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We calculate the bulk viscosity of the massive pion gas within Unitarized Chiral Perturbation
Theory. We obtain a low temperature peak arising from explicit conformal breaking due to the pion
mass and another peak near the critical temperature, dominated by the conformal anomaly through
gluon condensate terms. The correlation between bulk viscosity and conformal breaking supports a
recent QCD proposal. We discuss the role of resonances, heavier states and large-Nc counting.

PACS numbers: 11.10.Wx, 12.39.Fe, 25.75.-q

The matter produced after thermalization in relativis-
tic heavy ion collisions behaves nearly as a perfect fluid
[1]. Deviations are seen mainly in elliptic flow and can
be reasonably explained with a small shear viscosity over
entropy density ratio η/s < 0.5 [2], whereas bulk viscos-
ity ζ is generically assumed to be negligible. However,
it has been recently proposed [3] that ζ might be large
near the QCD phase transition. If ζ/s is comparable to
η/s near the critical point (where indeed the latter is ex-
pected to have a minimum) interesting physical possibili-
ties arise such as radial flow suppression, modifications of
the hadronization mechanism [3] or clustering at freeze-
out [4]. The argument of [3] is that, following the QCD
sum rules in [5], one can relate ζ with the trace anomaly:

ζ(T ) =
1

9ω0(T )

[
T 5 ∂

∂T

〈θ〉T − 〈θ〉0
T 4

+ 16|ε0|
]
, (1)

with 〈θ〉T ≡ 〈Tµµ 〉T = ε− 3P , Tµν the energy-momentum
tensor, ε the energy density, P the pressure and ε0 =
〈θ〉0/4 in vacuum. To derive (1), a particular ansatz
has been used for ρ(ω), the 〈θθ〉 spectral function at
zero spatial momentum, with (ρ/ω)(0) = 9ζ/π and
9ζω0 = 2

∫∞
0

(ρ/ω)dω. Eq. (1) implies then a large
bulk viscosity near the QCD transition, from the 〈θ〉T
peak observed in the lattice [6], more or less pronounced
depending on the transition order [3]. However, this ar-
gument has been recently criticized on the basis of the∫∞
0

(ρ/ω) convergence and parametric dependence with
the QCD coupling constant [7]. On the other hand, esti-
mates of ζ from lattice data show that ωδ(ω) terms and
large-ω non-thermal contributions have to be properly
accounted for in spectral functions [8, 9].

It is therefore of great importance to study QCD
regimes where one can rely on analytic calculations, in
order to clarify the validity of the above proposal without
appealing directly to lattice data. In the weak coupling
regime, valid for very high temperatures, ζ/η has been
found to be parametrically small [10]. Another regime
where one can perform analytic calculations is low-energy
QCD, where the system consists primarily of a meson gas
and, for low temperatures, one can rely on Chiral Per-
turbation Theory (ChPT) [11]. In this regime, we have
recently shown [12, 13], within Linear Response Theory

(Kubo’s formulae), that the usual ChPT power count-
ing must be extended to account for 1/Γp contributions
arising in transport coefficients. Here, Γp is the thermal
width of a pion with three-momentum p, in which the ππ
total elastic cross section enters linearly in the dilute gas
regime [14]. Performing the power counting, which in-
cludes a detailed analysis of ladder-type diagrams consid-
ered in [15], the leading-order ChPT contribution comes
from a one-loop meson diagram with Γp 6= 0 internal
lines. An essential point is to include unitarity correc-
tions in Γp to describe correctly the temperature behavior
as the system approaches chiral restoration. We neglect
inelastic 2π ↔ 4π reactions restoring particle number
equilibrium, which are suppressed in our counting and
yield chemical relaxation times about ten times larger
than the plasma lifetime [16]. Thus, our bulk viscos-
ity is meaningful for the pion gas formed in heavy ion
collisions, which conserves approximately pion number
between chemical and thermal freeze-out, as confirmed
by particle spectra data analyses with a pion chemical
potential [17]. If ζ is defined in complete chemical equi-
librium, then particle-changing processes dominate [15].
The dominance of elastic processes for ζ in the pion gas
holds also in kinetic theory [18, 19, 20]. With our ap-
proach we have also obtained η/s developing a minimum
compatible with AdS/CFT bounds with values in good
agreement with kinetic theory [19, 21] and phenomeno-
logical estimates on elliptic flow. This is the theoretical
basis of the present work, where we will analyze within
ChPT the correlation between bulk viscosity and the con-
formal anomaly in the pion gas regime, studying the ori-
gin of the different contributions to conformal breaking
for physical massive pions. Thus, we start with Kubo’s
formula:

