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Abstract

We calculate the shear viscosity to entropy density ratio in pure SU(N) Yang-Mills theory
below the critical temperature using the strong coupling expansion. The result for the η/s
ratio for temperatures around the phase transition is 0.22 for N = 2 and 0.028N2 for N > 2.
The results are consistent with the conjectured 1/4π lower bound inspired by the AdS/CFT
correspondence.

1 Introduction

Ideas originating from the AdS/CFT correspondence found a surprisingly rich set of applications
in the description of strongly coupled QCD plasma. At first sight this may indeed seem surprising
since the prototype case of N = 4 supersymmetric Yang-Mills theory is very different from QCD.
For instance the former is a conformal theory while the latter is not. However, the application is to
QCD in the deconfined phase and for large temperatures QCD is actually close to being conformal.
There are other reasons too why it is perhaps not an accident that AdS/CFT inspired ideas work
better than expected [1].

One particular instance where AdS/CFT based arguments provide a good description of experi-
mental data is the case of transport coefficients. In heavy ion experiments a fairly good description
of the data can be achieved using (classical) hydrodynamical models and the coefficients of the
corresponding Navier-Stokes equation can be determined from measurements. These and in par-
ticular the v2 value of the anisotropy of the observed flow [2, 3] point to the fact that the QCD
plasma is an almost perfect fluid. A dimensionless quantity can be formed from another coefficient,
the shear viscosity η and the entropy density s which experimentally turns out to be rather small,
η/s ≈ 0.2 [1, 4].

Based on the aforementioned AdS/CFT ideas a universal lower bound was conjectured η/s ≥
1/4π for a large class of quantum field theories [5–7]. This bound is known to be saturated by
N = 4 super Yang-Mills theory at large ’t Hooft coupling and large N in which limit the gravity
dual is weakly coupled and the calculation is tractable on the gravity side. The first corrections at
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finite N and ’t Hooft coupling was shown to be positive and hence comply with the conjectured
bound [8–11].

One argument supporting the universal lower bound conjecture is that the energy-time uncer-
tainty relation can be reformulated entirely in terms of η/s using the quasi particle picture [6]. The
lower bound of the uncertainty relation yields a lower bound for η/s.

However the precise set of quantum field theories where the bound is expected to hold is not
clearly formulated. Counter examples are known which served to limit the conjectured validity of
the bound [12–14]. As a result it is not clear what precise statement should be proved or disproved
and a case-by-case approach seems more fruitful [15–18]. Some of the studied cases satisfy the
bound while some do not.

The counter examples in [12, 19] fall into two types. In one of them the number of particle
species is very large, in the other the number of excitations of a particle are very large. While these
constructions are convincing perhaps the conjectured bound can be valid in a limited sense. In any
case this issue is far from being settled [13, 14].

The second type of construction in [19] may be realised in the framework of quantum field theory
as infinitely many peaks finally melting into a continuum. This suggests that a good candidate for
violating the proposed lower bound should contain a strong continuum preferably with no quasi
particle peaks in the spectral function i.e. it should be neither Bose nor Fermi gas.

Apart from models with known gravity duals analytic computations were done in QCD using the
quasi particle approach [20–22] and recently using perturbation theory in QED [23]. These studies
yield η/s ∼ 1/g4 ln g−1. Clearly, when perturbation theory is applicable the coupling is small and
the above ratio is large. And vica versa, a small measured value of this quantity hints at a large
value of the coupling constant. Newer calculations [24,25] suggest however that higher order quasi
particle processes may still lead to small viscosity even in the perturbative regime.

A non-perturbative calculation of η/s has been attempted using a lattice discretization in SU(3)
pure gauge theory [26–28]. Unfortunately even in cases where a reasonable ansatz is available for the
spectral function e.g. a transport peak structure, quantitative details are very difficult to extract
from correlation functions [29].

Using the large Nf expansion of the 2PI effective action, which formalism sums an infinite set of
diagrams, transport coefficients were calculated in [30]. It was found that for large fermion masses
the shear viscosity can be arbitrarily small.

In this paper the η/s ratio of pure SU(N) Yang-Mills theory will be calculated on a Euclidean
lattice at strong coupling for T < Tc. The actual final result is 0.22 for N = 2 and 0.028N2 for
N > 2 at temperatures close to the deconfinement transition. We find a vanishing η/s ratio at
T → 0, however the systematic uncertainties inherent in the strong coupling expansion are hard to
estimate. Similar calculations for transport coefficients have been carried out in [31, 32].

