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After a brief introduction to Heavy Quark Effective Theory, we discuss α representation

in HQET and methods of calculation of some kinds of HQET diagrams up to three loops.

1 Introduction

Effective field theories are very useful for describing physics at low energies ≪ M , or large
distances ≫ 1/M , where M is a high energy scale where some new particles or interactions
become important. Effective Lagrangians are constructed as series in 1/M . Coefficients in them
are obtained by matching scattering amplitudes in the full theory and in the effective one up
to some order in 1/M . These matching coefficients are the only quantities which depend on
M . All calculations inside the effective theory involve only characteristic energy scales (they
are ≪M) of processes under consideration. The case when there is one such scale is especially
simple. We can choose the renormalization scale µ of order of this characteristic energy scale.
Then there will be no large logarithms in perturbative series, and truncating such series will
produce small errors. If we try to consider the same process in the full theory, there is a second
scale M , and no choice of µ allows us to get rid of large logarithms. Also, each extra scale in
Feynman diagrams (with loops) makes their calculation much more difficult technically.

Heavy Quark Effective Theory (HQET) is an effective low-energy field theory for some
problems in QCD. In many widely-known effective field theories (Heisenberg–Euler theory of
low-energy photon interactions, Fermi 4-fermion theory of weak interactions at low energies)
the heavy particle (electron or W in these examples) does not appear. In HQET, the heavy
quark appears in initial and final states, but is always nearly on-shell and non-relativistic (in
some reference frame).

HQET is discussed in textbooks [1, 2] in detail. Here we shall concentrate on methods and
results of calculations of multiloop Feynman diagrams in HQET, see e.g. [3]. Various methods
of multiloop calculations are presented in the excellent book [4] in great detail, most of these
methods are used in HQET.

2 Heavy Quark Effective Theory

2.1 Lagrangian and Feynman rules

We are going to consider a class of QCD problems involving a single heavy quark with (on-shell)
mass m≫ ΛQCD. Namely, we require that there exists a reference frame where it stays nearly
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at rest all the time. In other words, there exists a 4-velocity v (v2 = 1) such that

p = mv + p̃ , (2.1)

and the characteristic residual momentum p̃µ ≪ m. Light quarks and gluons also have char-
acteristic momenta pµi ≪ m. Such problems can be described, instead of QCD, by a simpler
effective field theory called HQET. Its Lagrangian is a series in 1/m. At the leading order,

L = Q̃viv ·DQ̃v +O

(

1

m

)

+ (light fields) . (2.2)

The HQET heavy-quark field satisfies /vQ̃v = Q̃v. All light fields are described as in QCD. In
the v rest frame,

L = Q̃+iD0Q̃+O

(

1

m

)

+ (light fields) , (2.3)

where Q̃ is a 2-component spinor.
The mass shell of the heavy quark, i.e., the dependence of its residual energy p̃0 on its

momentum ~p, is

p̃0 = p0 −m =
~p 2

2m
.

At the leading order in 1/m, it becomes p̃0 = 0. This is exactly what follows from the La-
grangian (2.3).

The HQET Lagrangian (2.2) is not Lorentz-invariant, because it contains a fixed vector v.
However, v is not uniquely defined. It can be changed by ∼ p̃/m (see (2.1)). Lagrangians with
such different choices of v must produce identical physical predictions. This requirement is
called reparametrization invariance, and it restricts 1/mn corrections in the Lagrangian.

The heavy-quark chromomagnetic moment is, by dimensionality, ∼ 1/m. Therefore, at the
leading order the heavy-quark spin does not interact with the gluon field. We may rotate the
spin at will without changing physics — heavy-quark spin symmetry. In particular, B and
B∗ are degenerate and have identical properties, because they can be transformed into each
other by rotating the b spin. We can even change the magnitude of the heavy-quark spin (e.g.,
to switch it off) without changing physics — this supersymmetry group is called superflavour
symmetry.

It is difficult to simulate a QCD heavy quark on the lattice because the lattice spacing
a must be much less than the minimum characteristic distance of the problem, 1/m. The
HQET Lagrangian does not contain m, and the only applicability condition of its discretization
is a ≪ 1/p̃. When we investigate the structure of heavy–light hadrons, p̃ ∼ ΛQCD, and the
condition a≪ 1/ΛQCD is the same as for light hadrons.

The Lagrangian (2.2) gives the Feynman rules

p̃
= i

1 + /v

2

1

p̃ · v + i0
,

a µ

= igtavµ . (2.4)

In the v rest frame, the propagator is (the unit 2× 2 spin matrix assumed)

i
1

p̃0 + i0
. (2.5)
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In the coordinate space, the heavy quark does not move:

0 x
= −iθ(x0)δ(~x ) . (2.6)

HQET-quark loops vanish because the heavy quark propagates only forward in time. We can
also see this in the momentum space: all poles of the propagators in such a loop are in the
lower p̃0 half-plane, and closing the integration contour upwards, we get 0.

These Feynman rules can be also obtained from QCD at m→ ∞. The QCD massive-quark
propagator gives the HQET one:

mv + p̃
=

p̃
+O

(

p̃

m

)

,

m+m/v + /̃p

(mv + p̃)2 −m2 + i0
=

1 + /v

2

1

p̃ · v + i0
+O

(

p̃

m

)

. (2.7)

The QCD vertex, when sandwiched between two projectors, becomes the HQET one:

1 + /v

2
γµ

1 + /v

2
=

1 + /v

2
vµ

1 + /v

2
. (2.8)

When there is an external leg near a vertex, there is no projector; but we can insert it, and the
argument holds.

We have thus proved that at the tree level any QCD diagram is equal to the corresponding
HQET diagram up to O(p̃/m) corrections. This is not true at loops, because loop momenta can
be arbitrarily large. Renormalization properties of HQET (anomalous dimensions, etc.) differ
from those in QCD.

2.2 One-loop propagator diagram

Let’s calculate the simplest one-loop diagram (Fig. 1)

1

iπd/2

∫

ddk
[

−2 (k + p̃) · v − i0
]n1

[

−k2 − i0
]n2

=

1

iπd/2

∫

dk0 d
d−1~k

[

−2 (k0 + ω)− i0
]n1

[

−k20 +
~k 2 − i0

]n2
= (−2ω)d−n1−2n2I(n1, n2) . (2.9)

It depends only on the residual energy ω = p̃0, not ~̃p; the power of −2ω is clear from dimensional
counting.

If ω > 0, real pair production is possible, and we are on a cut. We shall consider the case
ω < 0, when the integral is an analytic function of ω. We’ll set −2ω = 1. If n1 is integer and
n1 ≤ 0, I(n1, n2) = 0 because this is a massless vacuum diagram. If n2 is integer and n2 ≤ 0,
I(n1, n2) = 0 because the diagram contains an HQET loop.

At ω < 0, all poles in the k0 plane are below the real axis at k0 > 0 and above the real axis
at k0 < 0, and we can rotate the integration contour counterclockwise without crossing poles
(if ω > 0, we cross the pole at k0 = −ω − i0). This Wick rotation

k0 = ikE0 (2.10)
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k + p̃

k

p̃ p̃

n1

n2

Figure 1: One-loop propagator diagram

C

|~k| − i0

−|~k|+ i0

−ω − i0

ω < 0

k0

Figure 2: Wick rotation

(Fig. 2) brings us into Euclidean momentum space (k2 = −k2E).
In the Euclidean space,

I(n1, n2) =
1

πd/2

∫

dkE0
(

1− 2ikE0

)n1

∫

dd−1~k
(

~k 2 + k2E0

)n2
. (2.11)

Using the well-known formula

∫

ddkE
(k2E +m2)n

= πd/2(m2)d/2−nΓ
(

n− d
2

)

Γ(n)
(2.12)

with d→ d− 1, m2 → k2E0, n→ n2, we obtain

I(n1, n2) =
Γ
(

n2 −
d−1
2

)

π1/2Γ(n2)

∫

(

k2E0

)(d−1)/2−n2

dkE0
(

1− 2ikE0

)n1
. (2.13)

The integrand is even in kE0, and has cuts at k2E0 < 0 (it would be wrong to write it as

kd−1−2n2

E0 ). Deforming the integration contour around the upper cut (Fig. 3), we can express
the integral via the discontinuity at this cut:

I(n1, n2) = 2
Γ
(

n2 −
d−1
2

)

π1/2Γ(n2)
cos

[

π

(

d

2
− n2

)]
∫

∞

0

kd−1−2n2dk

(2k + 1)n1

. (2.14)
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C

−
i

2

kE0

Figure 3: Integration contour

This integral can be easily calculated in Γ functions:

I(n1, n2) =
22n2−d+1

π1/2
cos

[

π

(

d

2
− n2

)]

Γ(d− 2n2)Γ(n1 + 2n2 − d)Γ
(

n2 −
d−1
2

)

Γ(n1)Γ(n2)
. (2.15)

Using the well-known properties of the Γ function

Γ(2x) = π−1/222x−1Γ(x)Γ
(

x+ 1
2

)

, Γ(x)Γ(1 − x) =
π

sinπx
, (2.16)

we can simplify this result:

I(n1, n2) =
Γ(n1 + 2n2 − d)Γ

(

d
2 − n2

)

Γ(n1)Γ(n2)
. (2.17)

It is also easy to derive this result in coordinate space [3]. HQET propagators in momentum
and coordinate space are related by

∫ +∞

−∞

e−iωt

(−2ω − i0)n
dω

2π
=

i

2Γ(n)

(

it

2

)n−1

e−0tθ(t) , (2.18)

∫

∞

0

e(iω−0)t

(

it

2

)n−1

dt = −
2iΓ(n)

(−2ω − i0)n
; (2.19)

massless propagators — by

∫

e−ip·x

(−p2 − i0)n
ddp

(2π)d
=

i

(4π)d/2
Γ(d/2− n)

Γ(n)

(

4

−x2 + i0

)d/2−n

, (2.20)

∫
(

4

−x2 + i0

)n

eip·xddx = −i(4π)d/2
Γ(d/2− n)

Γ(n)

1

(−p2 − i0)d/2−n
. (2.21)

Our diagram in coordinate space (Fig. 4, x = vt) is just the product of the heavy propaga-
tor (2.18) and the light one (2.20) (where −x2/4 = −t2/4 = (it/2)2):

−
1

2

1

(4π)d/2
Γ(d/2− n2)

Γ(n1)Γ(n2)

(

it

2

)n1+2n2−d−1

θ(t) .
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n1

n2

0 x

Figure 4: One-loop propagator diagram in coordinate space

The inverse Fourier transform (2.19) gives our diagram (2.9) in momentum space

i

(4π)d/2
I(n1, n2)(−2ω)d−n1−2n2 ,

where I(n1, n2) is given by (2.17).

2.3 Renormalization

The Lagrangian contains bare fields and parameters:

L = Q̃v0iv ·D0Q̃v0 D0µ = ∂µ − ig0A
a
0µt

a . (2.22)

They are related to the renormalized ones by the renormalization constants:

Q̃v0 = Z̃
1/2
Q Q̃v , A0 = Z

1/2
A A , a0 = ZAa , g0 = Z1/2

α g , (2.23)

where a0 is the gauge-fixing parameter. The ghost field, the light-quark fields (and their masses)
are renormalized as in QCD (not written here). Minimal renormalization constants have the
structure

Zi = 1 +
Z11

ε

αs

4π
+

(

Z22

ε2
+
Z21

ε

)

(αs

4π

)2

+ · · · (2.24)

They don’t contain ε0 and εn (n > 0) terms, only negative powers needed to remove divergences,
and hence are called minimal. We have to define αs to be exactly dimensionless. In the MS
scheme αs depends on the renormalization scale µ:

g20
(4π)d/2

= µ2εαs(µ)

4π
Zα(αs(µ))e

γEε , (2.25)

where γE is the Euler constant.
Let’s calculate the HQET propagator with one-loop accuracy:

+ + · · ·

iS̃(ω) = iS̃0(ω) + iS̃0(ω)(−i)Σ̃(ω)iS̃0(ω) + · · · (2.26)

where

S̃0(ω) =
1

ω
. (2.27)
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The one-loop heavy-quark self-energy (Fig. 5) is

Σ̃(ω) = iCF

∫

ddk

(2π)d
ig0v

µ 1

k0 + ω
ig0v

ν −i

k2

(

gµν − ξ
kµkν
k2

)

, (2.28)

where ξ = 1− a0. In the numerator, we may replace (k · v)2 = (k0 + ω − ω)2 → ω2, because if
we cancel k0 + ω in the denominator the integral vanishes. Using (2.17), we obtain

Σ̃(ω) = CF
g20(−2ω)1−2ε

(4π)d/2

[

2I(1, 1) +
ξ

2
I(1, 2)

]

= CF
g20(−2ω)1−2ε

(4π)d/2
Γ(1 + 2ε)Γ(1− ε)

d− 4

(

ξ +
2

d− 3

)

. (2.29)

k + p̃

k

p̃ p̃

Figure 5: One-loop heavy-quark self-energy

The propagator expressed via renormalized quantities is

ωS̃(ω) = 1 + CF
αs(µ)

4πε
e−2Lε

[

3− a(µ) + 4ε+ · · ·
]

, (2.30)

where

L = log
−2ω

µ
.

It should be equal S̃(ω) = Z̃QS̃r(ω), where the renormalized propagator S̃r(ω) is finite at ε→ 0.
Therefore,

Z̃Q = 1+ CF (3− a)
αs

4πε
(2.31)

(it is also easy to write S̃r(ω)).
The HQET field does not renormalized in the Yennie gauge a = 3. This is exactly the

reason why this gauge has been introduced in the theory of electrons interacting with soft
photons (Bloch–Nordsieck model), which is the Abelian HQET. In the Abelian case, this non-
renormalization holds to all orders due to the exponentiation theorem. In HQET, this is only
true at one loop.

Now we shall discuss the renormalization of g. Due to the gauge invariance, all g’s in
the Lagrangian are equal. The coupling of the HQET quark field to gluon is thus identical
to the usual QCD coupling, where the HQET heavy flavour is not counted in the number of
flavours nf . In order to find Zα we need to renormalize the heavy-quark – gluon vertex and all

propagators attached to it. We have already calculated Z̃Q. The renormalization of the gluon
propagator is well known (Fig. 6):

ZA = 1−

[

CA

2

(

a−
13

3

)

+
4

3
TFnf

]

αs

4πε
. (2.32)

HQP08 7



Figure 6: One-loop gluon self-energy

Let’s introduce the vertex

ω ω′

q

= ig0t
aΓ̃µ , Γ̃µ = vµ + Λ̃µ , (2.33)

where Λ̃µ starts from one loop. When expressed via renormalized quantities, the vertex should
be Γ̃ = Z̃ΓΓ̃r, where the renormalized vertex Γ̃r is finite at ε→ 0. A physical matrix element is
obtained from the corresponding vertex by multiplying it by the wave-function renormalization

constant Z
1/2
i for each external leg. In our case,

g0Γ̃Z̃QZ
1/2
A = gΓ̃rZ

1/2
α Z̃ΓZ̃QZ

1/2
A = finite.

Therefore, Z
1/2
α Z̃ΓZ̃QZ

1/2
A must be finite. But the only minimal (2.24) renormalization constant

finite at ε→ 0 is 1:
Zα =

(

Z̃ΓZ̃Q

)

−2
Z−1
A . (2.34)

At one loop the HQET vertex is given by two diagrams (Fig. 7). It is very easy to calculate
the first one. It contains two heavy denominators which can be replaced by a difference:

1

(k0 + ω)(k0 + ω′)
=

1

ω′ − ω

(

1

k0 + ω
−

1

k0 + ω′

)

. (2.35)

We get the difference of the self-energies:

Λ̃µ
1 = −

(

1−
CA

2CF

)

Σ̃(ω′)− Σ̃(ω)

ω′ − ω
vµ . (2.36)

This result can also be obtained from the Ward identity. The UV divergence of this contribution
is

Λ̃µ
1 =

(

CF −
CA

2

)

(a− 3)
αs

4πε
vµ . (2.37)

Figure 7: One-loop HQET vertex
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The second diagram is more difficult. It has been calculated in [5]. Now we only need
its UV divergence, and it should be ∼ vµ. We may nullify all external momenta. After
that, the diagram will contain no scale and hence vanish. It will contain both UV and IR
divergences which cancel. Therefore, we’ll have to introduce some IR regularization to get the
UV divergence. We have

ig0Λ̃
µ
2 =

CA

2

∫

ddk

(2π)d
ig0v

α′ i

k · v
ig0v

β′

×
−i

k2

(

gαα′ − ξ
kαkα′

k2

)

−i

k2

(

gββ′ − ξ
kβkβ′

k2

)

ig0V
αβµ(k,−k, 0) , (2.38)

where the three-gluon vertex is

V µ1µ2µ3(p1, p2, p3) = (p3 − p2)
µ1gµ2µ3 + (p1 − p3)

µ2gµ3µ1 + (p2 − p1)
µ3gµ1µ2 . (2.39)

It vanishes when contracted with the same vector in all three indices:

V µ1µ2µ3(p1, p2, p3)vµ1
vµ2

vµ3
= 0 ,

and when contracted in two indices with the corresponding momenta:

V µ1µ2µ3(p1, p2, p3)p1µ1
p2µ2

= 0 .