ζ(T ) =
1
2

lim
ω→0+

∂

∂ω

∫
d4x eiωx0

〈[P̂(x), P̂(0)]〉, (2)

where the modified pressure operator P̂ ≡ −T ii /3−c2sT00,
the squared speed of sound c2s = ∂P/∂ε = s/cv, s =
∂P/∂T and the specific heat cv = ∂ε/∂T = T∂s/∂T .
We follow the conventions of [22], where ζ is defined as
the change in the pressure produced by a gradient in the
flow velocity, relative to equilibrium. This leads to the
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correlator in (2), which is the adequate one to be used
within perturbation theory [7, 10]. In lattice analyses,
one works with the Lorentz invariant θ instead. In our
approach these two correlators are not equivalent, since
the leading order in 1/Γp for perturbative T00 commuta-
tors does not vanish for zero spatial momentum. As we
shall see, sticking to the original definition (2) leads nat-
urally to the expected conformal properties and asymp-
totic behavior of the bulk viscosity. Following [12], we
calculate then the spectral function (P̂ commutator) in
(2) in the imaginary-time formalism, picking up the dom-
inant contribution in 1/Γp (pinching pole) of the analyt-
ically continued retarded correlator. That term is purely
imaginary and gives the dominant effect in the spectral
function at zero momentum and small energy. Thus, to
leading order:

ζ(T ) =

∞∫
0

dp
3p2(p2/3− c2sE2

p)2

4π2TE2
pΓp

nB(Ep)[1 + nB(Ep)],

(3)
with nB(x) ≡ 1/(exp(x/T )− 1) the Bose-Einstein distri-
bution function, Ep ≡

√
p2 +M2

π and where the leading
O(p2) order in Tµν has been retained in the vertex. Now,
we get c2s in (3) from P calculated up to O(T 8) in [11].
In Fig.1 we see that to O(T 6), both the specific heat and
the speed of sound increase monotonically, c2s approach-
ing the ultra-relativistic limit of 1/3 corresponding to a
gas of free massless pions. To that order, since the dis-
tribution function is peaked around p ∼ T for T � mπ,
we see that (3) vanishes asymptotically for large tem-
peratures, as expected for conformally invariant systems
[10, 13, 18, 19, 22]. In fact, from (3) we get for mass-
less pions (chiral limit) ζ = 15(1/3 − c2s)2η, consistently
with [23] and parametrically with high-T QCD [10]. The
crucial point here is that taking one more order in the
pressure cv grows, reaching a maximum at about Tc '
220 MeV. The speed of sound attains then a minimum
at Tc which will alter the behavior of ζ(T ). This is the
critical behavior of a O(4)-like crossover, as expected for
two massive flavors at zero chemical potential. A physi-
cal interpretation is that, although temperature tends to
erase mass scales, chiral interactions are enhanced and
produce in the critical region a significant, nonpertur-
bative, conformal breaking reflected in c2s 6= 1/3. Note
that, although in the massive case Tc is near the chiral
restoration temperature Tχc where the order parameter
〈q̄q〉T vanishes [11], in the chiral limit Tχc ' 170 MeV,
while Tc is almost unchanged.

We plot our result for the bulk viscosity in Fig.2. The
effect of including the O(T 8) in c2s effectively produces a
peak around Tc, not present to O(T 6) [13]. The speed
of sound is not the only relevant effect yielding a siz-
able peak: unitarization of the cross section entering Γp
[12] is also crucial to O(T 8). Considering unitarized par-
tial waves for ππ scattering (ChPT is only perturbatively
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FIG. 1: Specific heat (left) and speed of sound squared (right)
for the pion gas. The red dashed line is the O(T 6) calculation,
and the continuous blue line the O(T 8) one. The green dotted
line is the ultra-relativistic limit c2

s = 1/3. The dashed-dotted
blue line is the chiral limit result to O(T 8).

unitary) improves the high energy behavior (and there-
fore the high temperature one) and generates dynami-
cally the f0(600) and ρ(770) resonance poles. Consis-
tently, we have chosen the values of the low-energy con-
stants l̄i entering pion scattering (they can be found in
[24]) so that the mass and width of the ρ are at their
physical values for T = 0. As we discuss below, the l̄i de-
pendence is crucial in the present analysis. In the chiral
limit, the transition peak is almost unchanged and so is
Tc, unlike Tχc , which indicates that chiral restoration is
not the main source of this effect. Our massless results
are in reasonable agreement with a recent kinetic the-
ory analysis [20]. We also obtain a low-T peak, which
disappears in the chiral limit. In our regime and for
T � mπ, nB(Ep) ' e−mπ/T e−p

2/2mπT so that three-
momenta p = O(

√
mπT ) and taking the leading order

for Γp [12] and c2s ' T/mπ + . . . [11], eq.(3) becomes:

ζ(T ) ' 13.3
f4
π

√
T

m
3/2
π

for T � mπ, (4)

where fπ is the pion decay constant. The above behavior
is consistent with nonrelativistic kinetic theory [18] where
ζ and η are expected to be comparable at low T . Thus,
ζ(T ) increases for very low T and has to decrease at some
point to match the asymptotic vanishing behavior, thus
explaining the low-T maximum.