The strong coupling expansion has several conceptual difficulties not specific to the observable
we calculate [33]. Since on the lattice with decreasing lattice spacing the bare coupling constant
is going to zero, we cannot approach the continuum limit. The commonly used strategy is trying
to express the results in terms of physical quantities, which are then interpreted as renormalized
quantities. Another issue is the presence of the roughening transition which makes it impossible to
reach temperatures higher than a certain value. Despite of these difficulties, however, the strong
coupling expansion not only works rather well for describing several concepts in the confined phase
such as chiral symmetry breaking and confinement but also quantitatively [33].

The outline of the paper is as follows. First the shear viscosity is calculated in section 2. The
calculation is based on the Kubo formula, which will be related to the lattice plaquette-plaquette
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correlator. In the strong coupling regime the plaquette-plaquette correlators are dominated by
elongated tube-like surfaces. A subclass of such simple surfaces as well as more complicated ones
involving a loop wrapping around the finite imaginary time direction are resummed in section 2.6
leading to a final formula for η. In section 3 the entropy is calculated from the derivative of the free
energy. In section 4 we calculate the shear viscosity to entropy ratio in the limit of the temperature
being close to the transition point. Section 5 concludes with a discussion of our findings.

2 Shear viscosity

The shear viscosity is one of the linear response coefficients coming from the response of the energy
momentum tensor to an external current coupled to the energy momentum tensor itself [34]. Given
the correlation function

C(x) =
1

10
〈 [πij(x), πij(0)] 〉 , (1)

where πij = Tij − δijTkk/3 is the trace-less part of the spatial components of the energy momen-
tum tensor, the shear viscosity is the leading coefficient of its Fourier transform C(ω,k) for small
frequency and zero spatial momentum,

η = lim
ω→0

C(ω,k = 0)

ω
. (2)

First we assume that we are at zero temperature and find a simple representation for the energy-
momentum correlation function. We will work in Euclidean space and start with the definition,

Mµν ̺σ(x) = 〈T (Tµν(x)T̺σ(0)) 〉 , (3)

from which the following symmetry properties are evident,

Mµν ̺σ = Mνµ̺σ = Mµν σ̺ = M̺σ µν . (4)

For the shear viscosity we will compute the following Euclidean expression:

M(x) =
1

10

∑

ij

〈T (πij(x)πij(0)) 〉 . (5)

At zero temperature we have SO(4) rotational invariance in Euclidean space which can be used
to relate the value of M at a generic xµ argument to the value of Mµν ̺σ at τ = (|x|, 0, 0, 0).

2.1 Symmetries

To this end Mµν ̺σ is decomposed into invariant tensors compatible with the symmetry properties
(4). The most general such tensor depending on xµ can be written as,

Mµν ρσ(x) = M1(|x|) δµνδ̺σ +M2(|x|) (δµ̺δνσ + δν̺δµσ) +M3(|x|)
xµxνδρσ + xρxσδµν

x2
+

M4(|x|)
xµxσδν̺ + xνxσδµ̺ + xµxρδνσ + xνxρδµσ

x2
+M5(|x|)

xµxνxρxσ

x4
, (6)
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where the coefficient functions M1, M2, M3, M4 and M5 can only depend on |x|. Using this formula
at coordinate τ = (|x|, 0, 0, 0) we obtain the following special cases

M00 00(τ) = M1(|x|) + 2M2(|x|) + 2M3(|x|) + 4M4(|x|) +M5(|x|)
M00 11(τ) = M1(|x|) +M3(|x|)
M01 01(τ) = M2(|x|) +M4(|x|) (7)

M11 11(τ) = M1(|x|) + 2M2(|x|)
M11 22(τ) = M1(|x|) .

From the above formulae one can express the functions M1,2,3,4,5 as linear combinations of certain
components of Mµν ρσ ,

M1(|x|) = M11 22(τ)

M2(|x|) =
1

2
M11 11(τ) −

1

2
M11 22(τ)

M3(|x|) = M00 11(τ) −M11 22(τ) (8)

M4(|x|) = M01 01(τ) −
1

2
M11 11(τ) +

1

2
M11 22(τ)

M5(|x|) = M00 00(τ) +M11 11(τ) − 2M00 11(τ) − 4M01 01(τ).

