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Universality of Quantum Gravity Corrections
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We show that the existence of a minimum measurable length and the related Generalized Uncer-
tainty Principle (GUP), predicted by theories of Quantum Gravity, influence all quantum Hamiltoni-
ans. Thus, they predict quantum gravity corrections to various quantum phenomena. We compute
such corrections to the Lamb Shift, the Landau levels and the tunnelling current in a Scanning
Tunnelling Microscope (STM). We show that these corrections can be interpreted in two ways: (a)
either that they are exceedingly small, beyond the reach of current experiments, or (b) that they
predict upper bounds on the quantum gravity parameter in the GUP, compatible with experiments
at the electroweak scale. Thus, more accurate measurements in the future should either be able to
test these predictions, or further tighten the above bounds and predict an intermediate length scale,
between the electroweak and the Planck scale.

We know that gravity is universal. Anything which has
energy creates gravity and is affected by it, although the
smallness of Newton’s constant G often means that the
associated effects are too weak to be measurable. In this
article, we show that certain effects of Quantum Grav-
ity are also universal, and can influence almost any sys-
tem with a well-defined Hamiltonian. The resultant ef-
fects are generically quite small, being proportional to
the square of the Planck length ℓ2Pl = G~/c3. However,
with current and future experiments, bounds may be set
on certain parameters relevant to quantum gravity, and
improved accuracies could even make them measurable.

An important prediction of various theories of quan-
tum gravity (such as String Theory) and black hole
physics is the existence of a minimum measurable length.
The prediction is largely model independent, and can
be understood as follows: the Heisenberg Uncertainty
Principle (HUP), ∆x ∼ ~/∆p, breaks down for ener-
gies close to the Planck scale, when the correspond-
ing Schwarzschild radius is comparable to the Comp-
ton wavelength (both being approximately equal to the
Planck length). Higher energies result in a further in-
crease of the Schwarzschild radius, resulting in ∆x ≈
ℓ2Pl∆p/~. The above observation, along with a combina-
tion of thought experiments and rigorous derivations sug-
gest that the Generalized Uncertainty Principle (GUP)
holds at all scales, and is represented by [1]

∆xi∆pi ≥ ~

2
[1 + β

(

(∆p)2+ < p >2
)

+ 2β
(

∆p2i+ < pi >
2
)

] , i = 1, 2, 3 (1)
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where p2 =
3
∑

j=1

pjpj , β = β0/(MPlc)
2 = ℓ2Pl/2~

2,

MPl = Planck mass, and MPlc
2 = Planck energy ≈

1.2 × 1019 GeV . Implications of the GUP in various
fields, including High Energy Physics, Cosmology and
Black Holes, have been studied. Here, we examine its
potential experimental signatures in some familiar quan-
tum systems. It is normally assumed that the dimen-
sionless parameter β0 is of the order of unity. However,
as we shall see in this article, this choice renders Quan-
tum Gravity effects too small to be measurable. On the
other hand, if one does not impose the above condition
a priori, current experiments predict large upper bounds
on it, which are compatible with current observations,
and may signal the existence of a new length scale. Note
that such an intermediate length scale, ℓinter ≡

√
β0ℓPl

cannot exceed the electroweak length scale ∼ 1017 ℓPl

(as otherwise it would have been observed). This implies
β0 ≤ 1034. (The factor of 2 in the last term in Eq.(1)
follows from Eq.(2) below).
It was shown in [2], that inequality (1) is equivalent to

the following modified Heisenberg algebra

[xi, pj ] = i~(δij + βδijp
2 + 2βpipj) . (2)

This form ensures, via the Jacobi identity, that [xi, xj ] =
0 = [pi, pj ] [3]. Next, defining

xi = x0i , pi = p0i
(

1 + βp20
)

(3)

where p20 =
3
∑

j=1

p0jp0j and x0i, p0j satisfying the canon-

ical commutation relations [x0i, p0j ] = i~ δij , it is easy
to show that Eq.(2) is satisfied to order β (henceforth
we neglect terms of order β2 and higher). Here, p0i can
be interpreted as the momentum at low energies (hav-
ing the standard representation in position space, i.e.
p0i = −i~d/dxi), and pi as that at higher energies.
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Using (3), any Hamiltonian of the form

H =
p2

2m
+ V (~r) [~r = (x1, x3, x3)] (4)

can be written as [4]

H = H0 +H1 +O(β2) , (5)

where H0 =
p20
2m

+ V (~r) and H1 =
β

m
p40 . (6)

Thus, we see that any system with a well defined quan-
tum (or even classical) Hamiltonian H0, is perturbed by
H1, defined above, near the Planck scale. In other words,
Quantum Gravity effects are in some sense universal! It
remains to compute the corrections to various phenom-
ena due to the Hamiltonian H1. In this article, we study
its effects on three such well-understood quantum phe-
nomena, the Lamb shift, the Landau levels and the
Scanning Tunnelling Microscope.