Let us now evaluate conformal-breaking contributions
for the pion gas. First, it is instructive to recall the QCD
result for the trace anomaly [25]:(

Tµµ
)
QCD

=
β(g)
2g

GaµνG
µν
a + (1 + γm(g))q̄Mq, (5)

where the renormalization group functions are, pertur-
batively, β(g) = O(g3), γm(g) = O(g2). The first term is
the conformal anomaly proportional to the gluon conden-
sate. The second one comes from the explicit breaking
in the QCD lagrangian, M being the quark mass matrix.
For the pion gas, using the thermodynamic identity

〈θ〉T = T 5 d
dT

(
P

T 4

)
, (6)
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FIG. 2: Bulk viscosity of the pion gas. The full blue line is the
unitarized result with c2

s to O(T 8) and the dashed-dotted blue
one is the same calculation in the chiral limit. The dashed
green line is the nonunitarized result at the same order. The
dotted red line is unitarized with c2

s to O(T 6) and lies very
close to the nonunitarized curve, which is not displayed.

we represent in Fig.3 the trace anomaly to different orders
in the pressure, as well as the T -function appearing in
the r.h.s. of (1). We observe clearly the same two-peak
structure as the bulk viscosity, with similar features.

The low-T peak disappears in the chiral limit. Its
contribution comes then from explicit conformal break-
ing. Calculating only the first nonvanishing order in
ChPT, either using (6) or evaluating directly the energy-
momentum correlators, we get:

〈θ〉T − 〈θ〉0 = 3m2
πg1(mπ, T ) +O(f−2

π )
= 2mq (〈q̄q〉T − 〈q̄q〉0) +O(f−2

π ), (7)

where mq = mu = md and we formally account for differ-
ent chiral orders by their fπ power. The function g1 is the
thermal correction to the free pion propagator G(x = 0)
[11]. Comparing with the QCD expression (5) the factor
of two in (7) for the quark condensate is perfectly con-
sistent with the result [26] showing that the quark and
gluon contributions to the trace anomaly are identical at
low temperatures. Now, g1(T )/T 4 has a maximum at
T ' 2mπ/5 ' 60 MeV, which is the low-T peak in Fig.3
and the source for the first peak of the bulk viscosity.

The transition peak only shows up at O(T 8) and sur-
vives in the chiral limit, where its origin is purely anoma-
lous. It comes from ChPT interactions involving dimen-
sionful couplings, like fπ, and is therefore suppressed at
low temperatures [27]. For massive pions, the value of
the peak and its position are almost unchanged with re-
spect to the chiral limit, the difference being even smaller
than the simple extrapolation of the quark condensate
contribution in (7) with 〈q̄q〉T to O(T 8), which repre-
sents around a 10% correction in the critical region. The
fermion contribution is also subdominant in lattice anal-
yses [6]. These results show again that the nature of
this effect is not likely to be related to chiral symmetry
restoration but rather to other QCD critical effects like
deconfinement. The correlation with the bulk viscosity

< Θ >T - < Θ >0
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FIG. 3: Thermal expectation value of the trace anomaly for
the pion gas. The dashed-dotted green and continuous blue
lines are, respectively, the O(T 6) and O(T 8) results. The
dashed red line corresponds to the O(T 8) result for massless
pions (the O(T 6) order vanishes for mπ = 0). The dotted

blue line is T ∂
∂T
〈θ〉T−〈θ〉0

T4 .

is again clear. In fact, in the chiral limit the function be-
tween brackets in (1) and 15(c2s − 1/3)2 = ζ/η have their
maximum at the same Tc = e−5/8Λp with Λp given in [11]
in terms of l̄1 + 4l̄2. We recall that in order to establish
the possible correlations between the conformal anomaly
and the bulk viscosity, we have used the same set of l̄i
in both figures. For those unitarized values, Tc ' 220
MeV. Using perturbative values, for instance those given
in [11] fixed to reproduce pion scattering lengths, the
critical peak is about three times smaller and Tc ' 148
MeV, while Tχc varies only about 10 MeV from one set
to another. We get exactly the same drastic reduction of
the critical peak and shift of Tc in the bulk viscosity. The
presence of resonances is then crucial to yield a sizable ef-
fect in the transition peak, whose dominant contribution
comes from the gluon condensate.