After contracting Mµν ρσ appropriately in order to get M(x) at any generic xµ argument we arrive
at,

M(x) = M2(|x|) +
2

3
uM4(|x|) +

2

30
u2M5(|x|), (9)

where u = x2
i /x

2
µ. This can be rewritten using (8) as

M(x) =
2

30
u2M00 00(τ)−

4

30
u2M00 11(τ) +

u

15
(10− 4u)M01 01(τ) +

+
1

30
(15− 10u+ 2u2)M11 11(τ) +

1

6
(2u− 3)M11 22(τ) . (10)

In the above formula the Mµν ρσ components on the right hand side are evaluated at the point
τ = (|x|, 0, 0, 0).

2.2 Plaquette-correlators

All of the above manipulations were done in the continuum and now we will switch to the lattice by
writing some of the energy momentum tensor components in terms of plaquette variables Pµν(x) [26],

Tµµ =
β

N



−
∑

ν 6=µ

Pµν +
∑

σ,ν 6=µ;σ>ν

Pσν



 , (11)
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or more explicitly,

T00 =
β

N
[−P01 − P02 − P03 + P21 + P31 + P32]

T11 =
β

N
[−P10 − P12 − P13 + P20 + P30 + P32]

T22 =
β

N
[−P20 − P21 − P23 + P10 + P30 + P31] (12)

T33 =
β

N
[−P30 − P31 − P32 + P20 + P10 + P21] .

Substituting the above back into M we find,

M(x) =
2

15

β2

N2
(15− 10u− 4u2)

(

2P10 21(τ) − 2P10 32(τ) + P10 10(τ) + P21 21(τ) −

−P10 20(τ) − P21 31(τ)

)

+
4

30
u(5u− 2)M01 01(τ). (13)

where Pµν ̺σ(x) = 〈Pµν(x)P̺σ(0) 〉 is the plaquette-plaquette correlator.
As we will see, at small β i.e. large coupling, the leading and equal contributions come from

P10 21 and P21 21. Hence we can write

M(x) =
2

5

β2

N2
(15− 10u− 4u2)P21 21(τ) , (14)

at leading order.
For the shear viscosity we need the Fourier transform of M at momentum p = (p0, 0, 0, 0) where

p0 → 0,

M(p) =
2

5

β2

N2

∫

d4x (15− 10u− 4u2)eip0tP21 21(τ). (15)

The P21 21 term only depends on |x| and the terms containing the u variable only depend on the
angles. For small p0 one may substitute the 15− 10u− 4u2 term with its integral over the angles,

M(p0,p = 0) =
2β2

N2

∫

d4x eip0tP21 21(τ) . (16)

Thus the plaquette-plaquette correlator is needed for plaquettes in the 21 plane.

2.3 Strong coupling expansion

The plaquette-plaquette correlator, Gpp(τ), will be calculated via the strong coupling expansion.
The Wilson lattice formulation of pure SU(N) gauge theory is used and the action is,

S =
∑

p

Sp = β
∑

p

(

1− 1

N
ReTrUp

)

, (17)

where β = 2N/g20, g0 is the bare coupling constant, the sum is over all plaquettes p of the lattice
and Up is the plaquette variable built out of the links Uµ(x) in the usual way.
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The strong coupling expansion amounts to an expansion in small β; for details see [33] or
[35]. Using the characters χR of SU(N) there is an expansion which sums over all irreducible
representations R,

e−Sp = c(β)



1 +
∑

R 6=0

dR aR(β)χR(Up)



 , (18)

where dR is the dimension of the representation and c(β) and aR(β) are some coefficients. These
coefficients will be expanded in β.