Therefore, ξ0 and ξ2 terms vanish:

Λ̃µ
2vµ = iCAg

2
0ξ

∫

ddk

(2π)d
k2 − (k · v)2

(k2)3
.

Averaging over k directions (k · v)2 → k2/d, we get

Λ̃µ
2vµ = iCAg

2
0ξ

(

1−
1

d

)
∫

ddk

(2π)d
1

(k2)2
.

The UV divergence of this integral can be obtained by introducing any IR regularization, e.g.,
an IR cut-off in the Euclidean momentum integral or a small mass:

∫

ddk

(2π)d
1

(k2)2

∣

∣

∣

∣

UV

=
i

(4π)d/2ε
. (2.40)

We arrive at the UV divergence of the second vertex diagram:

Λ̃µ
2 = −

3

4
CA(1− a)

αs

4πε
vµ . (2.41)

From (2.37) and (2.41) we obtain

Z̃Γ = 1 +

[

CF (a− 3) + CA
a+ 3

4

]

αs

4πε
. (2.42)

The product which appears in (2.34) is

Z̃ΓZ̃Q = 1 + CA
a+ 3

4

αs

4πε
. (2.43)
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In the Abelian case Z̃ΓZ̃Q = 1 to all orders, due to the Ward identity. This is why we only got
the non-abelian colour structure CA in (2.43). Finally, combining this with (2.32), we see that
the a dependence cancels, and

Zα = 1− β0
αs

4πε
, β0 =

11

3
CA −

4

3
TFnf . (2.44)

Thus we have derived the one-loop β function of QCD (nf does not include the HQET heavy
flavour Q). Most textbooks use the massless-quark – gluon vertex or the ghost – gluon one (see,
e.g., [3]). In the later case, calculations are a little shorter. The HQET derivation presented
here is as short as the ghost one.

3 α parametrization

3.1 General formulae

α parametrization of Feynman integrals (including those containing numerators) is discussed
in many textbooks, see e.g. [6]. Here we shall discuss HQET integrals; all rules can be trivially
obtained from [6], though they were not yet explicitly stated in the literature.

First let’s calculate the one-loop diagram (2.9) (Fig. 1) using α parametrization

1

an
=

1

Γ(n)

∫

∞

0

dααn−1e−aα . (3.1)

We get
1

Γ(n1)Γ(n2)

∫

dααn2−1 dβ βn1−1 ddk eX , X = αk2 + 2β(k + p̃) · v .

We shift the integration momentum

k = k′ −
β

α
v

to eliminate the linear term in the exponent:

X = αk′2 −
β2

α
+ 2βω .

Now it is easy to calculate the momentum integral:

∫

ddk eαk
2

= i

∫

ddkE e
−αk2

E = i
(π

α

)d/2

. (3.2)

Therefore,

(−2ω)d−n1−2n2I(n1, n2) =
1

Γ(n1)Γ(n2)

∫

dααn2−1 dβ βn1−1 α−d/2 exp

(

−
β2

α
+ 2βω

)

.

Now we make the substitution β = αy and integrate in α:

Γ
(

n1 + n2 −
d
2

)

Γ(n1)Γ(n2)

∫

∞

0

dy yn1−1
[

y(y − 2ω)
]d/2−n1−n2

.
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The HQET Feynman parameter y has the dimensionality of energy and varies from 0 to ∞.
The y integral can be easily calculated in Γ functions, and we again obtain (2.17).

Now we shall consider the most general HQET Feynman integral without numerators. Any
HQET diagram contains a single heavy line and has the form

I =

∫

∏ ddki
iπd/2

1
∏

Lna

a
∏

Hnc

c
, (3.3)

where ki are loop momenta (i, j ∈ [1, L]),

La = m2
a − q2a − i0 , Hc = −2qc · v − i0

are light denominators (a, b ∈ [1, Nl]) and heavy ones (c, d ∈ [1, Nh]):

qa =
∑

Naiki +
∑

Nanpn , qc =
∑

Nciki +
∑

Ncnpn ,

pn are external momenta (n,m ∈ [1, Ne − 1]), and the coefficients N express momenta of
propagators via the loop and external momenta (these coefficients are equal to 0 or ±1). Using
the α representation (3.1) for all lines, we obtain

I =
1

∏

Γ(na)
∏

Γ(nc)

∫

∏

dαa α
na−1
a

∏

dβc β
nc−1
c

∏ ddki
iπd/2

eX ,

X =
∑

αa(q
2
a −m2

a) + 2
∑

βcqc · v . (3.4)

Dimensionalities of the parameters are αa ∼ 1/M2, βc ∼ 1/M . The exponent is

X =
∑

Mijki · kj − 2
∑

Qi · ki + Y , (3.5)

where

Mij =
∑

αaNaiNaj ,

Qi = −
∑

αaNaiNanpn − v
∑

βcNci ,

Y =
∑

αa

(

∑

Nanpn

)2

+ 2
∑

βcNcnpn · v −
∑

αam
2
a . (3.6)

Now we shift the loop momenta ki = k′i +Ki to eliminate linear terms:

Ki =
∑

M−1
ij Qj . (3.7)

Then
X =

∑

Mijk
′

i · k
′

j −
∑

M−1
ij Qi ·Qj + Y . (3.8)

Performing the Wick rotation to Euclidean k′i and integration in the loop momenta, we obtain

I =
1

∏

Γ(na)
∏

Γ(nc)

∫

∏

dαa α
na−1
a

∏

dβc β
nc−1
c [D(α)]−d/2

× exp

[

−
A(α) +A1(α, β) + A2(α, β)

D(α)
−
∑

αam
2
a

]

, (3.9)
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where

D(α) = detM ,

A(α)

D(α)
=

∑

M−1
ij αaαbNaiNanNbjNbmpn · pm −

∑

αaNanNampn · pm ,

A1(α, β)

D(α)
= 2

∑

M−1
ij αaβcNaiNanNcjpn · v − 2

∑

βcNcnpn · v ,

A2(α, β)

D(α)
=

∑

M−1
ij βcβdNciNdj . (3.10)

The polynomials D(α), A(α), A1(α, β), A2(α, β) have dimensionality 1/M2L. The function
D(α) is homogeneous in αa of degree L. The function A(α) is homogeneous in αa of degree
L+ 1 and linear in pn · pm. The function A1(α, β) is linear in βc, of degree L in αa, and linear
in pn ·v. The function A2(α, β) is quadratic in βc and of degree L− 1 in αa; it does not contain
momenta.

It is always possible to calculate (at least) one integration in (3.9). Let’s insert δ (
∑

αa − η) dη
under the integral sign, and make the substitution αa = ηxa, βc = ηyc. Then the η integral is
a Γ function:

I =
Γ
(
∑

na +
∑

nc − L d
2

)

∏

Γ(na)
∏

Γ(nc)

∫

∏

dxa x
na−1
a

∏

dyc y
nc−1
c δ

(
∑

xa − 1
)

[D(x)]d/2
[

A(x)+A1(x,y)+A2(x,y)
D(x) +

∑

xam2
a

]

P

na+
P

nc−Ld/2
.

(3.11)
The ordinary Feynman parameters xa are dimensionless and vary from 0 to 1; the HQET
Feynman parameters yc have dimensionality of energy and vary from 0 to ∞.

