)s
representations are obtained by means of the product [2] ⊗ [2] ⊗ [2] ⊗ [2] =
[1]⊕ [3]⊕ [1]⊕ [3]⊕ [3]⊕ [5]. The tetraquarks can have an exotic spin S = 2,
value forbidden for normal qq mesons. The SU(6)sf -spin-flavour classification
is obtained by [6]⊗ [6]⊗ [6]⊗ [6] = [1]⊕ [35]⊕ [405]⊕ [1]⊕ [35]⊕ [189]⊕ [35]⊕
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[280]⊕ [35]⊕ [280]. In Appendices A and B of Ref. [12] all the flavor and spin
states in the qqqq configuration are explicitly written in terms of the single
quark and antiquark states. The flavor states are also written in the ideal
mixing hypothesys, i.e. as a superposition of the SU(3)-symmetrical states
in such a way to have defined strange quark and antiquark numbers. The
ideal mixing is essentially a consequence of the OZI rule and, while it has
not been proved yet, it is used by all the authors working on qq mesons and
tetraquarks.

We can now describe the spatial degrees of freedom. The tetraquark is a
system made up of four objects. Thus, we have to define three relative coor-
dinates that we choose as in Ref. [14]: a relative coordinate between the two
quarks, another between the two antiquarks and the third relative coordinate
between the centers of mass of the two q and the two q. We associate to each
coordinate an orbital angular momentum, L13, L24 and L12−34 respectively.
We obtain the total angular momentum J by combining the four different
spins and the three orbital angular momenta. The parity for a tetraquark
system is the product of the intrinsic parities of the quarks (+) and the an-
tiquarks (-) times the factors coming from the spherical harmonics [14]. The
result is P = PqPqPqPq(−1)L13(−1)L24(−1)L12−34 = (−1)L13+L24+L12−34 . Us-
ing these coordinates, the charge conjugation eigenvalues can be calculated
by following the same steps as in the qq case, considering a tetraquark as
a QQ meson, where Q represents the couple of quarks and Q the couple of
antiquarks, with total “spin”S and relative angular momentum L12−34. Only
the states for which Q and Q have opposite charges are C eigenvectors, with
eigenvalues [14] C = (−1)L12−34+S. A discussion of G parity and its eigenval-
ues can be found in Ref. [12]. Tetraquark mesons do not have forbidden JPC

combinations. Because of the Pauli principle, the tetraquark states must be
antisymmetric for the exchange of the two quarks and the two antiquarks
and it is, thus, necessary to study the permutational symmetry (i.e. the irre-
ducible representations of the group S2) of the color, flavor, spin and spatial
parts of the wave functions of each subsystem. Moreover we have another
constraint: only the singlet colour states are physical states. We have seen
that there are two colour singlets allowed to the tetraquarks. It is better to
write them by underlining their permutational S2 symmetry, antisymmetric
(A) or symmetric (S): (qq) in [3]C (A) and (qq) in [3]C (A), or (qq) in
[6]C(S) and (qq) in [6]C (S). Then we have to study the permutational
symmetry of the spatial part of the two quarks (two antiquarks) states and
the permutational symmetry of the SU(6)sf representations for a couple of
quarks (antiquarks). The spatial, flavor, color and spin parts with given
permutational symmetry (S2) must then be combined together to obtain
completely antisymmetric states under the exchange of the two quarks and
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the two antiquarks. The resulting states are listed in Table III of Ref. [12].
In Table V, VI, VII and VIII of Ref. [12] we write the possible flavor, spin
and J PC values for different orbital angular momenta.

3 The tetraquark spectrum

In Ref. [13] Iachello, Mukhopadhyay and Zhang developed a mass formula
for qq mesons,

M2 = (NnMn +NsMs)
2 + a ν + b L+ c S + d J + eM ′2

iji′j′ + f M ′′2
iji′j′, (1)

where Nn is the non-strange quark and antiquark number, Mn ≡ Mu = Md

is the non-strange constituent quark mass, Ns is the strange quark and anti-
quark number, Ms is the strange constituent quark mass, ν is the vibrational
quantum number, L, S and J are the total orbital angular momentum, the
total spin and the total angular momentum respectively, M ′2

iji′j′ and M ′′2
iji′j′

are two phenomenological terms which act only on the lowest pseudoscalar
mesons. The first acts only on the octect and encodes the unusually low
masses of the eight Goldstone bosons, while the second acts on the η and η′

mesons and encodes the non-negligible qq annihilation effecs that arise when
the lowest mesons are flavour diagonal. The flavor states are considered in
the ideal mixing hypothesis, with the exception of the lowest pseudoscalar
nonet whose mixing angle can be found in Ref. [13]. During the many years
that have passed from the publication in 1991 of Iachello’s article the values
of the mesons masses reported by the PDG are changed in a considerable
way. Thus, we have decided to update the fit of the Iachello model using
the latest values reported by the PDG [11] for the light qq mesons . The
resulting parameters are reported in Ref. [12]. The Iachello mass formula