At leading order for the group SU(N) we have [35],

c(β) = 1

af (β) =







β
N2 N = 2

β
2N2 N > 2

. (19)

where f refers to the fundamental representation.
The plaquette-plaquette correlator can be computed from the partition function if the coupling

β is changed temporarily to β1 and β2 at the two plaquettes and remains β elsewhere

〈P1(τ)P2(0) 〉 = N2 lnZ(β1, β2, β)

∂β1∂β2

∣

∣

∣

∣

β1=β2=β

. (20)

The logarithm of the partition function is computed by forming closed connected surfaces and
assigning representations to the plaquettes of the surface following the usual recipe of the strong cou-
pling expansion [35]. To leading order the fundamental representation is assigned to each plaquette
leading to the contribution

d2fa
n
f (β), (21)

where af (β) is the expansion coefficient from (18) corresponding to the fundamental representation,
df = N is its dimension and n is the number of plaquettes on the surface. The leading order terms
in the expansion of af (β) were given in (19).

The smallest surfaces spanning between well separated plaquettes are tube-like objects: they
are closed at both end, and go almost straight from one plaquette to the other. An extra factor
comes from the fact that the orientation of the tube and the orientation of the plaquette is not
necessarily the same. In table 1 we summarize these extra factors for the orientations that appear
in (13). To estimate the value of M01 01 we recall that in terms of plaquettes its expression is [26],

P10 21 P10 32 P10 10 P21 21 P10 20 P21 31 M01 01

1 a4f a4f 1 a4f a4f < a2f

Table 1: Extra factors necessary for closing the surface in case of different orientations of the ending
plaquettes. The tube is in the temporal direction.

M01 01(x) =
4β2

N2

∑

σ,̺

〈(

Tr P̃0σ(x)P̃1σ(x)
) (

Tr P̃0̺(0)P̃1̺(0)
)〉

, (22)
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where

P̃µν(x) = − i

2
(Pµν(x) − Pµν(x))traceless part . (23)

The minimal surface which contains all the plaquettes of the above formula contains (in addition
to the tube contribution) extra 2 plaquettes. Therefore the 4-plaquette expectation value has an
extra contribution of a2f which explains the last column of table 1. Hence we are indeed left with
the single contribution of P21 21 as promised.

The logarithm of the partition function in (20) at leading order is then

lnZ(β1, β2, β) = d2faf (β1)af (β2)G
E(τ) , (24)

where GE(τ) is the open tube contribution, leading to

P21,21(τ) = ANGE(τ) , (25)

where

AN = N4
a2f (β)

β2
=

{

1 for N = 2
1/4 for N > 2

(26)

Therefore the quantity (16) we are interested in is simply,

M(p0,p = 0) =
2β2AN

N2
GE(p0,p = 0) . (27)

2.4 Straight line contribution

Now we proceed with the calculation of the open tube correlation function GE(τ).
The lowest order contribution from the surface which includes plaquette p on the hypersurface

at t = 0 and at t = τ , both having the same spatial position, is the straight tube giving,

GE
str(τ) = e−στ , (28)

where σ = − 4
a ln af (β) is the glueball mass. The subscript “str” stands for straight. For generic

end points we have GE
str(x) = exp(−σ|x|).

We will need its Fourier transform,

GE
str(k) =

1

a4

∫

d4xe−ikx−σ|x| =
∆

(k2/σ2 + 1)5/2
, (29)

where

∆ =
12π2

(aσ)4
. (30)

To evaluate the shear viscosity we have to calculate the imaginary part of the retarded propa-
gator of the corresponding energy-momentum tensor components, and up to now we calculated the
Euclidean propagator. But the retarded and the Euclidean propagators are related as

GE(−iω + ε,k) = iGret(ω,k) , (31)
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whereas from the retarded Green function one obtains the spectral function as

̺(k0,k) = Disc
k0

iGret(k0,k) = −2 Im iGret(k0 + iε,k) , (32)

where Disc stands for discontinuity. Thus the retarded Green function from (29) and (31) is

iGret
str(k) =

∆

(1− k2/σ2)5/2
, (33)

with Landau prescription, k0 → k0 + iε. The spectral function then reads,

̺str(k) = sgn(k0)Θ(k2 − σ2)
2∆

(k2/σ2 − 1)5/2
. (34)

The spectral function exhibits a mass gap; it is zero below σ, the glueball mass.

2.5 Zig-zagging lines

Now that we have the contribution of a straight line (tube) we will also add the contribution of
zig-zagging lines with arbitrary number of joints.

Figure 1: Diagrams consisting of an arbitrary number of joints. Each line is a thin tube.