3.2 Graph-theoretical rules

The polynomials D(α), A(α), A1(α, β), A2(α, β) can be extracted directly from the diagram,
see [6]. We shall formulate the rules and illustrate them by an example shown in Fig. 8.

p1

p2

1 2
3

1 2

Figure 8: An HQET vertex diagram

1. Cut a few light lines so as to get a connected tree, form the product of αa of the cut
lines. D(α) is the sum of all such products.

D = α1α2 + α1α3 + α2α3 .
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2. Cut a few light lines to get two connected trees (the heavy line is in one of the two parts).
Form the product of αa of the cut lines and multiply it by (−P 2), where P is the momentum
flowing from one connected part to the other one. A(α) is the sum of all such terms.

A = −p22α1α2α3 .

3. Cut a single heavy line and a few light ones to get two connected trees (now the heavy
line enters one connected part and leaves the other one). Form the product of βc of the cut
heavy line and αa of the cut light ones and multiply by (−2P · v), where P is the momentum
flowing from the first connected part to the second one. A1(α, β) is the sum of all such terms.

A1 = −2p1 · v β1α1(α2 + α3)− 2(p1 + p2) · v β1α2α3

− 2(p1 + p2) · v β2α2(α1 + α3)− 2p1 · v β2α1α3 .

4. Cut a few light lines to get a connected diagram with a single loop in such a way that
this loop contains at least one heavy line. Sum βc of the heavy lines belonging to the loop,
square the sum, and multiply by αa of the cut light lines. Sum all terms.

A2 = α1β
2
2 + α2β

2
1 + α3(β1 + β2)

2 .

These rules can be simplified a little. Suppose p1 is the residual momentum of the incoming
heavy line, and let’s route it along the heavy line. Then the exponent X (3.4) contains 2p1 ·
v
∑

βc. We can add this expression to the exponent in (3.9), and then set p1 = 0 while
calculating A1(α, β).

There is an analogy between Feynman diagrams in α representation and electrical circuits
(Table 1). The average momentum flowing through a propagator corresponds to current. The
first Kirchhoff rule is satisfied: the sum of momenta flowing into a vertex vanishes. Light lines
are resistors αa, and heavy lines — voltage sources βcv (batteries with zero internal resistance,
the voltage does not depend on the current). The second Kirchhoff rule says that the sum of
voltages along a loop (say, loop i) must vanish. These equations are nothing but the equations
∑

MijKj = Qi which determine the average loop momenta Ki (see (3.7)).
The Joule heat

∑

αaq̄
2
a plus 2 times the energy consumption by the voltage sources

∑

βcq̄c ·v
gives

−
A(α) +A1(α, β) +A2(α, β)

D(α)
.
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Current Voltage

a
q̄a =

∑

NaiKi +
∑

Nanpn αaq̄a

c
q̄c =

∑

NciKi +
∑

Ncnpn βcv

Table 1: Analogy with electrical circuits

The case αa → 0 or βc → 0 corresponds to a short circuit (line shrinks to a point); the case
αa → ∞ — no contact (the line is removed).

Generalization to integrals with numerators is straightforward [6]. Suppose we have a poly-
nomial P(qa, qc) inserted into the numerator of (3.3). Then we can add

2
∑

qa · ξa + 2
∑

qc · ηc

to the exponent X (3.4), and apply the differential operator

P

(

1

2

∂

∂ξa
,
1

2

∂

∂ηc

)

to the result at ξa = 0, ηc = 0. Before this step, the only difference is the substitution
βcv → βcv + ηc, and the fact that a light line a can be also considered “heavy” in A1 and A2

calculations, with ξa playing the role of βv. Let’s formulate the rules to calculate A1, A2.
3′. Cut a single heavy line (say, c) and a few light ones to get two connected trees, and form

the product of −2(βcv + ηc) · P , where P is the momentum flowing from the first connected
part to the second one; multiply this product by αa of all cut light lines. Or cut a single light
line (say, a) and a few light ones to get two connected trees, form the product −2ξa · P , and
multiply it by αb of these additional cut lines. Here the first and the second connected parts
are defined by the direction of the momentum of the first cut line (qc or qa for a heavy or light
line). A1(α, β, ξ, η) is the sum of all such terms.

4′. Cut a few light lines to get a connected diagram with a single loop. Sum βcv + ηc or ξa
of the heavy or light lines belonging to the loop, square the sum, and multiply by αa of the cut
light lines. Sum all terms to get A2(α, β, ξ, η).

4 HQET propagator diagrams

4.1 Two loops

4.1.1 Diagram 1

We have calculated the one-loop HQET propagator diagram by three different methods (Sects. 2.2
and 3.1). Now we shall consider two-loop propagator diagrams in HQET. There are two generic
topologies of such diagrams (Fig. 9). This means that all other possible topologies can be ob-
tained from these ones by shrinking some lines. The method of calculation of these diagrams
has been constructed in [7].

The first diagram (Fig. 10) is

−
1

πd

∫

ddk1 d
dk2

Dn1

1 Dn2

2 Dn3

3 Dn4

4 Dn5

5

= (−2ω)2d−n1−n2−2(n3+n4+n5)I(n1, n2, n3, n4, n5) , (4.1)
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Figure 9: Generic topologies of two-loop propagator diagrams

k10 + ω k20 + ω

k1 k2

k1 − k2
n1 n2

n3 n4n5

Figure 10: Diagram 1

where

D1 = −2(k10 + ω) , D2 = −2(k20 + ω) ,

D3 = −k21 , D4 = −k22 , D5 = −(k1 − k2)
2

(the power of −2ω is fixed by dimensionality). It is symmetric with respect to (1 ↔ 2, 3 ↔ 4),
and vanishes if two adjacent indices are ≤ 0.

If n5 = 0, the diagram is the product of two one-loop ones:

I(n1, n2, n3, n4, 0) =

n1 n2

n3 n4

= I(n1, n3)I(n2, n4) . (4.2)

If n1 = 0, we first calculate the inner massless loop. The one-loop massless diagram is

1

iπd/2

∫

ddk

[−(k + p)2 − i0]
n1 [−k2 − i0]

n2
= (−p2)d/2−n1−n2G(n1, n2) ,

G(n1, n2) =
Γ(−d/2 + n1 + n2)Γ(d/2− n1)Γ(d/2− n2)

Γ(n1)Γ(n2)Γ(d− n1 − n2)
. (4.3)

This gives the coefficient G(n3, n5), and shifts the power n4 by n3 + n5 − d/2:

n2

n4

n3

n5

=

n5

n3

×

n2

n4 + n3 + n5 − d/2

,

I(0, n2, n3, n4, n5) = G(n3, n5)I(n2, n4 + n3 + n5 − d/2) (4.4)
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(the case n2 = 0 is symmetric). If n3 = 0, we first calculate the inner HQET loop. This gives
the coefficient I(n1, n5), and shifts the power n2 by n1 + 2n5 − d:

n1 n2

n4

n5
=

n1

n5

×

n2 + n1 + 2n5 − d

n3

,

I(n1, n2, 0, n4, n5) = I(n1, n5)I(n2 + n1 + 2n5 − d, n4) (4.5)

(the case n4 = 0 is symmetric).
But what can we do if all 5 powers of denominators are positive? We shall use integration

by parts [8]. Integral of any full derivative over the whole space of loop momenta is zero. When
applied to the integrand of (4.1), the derivative

∂

∂k2
→

n2

D2
2v +

n4

D4
2k2 +

n5

D5
2(k2 − k1) .