I. The Lamb shift

For the Hydrogen atom, V (~r) = −k/r (k = e2/4πǫ0 =
α~c, e = electronic charge). To first order, the perturbing
Hamiltonian H1, shifts the wave-functions to [5]

|ψnlm〉1 = |ψnlm〉+
∑

{n′l′m′}6={nlm}

en′l′m′|nlm

En − En′

|n′l′m′〉 (7)

where n, l,m have their usual significance, and
en′l′m′|nlm ≡ 〈n′l′m′|H1|nlm〉 . Using p20 = 2m[H0+k/r]
[4]

H1 = (4βm)

[

H2
0 + k

(

1

r
H0 +H0

1

r

)

+

(

k

r

)2
]

. (8)

Thus,
en′l′m′|nlm

4βm
= (En)

2
δnn′

+k (En + En′) 〈n′l′m′|1
r
|nlm〉+ k2〈n′l′m′| 1

r2
|nlm〉 .

It follows from the orthogonality of spherical harmonics
that the above are non-vanishing if and only if l′ = l and
m′ = m. Thus, the first order shift in the ground state
wave-function is given by (in the position representation)

∆ψ100(~r) ≡ ψ100(1)(~r)− ψ100(~r) =
e200|100

E1 − E2
ψ200(~r)

=
928

√
2βmE0

81
ψ200(~r) . (9)

Next, consider the Lamb shift for the nth level of the
Hydrogen atom [6]

∆En =
4α2

3m2

(

ln
1

α

)

|ψnlm(0)|2 . (10)

Varying ψnlm(0), the additional contribution due to GUP
in proportion to its original value is given by

∆En(GUP )

∆En
= 2

∆|ψnlm(0)|
ψnlm(0)

. (11)

Thus, for the Ground State, using ψ100(0) = a
−3/2
0 π−1/2

and ψ200(0) = a
−3/2
0 (8π)−1/2, where a0 is the Bohr ra-

dius, we get

∆E0(GUP )

∆E0
= 2

∆|ψ100(0)|
ψ100(0)

=
928βmE0

81

≈ 10β0
m

MPl

E0

MPlc2
≈ 0.47× 10−48β0.(12)

The above result may be interpreted in two ways. First,
if one assumes β0 ∼ 1, then it predicts a non-zero, but
virtually unmeasurable effect of Quantum Gravity/GUP.
On the other hand, if such an assumption is not made,
the current accuracy of precision measurement of Lamb
shift of about 1 part in 1012 [4, 7], sets the following
upper bound on β0

β0 < 1036 . (13)

This bound is weaker than that set by the electroweak
scale, but not incompatible with it. Moreover, with more
accurate measurements in the future, this bound is ex-
pected to get reduced by several orders of magnitude, in
which case, it could signal a new and intermediate length
scale between the electroweak and the Planck scale.

II. The Landau Levels

Next consider a particle of mass m and charge e in a

constant magnetic field ~B = Bẑ, described by the vector

potential ~A = Bxŷ and the Hamiltonian

H0 =
1

2m

(

~p0 − e ~A
)2

(14)

=
p20x
2m

+
p20y
2m

− eB

m
xp0y +

e2B2

2m
x2 . (15)

Since p0y commutes with H , replacing it with its eigen-
value ~k, we get

H0 =
p20x
2m

+
1

2
mω2

c

(

x− ~k

mωc

)2

, (16)

where ωc = eB/m is the the cyclotron frequency. This
is nothing but the Hamiltonian of a harmonic oscilla-
tor in x direction, with its equilibrium position given
by x0 ≡ ~k/mωc. Consequently, the eigenfunctions and
eigenvalues are given by

ψk,n(x, y) = eikyφn(x− x0) (17)

En = ~ωc

(

n+
1

2

)