Regarding the ω0(T ) function defined through (1),
in the chiral limit it grows linearly with T , reaching
ω0 ∼ 400 MeV at the transition. In the massive case,
taking |ε0| = f2

πm
2
π, the ChPT lowest order, we get

ω0(Tc) ∼ 1 GeV, almost constant from T ∼ 150 MeV
onwards. These values are in reasonable agreement with
the estimates in [3]. On the other hand, from (4) we get
ω0(T ) ' 0.13m7/2

π /(f2
π

√
T ) for T → 0+.

The numerical values of the trace anomaly in Fig.3
are not far from the lattice values [6] for low T , but
they are about a factor of 10 smaller near Tc. The in-
creasing of degrees of freedom due to heavier states, not
included in our approach, is clearly important in that
region. For instance, the O(T 8) pressure in the chiral
limit is proportional to N2

f (N2
f − 1) [27] so that chang-

ing from two to three flavors, which are not Boltzmann
suppressed near the transition, increases significatively
the anomaly. In addition, using a simple free Hadron
Resonance Gas approach [3], the π,ρ,σ contributions to
the anomaly amount only to a 5% of all baryon and
meson states up to 2.5 GeV. In fact, although we get
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ζ/s ' 0.02 at the transition peak, still much smaller than
η/s ' 0.25, we would get a larger value if we assume that
the introduction of heavier states increase the anomaly,
and that implies an increase of the transition strength
and a strong reduction of c2s [3]. As an indication, set-
ting c2s = 0 in (3) we get ζ/s ∼ 1 at Tc.

We have seen that it is crucial to include correctly
the effect of the ρ resonance. On the other hand, the
f0(600)/σ is expected to be related to chiral restoration.
Regarding bulk viscosity, it has been suggested in [28],
within mean field theory, that any dynamic scalar field σ
should contribute to ζ ∝ Γσ/m2

σ, which may be large near
the critical region by mass reduction, for instance in the
Linear Sigma Model (LSM) context. Within unitarized
ChPT, the dynamically generated f0(600) pole under-
goes a significant mass reduction towards 2mπ governed
by chiral restoration, remaining a broad state with sizable
width near the transition [24]. Interestingly, from [24], we
find that Γσ/m2

σ has a peak at T ∼ 180 MeV, where the
pole mass reaches threshold. For higher T the width still
decreases (by phase space reduction) while the mass re-
mains close to threshold. This critical value is very close
to the one obtained in [28] for the LSM assuming a T -
independent width. However, as discussed above, these
chiral restoration effects are likely to be subdominant.

The large-Nc limit is also revealing. The counting of
the l̄i can be extracted from the Li (Nf = 3) [29] while
f2
π = O(Nc). We get Γp ∼ O(N−2

c ) and, in the chiral
limit, 〈θ〉T ∼ O(N−1

c ) ∼ (c2s − 1/3) so that ζ ∼ O(1)
and ζ/η ∼ O(N−2

c ), parametrically suppressed as ex-
pected. Now, taking into account the critical behavior,
Tc ∼ O(eNc) and 〈θ〉Tc ∼ O(eNc/N2

c ). This large depen-
dence is another indication of the dominance of confine-
ment over chiral restoration, comparing with the chiral
Tχc = O(Nc). Also, 〈θ〉 ∝ L3, which in large-Nc in-
cludes a term proportional to the gluon condensate [30].
Comparing with the QCD expressions in [10], we agree
except for the overall O(N2

c ) constants in the pressure
which count the degrees of freedom. For massive pions,
the above chiral limit scaling is only reached asymptoti-
cally for large T , while for any T we get ζ/η ∼ O(1) ∼
〈θ〉T − 〈θ〉0 with ζ ∼ O(N2

c ), compatible with (4).
Summarizing, we have shown, within unitarized ChPT,

that the massive pion gas develops a strong correlation
between bulk viscosity and the conformal anomaly. Both
quantities show a low-temperature peak coming from
mass conformal breaking and another one at the criti-
cal temperature remaining in the chiral limit and mainly
dominated by gluon condensate contributions not re-
lated to chiral restoration. The dynamically generated
light resonances are essential to obtain sizable effects at
the transition. Different estimates indicate that heavier
states could yield a larger bulk viscosity near the transi-
tion, leading to observable effects in heavy ion collisions.
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