Table 1: The candidate tetraquark nonet. Experimental data and quantum
numbers

Meson IG(JPC) Ns Mass (GeV ) Source
a0(980) 1−(0++) 2 0.9847± 0.0012 PDG [11]
f0(980) 0+(0++) 2 0.980± 0.010 PDG [11]
f0(600) 0+(0++) 0 0.478± 0.024 KLOE [1]
k(800) 1

2
(0+) 1 0.797± 0.019 E791 [15]

was developed for qq mesons. In order to describe uncorrelated tetraquark
systems by means of an algebraic model one should use a new spectrum gen-
erating algebra for the spatial part, i.e. U(10) since we have nine spatial
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degrees of freedom. We have not addressed this difficult problem yet, but we
chose to write the internal degrees of freedom part of the mass formula in
the same way as it was done for the qq mesons. The splitting inside a given
flavor multiplet, to which is also associated a given spin, can be described
by the part of the mass formula that depends on the numbers of strange
and non-strange quarks and antiquarks. Thus we can use, with the only
purpose of determining the mass splitting of the candidate tetraquark nonet,
see Ref. [12],

M2 = const+ (NnMn +NsMs)
2, (2)

where const is a constant that includes all the spatial and spin dependence of
the mass formula, and Mn and Ms are the masses of the constituent quarks
as obtained from the previously discussed upgrade of the parameters of the
Iachello mass formula. We set the energy scale, i. e. we determine the
constant const, by applying Eq.(2) to the best-known candidate tetraquark,
a0(980), see Ref. [12]. Thus, the masses of the other mesons belonging to the
same tetraquark nonet, predicted with our simple formula, are M(κ(800)) =
0.726 GeV , M(f0(600)) = 0.354 GeV and M(f0(980)) = 0.984 GeV . These
values do not seem in very good agreement with the experimental values,
even if, before reaching any conclusion, new experiments, especially on the
poorly known κ(800) and f0(600), are mandatory.

4 Diquark-antidiquark model

We think of the constituent diquark1 as two correlated constituent quarks
with no internal spatial excitations, or at least we hypothesize that their
internal spatial excitations will be higher in energy than the scale of masses
of the resonances we will consider. The tetraquark mesons are described in
this model as composed of a constituent diquark, (qq), and a constituent
antidiquark, (qq). The diquark SU(3)c color representations are [3]c and [6]c,
while the antidiquark ones are [3]c and [6]c, using the standard convention
of denoting color and flavor by the dimensions of their representation. As
the tetraquark must be a color singlet, the possible diquark-antidiquark color
combinations are

diquark in [3]c, antidiquark in [3]c (3a)

diquark in [6]c, antidiquark in [6]c (3b)

Diquarks (and antidiquarks) are made up of two identical fermions and so
they have to satisfy the Pauli principle. Since we consider diquarks with

1For a discussion about the existence or not of the diquark degree of freedom and its
importance in our model, please see Ref. [12] and references therein.
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no internal spatial excitations, their color-spin-flavor wave functions must be
antisymmetric. This limits the possible representations to being only

color in [3] (AS), spin-flavor in[21]sf (S) (4a)

color in [6] (S), spin-flavor in [15]sf (AS) (4b)

The decomposition of these SUsf (6) representations in terms of SU(3)f⊗
SU(2)s is (in the notation [flavor repr., spin])

[21]sf = [3, 0]⊕ [6, 1] (5a)

[15]sf = [3, 1]⊕ [6, 0] (5b)

Using the notation |flavor repr., color repr., spin〉, the diquark states corre-
sponding to color [3]c and [6]c respectively, are

|[3]f , [3]c, 0〉, |[6]f , [3]c, 1〉 (6)

|[3]f , [6]c, 1〉, |[6]f , [6]c, 0〉 (7)

The antidiquark states are the conjugate of the above states.
Following Refs. [16, 17] or Ref. [18], we expect that color-sextet diquarks

will be higher in energy than color-triplet diquarks or even that they will not
be bound at all. Thus, we will consider only diquarks and antidiquarks in
[3]c and [3]c color representations.

The tetraquark color-spin flavor states, obtained combining the allowed
diquark and antidiquark states, are reported in Table XI of Ref. [12]. Since
diquarks are considered with no internal spatial excitations, the tetraquark
states in this model are a subset of the tetraquark states previously derived.
In particular they corresponds to the subset with L13 = L24 = 0, and color
[3]c ⊗ [3]c. The relative orbital angular momentum between the diquark and
the antidiquark is denoted by L12−34; Sdq and Sdq are respectively the spin
of the diquark and the spin of the antidiquark, and Stot is the total spin; J
is the total angular momentum.