A zig-zagging line with one joint has the following contribution,

∑

z

GE
str(z)G

E
str(x− z) =

1

a4

∫

d4z GE
str(z)G

E
str(x− z) , (35)

which turns into GE
str(k)

2 in Fourier space. Similarly, the contribution of zig-zagging lines with n
joints is GE

str(k)
n+1. Summing them all leads to,

GE
str(k) +GE

str(k)
2
+GE

str(k)
3
+ · · · = 1

GE
str(k)

−1 − 1
. (36)

The calculation is completely analogous to the usual self-energy summation in ordinary perturbation
theory. The spectral function corresponding to this resummation is

̺0(k) = sgn(k0)Θ(k2 − σ2)¯̺(k) , (37)

where we have introduced

¯̺(k) =
2∆(k2/σ2 − 1)5/2

∆2 + (k2/σ2 − 1)5
. (38)
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Figure 2: The spectral function at ∆ = 0.1 (solid line) and unresummed (dashed line). The two
curves differ only in the threshold region. The resummed spectral function exhibits a peak and a
smooth threshold behaviour.

The spectral function is plotted on Fig. 2.5.
By resumming the contribution of all zig-zagging lines with an arbitrary number of joints and

arbitrary location for these joints we have essentially resummed the contribution of all curves
since any curve can be approximated by zig-zagging lines. This resummation changed the spectral
function in an essential way only near the threshold: it goes to zero at the threshold at k2 = σ2

and exhibits a peak at
k2max = σ2(1 + ∆2/5), ̺max = 1. (39)

Note that it smeared out the divergence at the threshold of the straight tube case. Nonetheless
the zig-zagging resummation really affects only the vicinity of the threshold; for example, at k2 =
σ2(1 + 2∆2/5) the zig-zagging propagator is smaller than the straight line propagator only by 3%.

The spectral function above may be interpreted as a quasi particle (with massM = σ
√
1 + ∆2/5,

cf. (39), and width proportional to σ∆1/5). We must, however, not forget about the presence of the
continuum, which may alter some of the consequences coming from the quasi particle assumption.

2.6 1-loop contribution and finite temperature

So far we were at zero temperature where according to (38) the contribution to the viscosity is zero
because of the presence of the mass gap. At finite temperature the finite imaginary time direction
and periodic boundary conditions has to be taken into account leading to,

GE
T (τ, x) =

∞
∑

n=−∞

GE
0 (τ + n/T, x) . (40)
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Figure 3: The one loop diagram contribution to the viscosity. Each line is a thin tube.

This, however, does not change the spectral function and only introduces the usual Bose factor
n(ω) = (exp(ω/T ) − 1)−1 into the spectral representation of the Green functions. The zero tem-
perature spectral representation,

iGE
0 (τ) = a

∞
∫

0

dω

2π
e−ω|τ |̺0(ω), (41)

turns into
∞
∑

n=−∞

GE
0 (τ + n/T ) = a

∞
∫

0

dω

2π

(

eω(1/T−|τ |) + eω|τ |
)

n(ω)̺0(ω) , (42)

at finite temperature where on the right hand side the zero temperature spectral function appears.
As a consequence the retarded Green function will remain the same as at zero temperature, Gret

T =
Gret

0 .
So far we have included all single tube contributions, even the ones wrapping around the imag-

inary time direction, but did not find any nonzero contribution below the mass gap σ. This is
expected also when we examine local modifications of the propagator, since these only modify the
value of the mass gap [33,37]. As a hint for what types of diagrams could be relevant, we recall that
at weak coupling the phenomenon of Landau damping is similar; it yields nonzero contribution to
the imaginary part of the propagator below the light cone at finite temperature, while this region
is excluded at zero temperature. The most important diagram resulting in Landau damping is a
loop diagram, where one propagator is wrapping around the imaginary axis, while the other is not.

We also include the effect of a 1-loop strong coupling diagram, see figure 3. In complete analogy
to ordinary perturbation theory a self-energy can be introduced and the retarded self-energy can
be expressed from the zero temperature one as [36]

Σret(p) =
a4

a2f (β)

∫

d4k

(2π)4

(

1

2
+ n(k0)

)

̺0(k)G
ret
0 (p− k) . (43)

since each of the two joints of the one-loop diagram gives a factor of af (β)
−1.