Applying (∂/∂k2) · k2 or (∂/∂k2) · (k2 − k1) to the integrand, we obtain zero integral. On
the other hand, we can calculate these derivatives explicitly. Using 2k2 · v = −D2 − 2ω,
2(k2 − k1) · k2 = D3 −D4 −D5, we see that applying these differential operators is equivalent
to inserting

d− n2 − n5 − 2n4 − 2ω
n2

D2
+
n5

D5
(D3 −D4) ,

d− n2 − n4 − 2n5 +
n2

D2
D1 +

n4

D4
(D3 −D5)

under the integral sign. These combinations of integrals vanish. These recurrence relations are
usually written as

[

d− n2 − n5 − 2n4 + n22
+ + n55

+(3− − 4−)
]

I = 0 , (4.6)
[

d− n2 − n4 − 2n5 + n22
+1− + n44

+(3− − 5−)
]

I = 0 , (4.7)

where, for example, 1− lowers n1 by 1 and 2+ raises n2 by 1. Applying (∂/∂k2) · v, we obtain
a (less useful) relation

[

−2n22
+ + n44

+(2− − 1) + n55
+(2− − 1−)

]

I = 0 . (4.8)

A useful relation can be obtained from homogeneity of the integral (4.1) in ω. Applying
ω(d/dω), we get the same integral times its dimensionality 2(d− n3 − n4 − n5)− n1 − n2. On
the other hand, we can calculate the derivative explicitly:

[

2(d− n3 − n4 − n5)− n1 − n2 + n11
+ + n22

+
]

I = 0 . (4.9)

This homogeneity relation is not independent: it is the sum of the (∂/∂k2) · k2 relation (4.6)
and its mirror-symmetric (∂/∂k1) · k1 one.

A particularly useful relation can be obtained by subtracting the 1− shifted homogeneity
relation (4.9) from the (∂/∂k2) · (k2 − k1) relation (4.7):

[

d− n1 − n2 − n4 − 2n5 + 1−
(

2(d− n3 − n4 − n5)− n1 − n2 + 1
)

1−

+ n44
+(3− − 5−)

]

I = 0 . (4.10)
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Solving it for the I with the unshifted indices, we obtain an expression for I(n1, n2, n3, n4, n5)
via 3 integrals:

I =
(2(d− n3 − n4 − n5)− n1 − n2 + 1)1− + n44

+(5− − 3−)

d− n1 − n2 − n4 − 2n5 + 1
I . (4.11)

Each of them has n1 + n3 + n5 reduced by 1. Each application of (4.11) moves us closer to the
origin (Fig. 11). Therefore, after a finite number of steps, any integral I(n1, n2, n3, n4, n5) will
be reduced to the trivial cases in which one of the indices vanishes.

Figure 11: A single step of the integration-by-parts reduction

4.1.2 Diagram 2

The second diagram (Fig. 12) is

−
1

πd

∫

ddk1 d
dk2

Dn1

1 Dn2

2 Dn3

3 Dn4

4 Dn5

5

= (−2ω)2d−n1−n2−n3−2(n4+n5)J(n1, n2, n3, n4, n5) , (4.12)

where

D1 = −2(k10 + ω) , D2 = −2(k20 + ω) , D3 = −2(k10 + k20 + ω) ,

D4 = −k21 , D5 = −k22

(the power of −2ω is fixed by dimensionality). It is symmetric with respect to (1 ↔ 2, 4 ↔ 5),
and vanishes if n4 ≤ 0 or n5 ≤ 0 or two adjacent n1...3 are ≤ 0.

This integral is trivial if n3 = 0 or n1,2 = 0. In general, it has 3 linear denominators and
only 2 loop momenta; therefore, these denominators are linearly dependent:

D1 +D2 −D3 = −2ω . (4.13)

Inserting this combination under the integral sign, we obtain

J = (1− + 2− − 3−)J . (4.14)
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k1

k2

k10 + ω k10 + k20 + ω

k20 + ωn1 n3

n2

n4

n5

Figure 12: Diagram 2

Each application of this recurrence relation reduces n1+n2+n3 by 1. Therefore, after a number
of such steps any integral will reduce to the trivial cases (Fig. 11).

The integral (4.12) can contain a power of k1 · k2 in the numerator; this scalar product
cannot be expressed via the denominators. However, this is not a serious problem [9].

Let’s summarize. All scalar integrals belonging to the two generic topologies of Fig. 9, with
any indices ni (and with any power of k1 · k2 in the numerator of the second integral) can be
reduced to linear combinations of two master integrals

= I21 , = I2 , (4.15)

with coefficients being rational functions of d. Here the n-loop HQET sunset integral is

· · · = In =
Γ(1 + 2nε)Γn(1− ε)

(1 − n(d− 2))2n
. (4.16)

This reduction can be done using integration by parts [7] (see also [9]).

4.2 Three loops

4.2.1 Reduction

There are 10 generic topologies of three-loop HQET propagator diagrams (Fig. 13).

All these integrals, with any powers of denominators and irreducible numerators, can be
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Figure 13: Generic topologies of three-loop propagator diagrams

reduced [9] to 8 master integrals:

= I31 , (4.17)

= I1I2 , (4.18)

= I3 , (4.19)

=
I21I(6 − 2d, 1)

I2I(5− 2d, 1)
I3 =

3d− 7

2d− 5

I21
I2
I3 , (4.20)

=
G2

1I(1, 4− d)

G2I(1, 3− d)
I3 = −2

3d− 7

d− 3

G2
1

G2
I3 , (4.21)

= G1I(1, 1, 1, 1, 2− d/2) , (4.22)

= I1J(1, 1, 3− d, 1, 1) , (4.23)
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= B8 , (4.24)

using integration by parts. Here the n-loop HQET sunset In is defined by (4.16), and the n-loop
massless sunset is

· · ·
= Gn =

1
(

n+ 1− nd
2

)

n

(

(n+ 1)d2 − 2n− 1
)

n

Γ(1 + nε)Γn+1(1− ε)

Γ(1− (n+ 1)ε)
.

(4.25)
This reduction algorithm has been implemented as a REDUCE package Grinder [9]. It is analo-
gous to the massless package Mincer [10]. The first 5 master integrals can be easily expressed
via Γ functions, exactly in d dimensions. The next two ones reduce to two-loop ones with a
single ε-dependent index1 (Sects. 4.2.2 and 4.2.3). The last one is truly three-loop (Sect. 4.2.4).

4.2.2 J(1, 1, n, 1, 1)

Here we shall calculate the integral J (4.12) (Fig. 12) for arbitrary powers of denominators. To
this end, we shall first consider the one-loop diagram with two different residual energies ω1

and ω2 (Fig. 14a):

I =
1

iπd/2

∫

ddk

Dn1

1 Dn2

2 Dn3

3

, (4.26)

where
D1 = −2(k0 + ω1) , D2 = −2(k0 + ω2) , D3 = −k2 .

If n1,2 are integer, this integral can be easily calculated by partial fraction decomposition
(Sect. 2.3).

k0 + ω1 k0 + ω2

k

ω1 ω2

n1 n2

n3

a
0−vt1 vt2

n1 n2

n3

b

Figure 14: One-loop diagram

Closely following Sect. 2.2, we first integrate in dd−1~k:

I =
Γ
(

n3 −
d−1
2

)

π1/2Γ(n3)

∫

(

k2E0

)(d−1)/2−n3

dkE0
(

−2ω1 − 2ikE0

)n1
(

−2ω2 − 2ikE0

)n2

= 2
Γ
(

n3 −
d−1
2

)

π1/2Γ(n3)
cos

[

π

(

d

2
− n3

)]
∫

∞

0

kd−1−2n3dk

(2k − 2ω1)n1(2k − 2ω2)n2

.

1
Grinder uses B4 = I3I21/I2 and B5 = I3G2

1
/G2 as elements of its basis instead of (4.20) and (4.21).
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We obtain [11]

I = I(n1 + n2, n3)2F1

(

n1, n1 + n2 + 2n3 − d
n1 + n2

∣

∣

∣

∣

1−
ω1

ω2

)

(−2ω2)
d−n1−n2−2n3 . (4.27)

One can easily check that this result is symmetric with respect to (ω1 ↔ ω2, n1 ↔ n2), using
properties of hypergeometric function. If ω1 = ω2, it reduces to I(n1 + n2, n3).

Let’s also calculate this integral using α representation (Sect. 3.1):

I =
1

Γ(n1)Γ(n2)Γ(n3)

∫

dααn3−1 dβ1 β
n1−1
1 dβ2 β

n2−1
2 α−d/2

× exp

[

−
(β1 + β2)

2

α
+ 2(ω1β1 + ω2β2)

]

.

Now we make the substitution β1,2 = αy1,2 and integrate in α:

I =
Γ
(

n1 + n2 + n3 −
d
2

)

Γ(n1)Γ(n2)Γ(n3)

∫

dy1 y
n1−1
1 dy2 y

n2−1
2

[

(y1 + y2)
2 − 2(ω1y1 + ω2y2)

]d/2−n1−n2−n3

.