Table XII of Ref. [12] shows the corresponding flavor tetraquark states
for each diquark and antidiquark content in the ideal mixing hypothesis.

We have also determined the JPC quantum numbers of the tetraquarks
in the diquark-antidiquark limit. We start from the possible quantum num-
bers classified for the uncorrelated tetraquark states and then apply the
restrictions for the diquark-antidiquark limit, L13 = L24 = 0 and color
[3]c ⊗ [3]c. Thus, the parity of a tetraquark in the diquark-antidiquark limit
is P = (−1)L12−34 , while the charge conjugation (obviously only for its eigen-
states) is C = (−1)L12−34+Stot. In Ref. [12] is also discussed the G parity in
the diquark-antidiquark limit.
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The possible JPC combinations and diquark content of diquark-antidiquark
systems with L12−34 = 0 , L12−34 = 1 and L12−34 = 2 are reported in Ref. [12],
in Tables XIII, XIV and XV respectively.

4.1 The tetraquark nonet spectrum in the diquark-

antidiquark model.

In the diquark-antidiquark limit we can use U(4)⊗SU(3)f⊗SU(2)s⊗SU(3)c
as spectrum generating algebra, by analogy with what was done by Iachello
et al. in Ref. [13, 19] for the normal mesons. The analogy between the
tetraquark in the diquark-antidiquark limit and the qq mesons is even more
evident if we consider that in a string model, as we can see in Refs. [20, 21]
the slopes of the Regge trajectories depend only on the color representation
of the constituent particles. Thus the slope of the trajectories of tetraquarks
made up of a diquark in [3]c and an antidiquark in [3]c is the same as the
slope of the trajectories of qq mesons.

Following all these considerations, it is evident that for the tetraquark in
the diquark-antidiquark model we can use the same mass formula developed
for the normal mesons, with the only difference that we have to replace the
masses of the quark and the antiquark with those of the diquark and the
antidiquark:

M2 = (Mqq +Mqq)
2 + a · n + b · L12−34 + c · Stot + d · J, (8)

whereMqq andMqq are the diquark and antidiquark masses, n is a vibrational
quantum number, L12−34 the relative orbital angular momentum, Stot the
total spin and J the total angular momentum.

The diquark masses are unknown parameters and are determined by fit-
ting the mass formula Eq.(8) with the mass values of the tetraquark candi-
date nonet2 a0(980), f0(980), f0(600) and κ(800). We consider the candidate
tetraquark nonet as the fundamental tetraquark multiplet and so it contains
the lighter diquarks, i.e. scalar diquarks.

The masses of the scalar diquarks resulting from the fit are:

M[n,n] = 0.275 GeV, M[n,s] = 0.492 GeV (9)

From the fit we obtain also the following masses of the candidate tetraquark

2This nonet has quantum numbers n = L12−34 = Stot = J = 0, so we do not need to
know the parameters a, b, c and d.
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Table 2: Quantum numbers of the candidate tetraquark nonet. κ(800) cor-
responds to [n, n][n, s] and also to its conjugate.

Meson Mass (GeV ) Diquark content IG(JPC) Source

a0(980) 0.9847± 0.0012 [n, s][n, s] 1−(0++) PDG [11]

f0(980) 0.980± 0.010 [n, s][n, s] 0+(0++) PDG [11]

f0(600) 0.478± 0.024 [n, n][n, n] 0+(0++) KLOE [1]

κ(800) 0.797± 0.019 [n, n][n, s] 1
2
(0+) E791 [15]

nonet:

Ma0(980) = Mf0(980) = 0.984 GeV (10a)

Mf0(600) = 0.550 GeV (10b)

Mκ(800) = 0.767 GeV. (10c)

These masses are much closer to the experimental values reported in Table

Figure 1: Lowest part (below 1 GeV ) of the tetraquark spectrum in the
diquark-antidiquark model.

2 than the masses obtained in the uncorrelated tetraquark model of Section
3. However we again underline that, before reaching any conclusion, new
experiments are necessary also to be sure of the existence of all the states
of the scalar nonet. If the existence of only some states of the nonet will be
confirmed a different kind of clusterization will emerge, and we have still not
studied this limit in the algebraic framework. Moreover, we have still not

8



E. Santopinto et al. Tetraquark spectroscopy

studied the decays of these states and the study of their decay properties can
give a better insight into their nature.

The mass formula Eq. 8 can be used to predict all the spectrum of the
tetraquarks in the diquark-antidiquark model. In Fig. 1 we include as a
preview of this work (still in progress) the lowest (below 1 GeV ) part of this
spectrum.
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