Using this retarded self-energy the full one-loop corrected spectral function ̺1−loop(p) corre-
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sponding to the plaquette-plaquette correlator is

̺1−loop(p) = Disc
p0

iGret
1−loop(p) = Disc

p0

1

(iG0)−1(p)− Σret(p)
=

=
−Discp0

(

(iG0)
−1(p)− Σret(p)

)

(Re (iG0)−1(p)− ReΣret(p))2 + ( Im (iG0)−1(p)− ImΣret(p))2
. (44)

For the viscosity the above expression is needed at zero spatial momentum and small frequency
where G−1

0 has no imaginary part, only a non-vanishing real part. On the other hand Σret(p) can
be neglected to leading order in the denominator. Therefore near zero frequency we have,

̺1−loop(p0 ≈ 0,p = 0) ≈ Discp0
Σret(p)

(Re (iG0)−1(0))2
= (iG0(0))

2 Disc
p0

Σret(p). (45)

Since iGret
0 (k = 0) = GE

0 (k = 0) we obtain,

̺1−loop(p0 ≈ 0,p = 0) = ∆2 Disc
p0

Σret(p). (46)

From (43) we find

Disc
p0

Σret(p) =
N4a4

β2AN

∫

d4k

(2π)4

(

1

2
+ n(k0)

)

̺0(k)̺0(p− k), (47)

where we also used (19) to substitute the leading order value for af (β).
Using (37) at p = 0 the following four combinations of step functions will appear in (47),

Θ(k0 − ωk)Θ(p0 − k0 − ωk) ,

Θ(−k0 − ωk)Θ(−p0 + k0 − ωk) ,

−Θ(k0 − ωk)Θ(−p0 + k0 − ωk) , (48)

−Θ(−k0 − ωk)Θ(p0 − k0 − ωk) .

The first two is nonzero only when p0 ≥ 2ωk or p0 ≤ −2ωk, respectively. Therefore they do not
give contribution at small frequency. The remaining two terms yield for 0 ≤ p0 ≤ σ,

Disc
p0

Σret(p0,p = 0) = − N4a4

β2AN

∫

d4k

(2π)4
(n(k0)− n(k0 − p0))Θ(k0 − p0 − ωk)¯̺(k)¯̺(k − p), (49)

Clearly for vanishing momentum Discp0
Σ(0) = 0 as it should be. The linear term in p0 is then,

lim
p0→0

Discp0
Σret(p0)

p0
=

N4a4

β2AN

∫

d4k

(2π)4

(

−dn(k0)

dk0

)

Θ(k0 − ωk)¯̺
2(k). (50)

A further simplification is possible since it is consistent with all previous approximations to
truncate the expansion

−dn(k0)

dk0
=

1

T

ek0/T

(ek0/T − 1)2
=

1

T
e−k0/T +O(e−2k0/T ). (51)
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at the first term because the neglected terms contribute as much as higher loop diagrams. This
leads to,

lim
p0→0

Discp0
Σret(p0)

p0
=

N4a4

4π3Tβ2AN

∞
∫

0

dkk2
∞
∫

ωk

dk0e
−k0/T ¯̺2(k) . (52)

which in turn yields the following result for the spectral function corresponding to the plaquette-
plaquette correlator using (46),

̺1−loop(p0 ≈ 0,p = 0)

p0
=

∆2N4a4

4π3Tβ2AN

∞
∫

0

dkk2
∞
∫

ωk

dk0e
−k0/T ¯̺2(k) . (53)

Ultimately we can express η collecting all relations from (1), (2), (5) and (27)

η =
∆2N2a4

2π3T

∞
∫

0

dkk2
∞
∫

ωk

dk0e
−k0/T ¯̺2(k) . (54)

3 The entropy

The entropy density is the derivative of the free energy density with respect to temperature.
The free energy in the strong coupling expansion is coming from closed and connected surfaces

similarly to the discussion in section (2.3). The first temperature dependent contribution to the free
energy and hence the first non-vanishing contribution to the entropy comes from surfaces wrapping
around the imaginary time direction.

The first contribution is again from a thin straight tube line wrapping around once. The value
of the dimensionless free energy density corresponding to such a straight tube has been calculated
in [37]

f = − 3√AN

(aT )af(β)
4Nt , (55)

where 1/
√A2 = 1 and 1/

√AN>2 = 2 comes from the fact that for N > 2 the fundamental
representation and its complex conjugate are two different representations. The factor of 3 comes
from the 3 possible orientation of the tube (12, 13 and 23).