After the substitution y1 = yx, y2 = y(1− x), the integral in y can be taken:

I =
Γ
(

d
2 − n3

)

Γ
(

n1 + n2 + 2n3 −
d
2

)

Γ(n1)Γ(n2)Γ(n3)

×

∫ 1

0

dxxn1−1 (1− x)n2−1 [−2ω1x− 2ω2(1− x)]d−n1−n2−2n3 . (4.28)

And we again obtain (4.27).

Finally, we shall derive the same result in coordinate space (Fig. 14b, see Sect. 2.2):

I = −
1

4

Γ
(

d
2 − n3

)

Γ(n1)Γ(n2)Γ(n3)

∫

dt1 dt2 e
i(ω1t1+ω2t2)

(

it1
2

)n1−1 (
it2
2

)n2−1 (
i(t1 + t2)

2

)2n3−d1

.

The substitution t1 = tx, t2 = t(1− x) reduces this expression to (4.28).

Now we return to our main problem — calculating J = J(n1, n2, n3, n4, n5) (Fig. 12) with
arbitrary indices. We set −2ω = 1; the power of −2ω can be reconstructed by dimensionality.
Substituting the one-loop subdiagram (4.27), we have

J =
I(n1 + n3, n4)

iπd/2

∫

ddk

(−k2)n5(1− 2k0)n2

× (1 − 2k0)
d−n1−n3−2n4

2F1

(

n1, n1 + n3 + 2n4 − d
n1 + n3

∣

∣

∣

∣

−2k0
1− 2k0

)

=
I(n1 + n3, n4)Γ

(

n5 −
d−1
2

)

πd/2Γ(n5)

∫ +∞

−∞

(k2E0)
(d−1)/2−n5dkE0

(1− 2ikE0)n1+n2+n3+2n4−d

× 2F1

(

n1, n1 + n3 + 2n4 − d
n1 + n3

∣

∣

∣

∣

−2ikE0

1− 2ikE0

)

.
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We can deform the integration contour (Fig. 3, kE0 = iz/2):

J =
I(n1 + n3, n4)Γ

(

n5 −
d−1
2

)

2d−2n5−1πd/2Γ(n5)
cos

[

π

(

d

2
− n5

)]

×

∫

∞

0

zd−2n5−1dz

(z + 1)n1+n2+n3+2n4−d 2F1

(

n1, n1 + n3 + 2n4 − d
n1 + n3

∣

∣

∣

∣

z

z + 1

)

.

Now we substitute the series

2F1

(

a, b
c

∣

∣

∣

∣

x

)

=
Γ(c)Γ(b)

Γ(a)

∞
∑

n=0

Γ(n+ a)Γ(n+ b)

Γ(n+ 1)Γ(n+ c)
xn ,

and integrate term by term. The result is

J =
I(n1 + n3, n4)Γ

(

n5 −
d−1
2

)

Γ(d− 2n5)Γ(n1 + n2 + n3 + 2n4 + 2n5 − 2d)

2d−2n5−1πd/2Γ(n5)Γ(n1 + n2 + n3 + 2n4 − d)
cos

[

π

(

d

2
− n5

)]

× 3F2

(

n1, n1 + n3 + 2n4 − d, d− 2n5

n1 + n3, n1 + n2 + n3 + 2n4 − d

∣

∣

∣

∣

1

)

.

Using (2.16), we can simplify this result:

J(n1, n2, n3, n4, n5) =

Γ
(

d
2 − n4

)

Γ
(

d
2 − n5

)

Γ(n1 + n3 + 2n4 − d)Γ(n1 + n2 + n3 + 2n4 + 2n5 − 2d)

Γ(n4)Γ(n5)Γ(n1 + n3)Γ(n1 + n2 + n3 + 2n4 − d)

× 3F2

(

n1, n1 + n3 + 2n4 − d, d− 2n5

n1 + n3, n1 + n2 + n3 + 2n4 − d

∣

∣

∣

∣

1

)

. (4.29)

It was first derived in coordinate space [9, 3]. Checking the symmetry (n1 ↔ n2, n4 ↔ n5)
requires using some 3F2 identities.

4.2.3 I(1, 1, 1, 1, n)

This diagram has been calculated in [12] using Gegenbauer polynomial technique in coordinate
space [13]:

n = I(1, 1, 1, 1, n) =
Γ
(

d
2 − 1

)

Γ
(

d
2 − n− 1

)

Γ(d− 2)

×

[

2
Γ(2n− d+ 3)Γ(2n− 2d+ 6)

(n− d+ 3)Γ(3n− 2d+ 6)
3F2

(

n− d+ 3, n− d+ 3, 2n− 2d+ 6
n− d+ 4, 3n− 2d+ 6

∣

∣

∣

∣

1

)

− Γ(d− n− 2)Γ2(n− d+ 3)

]

. (4.30)

Some details of this method are discussed in [3].
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4.2.4 Inversion

The last three-loop master integral has been calculated [15] using inversion. We shall first
consider inversion relations at one and two loops. The one-loop massive on-shell integral defined
by

∫

ddk

[m2 − (k +mv)2 − i0]
n1 [−k2 − i0]

n2
= iπd/2md−2(n1+n2)M(n1, n2) (4.31)

can be written in terms of the dimensionless Euclidean momentum K = kE/m:
∫

ddK

(K2 − 2iK0)n1(K2)n2

= πd/2M(n1, n2) .

Similarly, the one-loop HQET propagator integral (2.9) expressed via K = kE/(−2ω) is
∫

ddK

(1− 2iK0)n1(K2)n2

= πd/2I(n1, n2) .

Inversion K = K ′/K ′2 transforms the massive on-shell denominator into the HQET one:

K2 − 2iK0 =
1− 2iK ′

0

K ′2
.

Therefore,

n1

n2

=

n1

d− n1 − n2

,

M(n1, n2) = I(n1, d− n1 − n2) =
Γ(d− n1 − 2n2)Γ(−d/2 + n1 + n2)

Γ(n1)Γ(d− n1 − n2)
. (4.32)

Similarly, at two loops we obtain [14]

n1 n2

n3 n4
n5

=

n1 n2

d− n1 − n3

− n5

d− n2 − n4

− n5n5
. (4.33)

This relation is less useful, because the HQET diagram in the right-hand side contains two
non-integer indices.

At three loops we have [3]

n1 n2

n3 n4

n5

n6

n7 n8

=

n1 n2

d− n1 − n3

− n5 − n7

d− n2 − n4

− n5 − n8

n5

d− n6 − n7 − n8

n7 n8

n1 n3 n2

n4 n5n6 n7

n8

=

n1 n3 n2

d− n1 − n4

− n6

d− n2 − n5

− n7
n6 n7

d− n3 − n6 − n7 − n8

(4.34)
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In particular, the HQET ladder diagram with all indices ni = 1 is convergent; its value at d = 4
is related [15] to a massive on-shell diagram

= = −5ζ5 + 12ζ2ζ3 . (4.35)

by the second inversion relation. This is one of the on-shell three-loop master integrals, and its
value at d = 4 is known [16, 17]. Calculating this ladder diagram with Grinder:

= 4
(d− 3)2

(d− 4)2
I31 −

136

3

(d− 3)(2d− 5)(2d− 7)

(d− 4)3
I1I2

+ 2
(3d− 7)(3d− 8)(81d3 − 891d2 + 3266d− 3988)

(d− 4)4(2d− 7)
I3

+ 9
(d− 3)(3d− 7)(3d− 8)(3d− 10)(3d− 11)

(d− 4)3(2d− 5)(2d− 7)

I21
I2
I3 + 8

(d− 3)(3d− 7)(3d− 11)

(d− 4)3
G2

1

G2
I3

−
3

2

(d− 3)(3d− 10)

(d− 4)2
G1I

(

1, 1, 1, 1, 2− d
2

)

−
3d− 11

d− 4
B8 , (4.36)

and solving for the most difficult HQET three-loop master integral B8 (4.24), we obtain the
ε expansion of this integral up to O(ε). This concludes the investigation of three-loop master
integrals, and allows one to solve three-loop propagator problems in HQET up to terms O(1).