In exactly the same way as was done for the calculation of the viscosity one needs to take zig-
zagging as well as 1-loop diagrams into account. To be able to collect these effects the free energy
density is written as

f = − 3√AN

(aT )
(

GE
T (0)−GE

T=0(0)
)

. (56)

Now we can use the spectral representation of the propagator and write

f = − 3√
AN

Ta5
∫

d4k

(2π)4

(

1

2
+ n(k0)−

1

2
sgn(k0)

)

̺(k) . (57)

The approximation n(k0 > 0) ≈ e−k0/T is valid just as before since the higher loop diagrams are
not taken into account. Within this approximation one arrives at,

f = − 3√AN

Ta5
∫

d4k

(2π)4
e−|k0|/T̺(k) , (58)
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and using the specific form of the spectral function from (37) we find

f = − 3Ta5

2π3
√
AN

∞
∫

0

dkk2
∞
∫

ωk

dk0 e
−k0/T ¯̺(k) . (59)

The entropy density from here is then,

s =
3a5

2π3
√AN

∞
∫

0

dkk2
∞
∫

ωk

dk0

(

1 +
k0
T

)

e−k0/T ¯̺(k) ≈ 3a5

2π3T
√AN

∞
∫

0

dkk2
∞
∫

ωk

dk0 k0 e
−k0/T ¯̺(k) . (60)

Note that the resulting entropy is independent of N2 [37, 38]. This result will be used in the next
section to calculate the shear viscosity to entropy density ratio.

4 The shear viscosity to entropy density ratio

Our final goal is the ratio η/s and using (54) and (60) from the previous sections one obtains,

η

s
=

N2∆2
√AN

3

〈

¯̺2(k)
〉

T

〈 ak0 ¯̺(k) 〉T
, (61)

where the following short hand notation is introduced

〈F 〉T =

∫

d4k

(2π)4
Θ(k0)Θ(k2 − σ2) e−k0/T F (k) . (62)

It is worth emphasizing that all dependence on N have dropped out completely (even for finite N)
as expected from naive counting of degrees of freedom. Both the entropy density and the shear
viscosity are expected to scale as N2 and hence the ratio is expected to be independent of N in
accordance with our formula (61).

In order to evaluate (61) expressions of the type 〈 (ak0)n ¯̺m(k) 〉T are needed. The computation
of these terms is greatly simplified by the fact that in the strong coupling expansion T/σ is small.

A convenient coordinate system to use is

k0 = k cosh η, kx = k sinh η sin θ cosφ, ky = k sinh η sin θ sinφ, kz = k sinh η cos θ ,
(63)

and the relevant quantities then are given by

〈 (ak0)n ¯̺m(k) 〉T =
1

4π3

∞
∫

σ

dkk3(ak)n ¯̺m(k)

∞
∫

0

dη sinh2 η coshn η e−k cosh η/T . (64)

A lengthy but straightforward manipulation of the integral in the approximation that T/σ is small
leads to

〈 (ak0)n ¯̺m(k) 〉T =

√

π

2

T 5/2σ3/2

4π3
eσ/T (aσ)n w−1

∞
∫

0

dz e−z/w

(

2z5/2

1 + z5

)m

. (65)
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where w = 2∆−2/5 T/σ and (38) has been used for the spectral function ¯̺(k). Note that all
n,m-independent factors in (65) will drop out from the ratio η/s, which finally can be written as

η

s
= N2

√

AN∆9/4f(
2T

∆2/5σ
), where f(w) =

1

3(12π2)1/4

∞
∫

0

dz e−z/w

(

2z5/2

1 + z5

)2

∞
∫

0

dz e−z/w

(

2z5/2

1 + z5

)

. (66)

This is the first main result of our paper. The plot of f(w) – which is the η/s ratio in the ∆ = 1
limit – can be seen on Fig. 4.

 0.2

 0.22

 0.24

 0.26

 0.28

 0.3

 0.32

 0  5  10  15  20

η 
/ s

w

Figure 4: The η/s ratio as a function of the rescaled temperature w for ∆ = 1 and N = 3. The
horizontal line represents the limiting value 0.252 which is taken as the T → Tc estimate.