4.2.5 Applications

Using this technique, the HQET heavy-quark propagator has been calculated up to three
loops [18], and the heavy-quark field anomalous dimension (obtained earlier by a completely
different method [17]) has been confirmed. The anomalous dimension of the HQET heavy–light
quark current has been calculated [18]. The correlator of two heavy–light currents has been
found, up to three loops, including light-quark mass corrections of order m and m2 [19]. The
quark-condensate contribution to this correlator has been also calculated up to three loops [19].
Its ultraviolet divergence yields the difference of twice the anomalous dimension of the heavy-
quark current and the that of the quark condensate, thus providing a completely independent
confirmation of the result obtained in [18]. The gluon-condensate contribution has been calcu-
lated up to two loops [19] (at one loop it vanishes).

5 On-shell HQET propagator diagrams with mass

5.1 Two loops

On-shell HQET propagator diagrams vanish if all flavours (except the HQET one) are considered
massless, because loop integrals contain no scale. If there is a massive flavour (c in the b-quark
HQET), such diagrams are non-zero. They first appear at two loops. They are used, e.g., to
calculate on-shell renormalization constants in HQET.

Let’s first consider [20] a class of such integrals (Fig. 15)

F (n1, n2) =

∫

f(k2) ddk

Dn1

1 Dn2

2

, where D1 = −2k · v − i0 , D2 = −k2 − i0 , (5.1)
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k

k

1
2

Figure 15: Diagram with a single HQET line

and f(k2) is an arbitrary function. We can construct an identity in which f ′(k2) terms cancel:

∂

∂k
·

(

k − 2
D2

D1
v

)

f(k2)

Dn1

1 Dn2

2

=

[

d− n1 − 2− 4(n1 + 1)
D2

D2
1

]

f(k2)

Dn1

1 Dn2

2

. (5.2)

Integrating it, we obtain an integration-by-parts relation [20]

(d− n1 − 2)F (n1, n2) = 4(n1 + 1)1++2−F (n1, n2) . (5.3)

Let’s call integrals with even n1 apparently even, and with odd n1 — apparently odd (they
would be even and odd in v if we neglected i0 in the denominator). These two classes of integrals
are not mixed by the recurrence relation (5.3). We can use this relation to reduce all apparently
even integrals to vacuum integrals with n1 = 0 (Fig. 16). Apparently odd integrals with n1 < 0
can be reduced to n1 = −1. Substituting n1 = −1 to (5.3), we see that these integrals vanish,
and hence all integrals with odd n1 < 0 vanish too. Apparently odd integrals with n1 > 0 can
be reduced to n1 = 1 (Fig. 16); however, they are not related to those with n1 = −1.

n1

n2

0

0

0

0

0

Figure 16: Recurrence relation
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The solution of the recurrence relation can thus be written as

F (n1, n2) =



























(−4)−n1/2
Γ
(

d
2

)

Γ
(

d−n1

2

)

Γ
(

1−n1

2

)

Γ
(

1
2

) F
(

0, n2 +
n1

2

)

even n1,

21−n1
Γ
(

d−1
2

)

Γ
(

n1+1
2

)

Γ
(

d−n1

2

)F
(

1, n2 +
n1 − 1

2

)

odd n1 > 0,

0 odd n1 < 0.

(5.4)

Some of these properties can be understood more directly. If n1 < 0, i0 in D−n1

1 can be
safely neglected; averaging this factor over k directions, we obtain 0 for odd n1 and the upper
formula in (5.4) for even n1. It was suggested [21] that this last formula can also be used for
even n1 > 0, but the proof (presented here) only appeared in [20].

k1

k1

k2

k1 + k2

1
2 3

4

Figure 17: Two-loop diagram

Now let’s consider the two-loop diagram (Fig. 17)

F (n1, n2, n3, n4) =
1

(iπd/2)2

∫

ddk1 d
dk2

Dn1

1 Dn2

2 Dn3

3 Dn4

4

, (5.5)

where

D1 = −2k1 · v − i0 , D2 = −k21 − i0 ,

D3 = 1− k22 − i0 , D4 = 1− (k1 + k2)
2 − i0 .

It is symmetric with respect to 3 ↔ 4, and vanishes if n3 or n4 is integer and non-positive. It
can be calculated using α parametrization [20]:

F (n1, n2, n3, n4) = (5.6)

Γ
(

n1

2

)

Γ
(

d−n1

2 − n2

)

Γ
(

n1−d
2 + n2 + n3

)

Γ
(

n1−d
2 + n2 + n4

)

Γ
(

n1

2 + n2 + n3 + n4 − d
)

2Γ(n1)Γ(n3)Γ(n4)Γ
(

d−n1

2

)

Γ(n1 + 2n2 + n3 + n4 − d)
.

In full accordance with (5.4), integrals F (n1, n2, n3, n4) with even n1 reduce to F (0, n2 +
n1/2, n3, n4) (this is a well-known two-loop vacuum integral [22]); those with odd n1 > 0
reduce to F (1, n2 + (n1 − 1)/2, n3, n4); and those with odd n1 < 0 vanish. All apparently even
integrals are proportional to the single master integral

I20 = , (5.7)
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and apparently odd ones — to

J0 = = 24d−9π2 Γ(5− 2d)

Γ2(2− d/2)
. (5.8)

Integrals (5.5) can also contain powers of (2k2 + k1) · v in the numerator; see [20] for details of
their evaluation.

5.2 Three loops

5.2.1 Reduction

There are two generic topologies of three-loop on-shell HQET propagator diagrams with a
massive loop (Fig. 18). Algorithms of their reduction to master integrals, using integration by
parts identities, have been constructed [20] by Gröbner bases technique [23].

Figure 18: Topologies of three-loop on-shell HQET propagator diagrams with mass

All apparently even integrals of the first topology reduce to

while apparently odd ones to

All apparently even integrals of the second topology reduce to

while apparently odd ones to
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The master integrals

can be easily expressed via Γ functions. The master integral

has been investigated in detail [24, 25].

5.2.2 A master integral

Now we shall discuss the integrals

In1n2n3
=

n3

n2 n2

n1 n1
(5.9)

(I111 is one of the master integrals). Several approaches have been tried [20, 26]. The best
result was obtained [26] using a method similar to [24].

First we consider (following [28]) the one-loop subdiagram

In1n2
(p0) = n1

n2

=
1

iπd/2

∫

dk0 d
d−1~k

[−2(k0 + p0)− i0]n1 [1− k2 − i0]n2

. (5.10)

After the Wick rotation, we integrate in dd−1~k:

In1n2
(p0) =

Γ(n2 − (d− 1)/2)

π1/2Γ(n2)

∫ +∞

−∞

dkE0
(k2E0 + 1)(d−1)/2−n2

(−2p0 − 2ikE0)n1

.

If p0 < 0, we can deform the integration contour (Fig. 19):

In1n2
(p0) = 2

Γ(n2 − (d− 1)/2)

π1/2Γ(n2)
cos

[

π

(

d

2
− n2

)]
∫

∞

1

dk
(k2 − 1)(d−1)/2−n2

(2k − 2p0)n1

.

This integral is

In1n2
(p0) =

Γ(n1 + n2 − 2 + ε)Γ(n1 + 2n2 − 4 + 2ε)

Γ(n2)Γ(2(n1 + n2 − 2 + ε))

× 2F1

(

n1, n1 + 2n2 − 4 + 2ε
n1 + n2 −

3
2 + ε

∣

∣

∣

∣

1

2
(1 + p0)

)

,
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or, after using a 2F1 identity,

In1n2
(p0) =

Γ(n1 + n2 − 2 + ε)Γ(n1 + 2n2 − 4 + 2ε)

Γ(n2)Γ(2(n1 + n2 − 2 + ε))

× 2F1

(

1
2n1,

1
2n1 + n2 − 2 + ε

n1 + n2 −
3
2 + ε

∣

∣

∣

∣

1− p20

)

. (5.11)

This result was obtained [26] using the HQET Feynman parametrization:

In1n2
(p0) =

Γ(n1 + n2 − 2 + ε)

Γ(n1)Γ(n2)

∫

∞

0

yn1−1(y2 − 2p0y + 1)2−n1−n2−ε dy .

This integral at p0 < 0 gives (5.11) (a similar expression has been derived in [27]).

ip0

i

−i

C

kE0

Figure 19: Integration contour

Now we can integrate in dd−1~p in the three-loop diagram:

In1n2n3
=

Γ(n3 − 3/2 + ε)

π1/2Γ(n3)

∫ +∞

−∞

I2n1n2
(ipE0)(1 + p2E0)

3/2−n3−εdpE0 . (5.12)

The square of 2F1 in (5.11) can be expressed via an 3F2 using the Clausen identity. We
analytically continue this 3F2 from 1 + p2E0 > 1 to z = 1/(1 + p2E0) < 1 and integrate (5.12)
term by term. The result contains, in general, three 4F3 of unit argument.

A convergent integral I122 is related to the master integral I111 by

I122 = −
(d− 3)2(d− 4)(3d− 8)(3d− 10)

8(3d− 11)(3d− 13)
I111 .

For this integral, we obtain [26]

I122
Γ3(1 + ε)

= −
1

2ε2

[

1

1 + 2ε
4F3

(

1, 12 − ε, 1 + ε,−2ε
3
2 + ε, 1− ε, 1− 2ε

∣

∣

∣

∣

1

)

−
2

1 + 4ε

Γ2(1− ε)Γ3(1 + 2ε)

Γ2(1 + ε)Γ(1− 2ε)Γ(1 + 4ε)
3F2

(

1
2 , 1 + 2ε,−ε
3
2 + 2ε, 1− ε

∣

∣

∣

∣

1

)

+
1

1 + 6ε

Γ2(1− ε)Γ4(1 + 2ε)Γ(1− 2ε)Γ2(1 + 3ε)

Γ4(1 + ε)Γ(1 + 4ε)Γ(1− 4ε)Γ(1 + 6ε)

]

. (5.13)
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Expansion of this result up to ε7 agrees with [26]

I122
Γ3(1 + ε)

=
π2

3

Γ3(1 + 2ε)Γ2(1 + 3ε)

Γ6(1 + ε)Γ(2 + 6ε)
. (5.14)

This equality has also been checked by high precision numerical calculations at some finite ε
values. This conjectured hypergeometric identity can also be rewritten in a nice form [28]

g1(ε)4F3

(

1, 12 − ε, 1 + ε,−2ε
3
2 + ε, 1− ε, 1− 2ε

∣

∣

∣

∣

1

)

− 2g2(ε)3F2

(

1
2 , 1 + 2ε,−ε
3
2 + 2ε, 1− ε

∣

∣

∣

∣

1

)

+ g3(ε) = 0 , (5.15)

where

b(ε) =
Γ(1− ε)Γ(1 + 2ε)

Γ(1 + ε)
, gn(ε) =

bn(ε)

b(nε)(1 + 2nε)
.

We have no analytical proof.

5.2.3 Other master integrals

Other master integrals were calculated [20] using Mellin–Barnes representation (see, e.g., [4]).
Now we shall discuss a simple example of this technique. Let’s consider the one-loop propagator
diagram with two massive lines:

1

iπd/2

∫

ddk

[m2 − k2]n1 [m2 − (k + p)2]n2

.

Using Feynman parametrization,

=
Γ(n1 + n2)

Γ(n1)Γ(n2)

1

iπd/2

∫

dxxn2−1(1− x)n1−1 ddk

[(m2 − k2)(1− x) + (m2 − (k + p)2)x]n1+n2

=
Γ(n1 + n2)

Γ(n1)Γ(n2)

1

iπd/2

∫

dxxn2−1(1− x)n1−1 ddk

[−k2 − 2xp · k − xp2 +m2]n1+n2

.

After the shift k = k′ − xp:

=
Γ(n1 + n2)

Γ(n1)Γ(n2)

1

iπd/2

∫

dxxn2−1(1− x)n1−1 ddk

[m2 + x(1− x)(−p2)− k′2]n1+n2

,

we can integrate in k′:

=
Γ
(

n1 + n2 −
d
2

)

Γ(n1)Γ(n2)

∫ 1

0

dxxn2−1(1− x)n1−1

[m2 + x(1 − x)(−p2)]n1+n2−d/2
.

Now we shall use Mellin–Barnes representation

1

(a+ b)n
=

a−n

Γ(n)

1

2πi

∫ +i∞

−i∞

dz Γ(−z)Γ(n+ z)

(

b

a

)z

. (5.16)

Here the integration contour is chosen in such a way that all poles of Γ(· · ·+ z) (they are called
left poles) are to the left of the contour, and all poles of Γ(· · · − z) (they are called right poles)
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are to the right of it. It is easy to check (5.16): closing the contour to the right we get the
expansion of the left-hand side in b/a; closing it to the left — the expansion in a/b.

We continue our calculation:

=
md−2(n1+n2)

Γ(n1)Γ(n2)

1

2πi

∫ +i∞

−i∞

dzΓ(−z)Γ(n1 + n2 + z)

(

−p2

m2

)z ∫ 1

0

dxxn2+z−1(1 − x)n1+z−1

=
md−2(n1+n2)

Γ(n1)Γ(n2)

1

2πi

∫ +i∞

−i∞

dz
Γ(−z)Γ(n1 + z)Γ(n2 + z)Γ

(

n1 + n2 −
d
2 + z

)

Γ(n1 + n2 + 2z)

(

−p2

m2

)z

.

This means that two massive lines can be replaced by one massless one (raised to the power
−z) at the price of one extra integration in z:

n1

n2

=
1

iπd/2

∫

ddk

[m2 − k2 − i0]
n1 [m2 − (k + p)2 − i0]

n2
=

md−2(n1+n2)

Γ(n1)Γ(n2)

1

2πi

∫ +i∞

−i∞

dz
Γ(−z)Γ(n1 + z)Γ(n2 + z)Γ(n1 + n2 − d/2 + z)

Γ(n1 + n2 + 2z)

m−2z −z
(5.17)

This trick allows us to reduce this master integral to a single Mellin–Barnes integral. Using
integration by parts, we can kill one of three lines in the left (integer) triangle, and calculate
the integrand in Γ functions. This allows us to find several terms of its ε expansion:

=
Γ2(2ε)Γ(3ε− 1)

4Γ(4ε)

1

2πi

∫ +i∞

−i∞

dz

Γ(1 + z)Γ(1/2 + ε+ z)Γ(1 + ε+ z)Γ(−2ε− z)Γ(−ε− z)Γ(−z)

Γ(3/2 + ε+ z)Γ(1− 2ε− z)

= −Γ3(1 + ε)

[

π2

9ε2
−

6ζ3 − 5π2

9ε
+

11

270
π4 −

10

3
ζ3 +

19

9
π2

+

(

−
8

3
ζ5 +

8

9
π2ζ3 +

11

54
π4 −

38

3
ζ3 +

65

9
π2

)

ε+ · · ·

]

. (5.18)

This master integral has been evaluated in a closed form using Mellin–Barnes in α repre-
sentation:

=
Γ(1/2− ε)Γ(−ε)Γ2(2ε)Γ(1 + ε)Γ(3ε− 1)

4Γ(3/2− ε)Γ(4ε)

×

[

ψ

(

1

2
− ε

)

+ ψ (1− ε)− 2 log 2 + 2γE

]

. (5.19)

This master integral can be written as a double Mellin–Barnes integral using (5.17). It
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appears possible to calculate one integral:

=
π3/2

4εΓ(3/2− ε)

1

2πi
∫ +i∞

−i∞

dz
Γ(1 + z)Γ

(

3
2 − ε+ z

)

Γ(ε+ z)Γ
(

− 1
2 + ε− z

)

Γ
(

− 3
2 + 2ε− z

)

Γ(−z)

Γ
(

3
2 + z

)

Γ(ε− z)

= Γ3(1 + ε)
32

3
π2 [−1 + 2 (4 log 2− π − 7) ε+ · · · ] . (5.20)

5.2.4 Applications

Feynman integrals considered here were used [20] for calculating the matching coefficients for
the HQET heavy-quark field and the heavy–light quark current between the b-quark HQET with
dynamic c-quark loops and without such loops (the later theory is the low-energy approximation
for the former one at scales below mc). Another recent application — the effect of mc 6= 0 on
b → c plus lepton pair at three loops [29]. The method of regions was used; the purely soft
region (loop momenta ∼ mc) gives integrals of this type. Two extra terms of ε expansion of the
master integral of Sect. 5.2.2 were required for this calculation which were not obtained in [20].
This was the initial motivation for [26].
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