We can further analyze the expression f(w) in the small and large w regions. In the large w
limit we can omit the exponential, and we obtain the largest contribution from the peak of the
spectral function. As a result we obtain a w-independent form. In the small w regime, on the other
hand, the exponential will restrict the integral to small z, i.e. the threshold region. As a result the
ratio will behave as a power law. All together,

η

s
= N2∆9/4

√

AN























512

125/4 π

(

2T

∆2/5σ

)5/2

if T ≪ ∆2/5σ

2

15

√

5 + 2
√
5

10 π
√
3

≈ 0.056 if T ≫ ∆2/5σ

(67)

Here high temperature of course is still limited to the confinemened phase since we are using the
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strong coupling expansion. In particular we are not expected to reach the deconfined phase and so
the expected increase of η/s for increasing T above Tc can not be seen here.

Let us note that the result (67) scales as N2 in accordance with the expectation that for T < Tc

the entropy density scales as N0 and the shear viscosity as N2. Also, in the high temperature limit
the T dependence drops out. It may be in connection to the fact that at high temperature the
relevant part of the spectrum is the peak region, which is pretty similar to a real quasi particle
peak. The physics of the low temperature asymptotics is rather different – there the relevant part
is the threshold regime with continuous number of excitations.

The most robust part of our prediction is the functional dependence of the η/s ratio on the
temperature. Unfortunately both in the absolute magnitude of the ratio and in the temperature
scale, the lattice spacing dependent ∆ quantity is still present. It is, in fact, a common feature
of the strong coupling expansion results, as it was discussed in the introduction. For the physical
result we may use the form η

s = Kf(T/T0) where K and T0 are the “renormalized” value of the
prefactor and temperature scale in (66).

To assessK we may argue that at small ∆ (large lattice spacing) we are safely in the applicability
range of the strong coupling expansion, but far from the continuum limit. On the other hand at
large ∆ (small lattice spacing) we are near the continuum limit, but far from the applicability range
of the strong coupling expansion. As a best compromise we may take the prefactor at ∆ ≈ 1, which
suggests K = 1.

It is even harder to assess the value of T0, which is approximately the “turning point” of the η/s
ratio towards the low temperature asymptotics. We may argue that it is the highest temperature
end of our calculation where we are near the continuum limit and the strong coupling expansion
applicability range. It is then natural to expect that the T0 scale is determined at ∆ ≈ 1 and σ is
the glueball mass near the phase transition. This consideration leads to,

η

s
=

{

4 for N = 2
N2/2 for N > 2

}

× f(T/Mglueball(Tc)). (68)

As a consequence, from (67) and (68), we estimate the shear viscosity to entropy density ratio at
Tc to be

η

s
=

{

0.22 for N = 2
0.028N2 for N > 2

. (69)

This is the second main result of our paper.

5 Discussion

In this paper we discussed the shear viscosity to entropy density ratio in pure SU(N) gauge theories.
The strong coupling expansion of the Euclidean lattice formulation of the theory was used. This
expansion is known to be convergent and it yields physical results for a number of low energy
observables [33], on the other hand its renormalization is not a fully clarified topic. This is reflected
in our result too, since both in the magnitude of the η/s ratio and also in the temperature scale
a lattice spacing dependent factor was present. For a physical interpretation we used the robust
(i.e. lattice spacing independent) prediction of the calculation, which was the functional form of
the dependence of η/s on the temperature and assessed the scale factors at “half way” between
the strict strong coupling applicability range and the continuum limit. As a result we estimate the
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η/s ratio for gauge group SU(N) at T ≈ Tc as 0.22 for N = 2 and 0.028N2 for N > 2 which is
consistent with the conjectured lower bound 1/4π inspired by AdS/CFT ideas.

The temperature dependence of η/s consists of two well separated regimes. At higher temper-
atures (but still in the low temperature phase of the gauge theory) we see a very flat function,
slightly rising towards smaller temperatures. This is the quasi particle regime, where we are in
good agreement with the AdS/CFT prediction. At low temperature we arrive at a different regime,
where the near-threshold part of the spectral function dominates, and so it is rather far from a quasi
particle picture. The “continuum number” of peaks, forming a continuum, allow to compare to the
constructions given in [12,14]. In particular we observe a vanishing η/s ratio near zero temperature.
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