, n ∈ N , (18)

where φn are the harmonic oscillator wave-functions.
Following the procedure outlined in the introduction,

the GUP-corrected Hamiltonian assumes the form

H =
1

2m

(

~p0 − e ~A
)2

+
β

m

(

~p0 − e ~A
)4

(19)

= H0 + 4βmH2
0 (20)
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where in the last step we have used Eq.(14). Evidently,
the eigenfunctions remain unchanged, which alone guar-
antees for example, that the GUP will have no effect at
all on phenomena such as the Quantum Hall Effect, the
Bohm-Aharonov effect, and Dirac Quantization. How-
ever, the eigenvalues shift by

∆En(GUP ) =4βm〈φn|H2
0 |φn〉=4βm(~ωc)

2

(

n+
1

2

)2

,

or
∆En(GUP )

En
=4βm(~ωc)

(

n+
1

2

)

≈β0
m

MPl

~ωc

MPlc2
.

For an electron in a magnetic field of 10 T , ωc ≈ 103 GHz
and we get

∆En(GUP )

En
≈ 2.30× 10−54β0 . (21)

Once again, if β0 ∼ 1, this correction is too small to
be measured. Without this assumption, an accuracy of 1
part in 103 in direct measurements of Landau levels using
a STM (which is somewhat over-optimistic) [8], the upper
bound on β0 follows

β0 < 1050 . (22)

This bound is far weaker than that set by electroweak
measurements, but compatible with the latter (as was
the case for the Lamb shift). Once again, better accu-
racy should tighten this bound, and perhaps predict an
intermediate length scale.

III. Potential Barrier and STM

In a STM, electrons of energy E (close to the Fermi
energy) from a metal tip at x = 0, tunnel quantum me-
chanically to a sample surface a small distance away at
x = a. This gap, (across which a bias voltage may be
applied), is associated with a potential barrier of height
V0 > E [9]. Thus

V (x) = V0 [θ(x)− θ(x − a)] , (23)

where θ(x) is the usual step function. The wave-functions
for the three regions, namely x ≤ 0, 0 ≤ x ≤ a,
and x ≥ a, are ψ1,ψ2, and ψ3, respectively, and sat-
isfy the following GUP corrected Schrödinger equation
(dn ≡ dn/dxn)

d2ψ1,3 + k2ψ1,3 − ℓ2Pld
4ψ1,3 = 0 ,

d2ψ2 − k21ψ2 − ℓ2Pld
4ψ2 = 0 ,

where k =
√

2mE/~2 , k1 =
√

2m(V0 − E)/~2 . The
solutions to the above to leading order in ℓPl, β are

ψ1 = Aeik
′x +Be−ik′x +A1e

x/ℓPl , (24)

ψ2 = Fek
′

1
x +Ge−k′

1
x +H1e

x/ℓPl + L1e
−x/ℓPl , (25)

ψ3 = Ceik
′x +D1e

−x/ℓPl , (26)

where k′ ≡ k(1 − β~2k2) and k′1 ≡ k1(1 − β~2k21). Note
the appearance of new exponential terms, which drop out

in the ℓPl → 0 limit. In the above, we have omitted the
left-mover from ψ3 and the exponentially growing terms
from both ψ1 and ψ3. The boundary conditions

dnψ1|x=0 = dnψ2|x=0 , n = 0, 1, 2, 3 (27)

dnψ2|x=a = dnψ3|x=a , n = 0, 1, 2, 3 (28)

on wave-functions (24-26) yield the following transmis-
sion coefficient

T =

∣

∣

∣

∣

C

A

∣

∣

∣

∣

2

=

[

1 +
(k′2 + k′21 )

2 sinh2(k′1a)

(2k′k′1)
2

]−1

. (29)

The reflection coefficient R = |B/A|2 = 1 − T . Using
Eq.(29) and the definitions of k, k1, k

′, k′1, it can be shown
that when k1a≫ 1, which is the limit relevant for STMs,
the transmission coefficient is approximately

T =T0

[

1+
4mβ(2E − V0)

2

V0
+
2βa

~
[2m(V0 − E)]

3

2

]

(30)

where T0 =
16E(V0 − E)

V 2
0

e−2k1a , (31)

T0 being the standard tunnelling amplitude. The current
I flowing from the tip to the sample is proportional to
T , and is usually magnified using an amplifier of gain G.
From Eq.(30) the enhancement in current due to GUP is
given by

δI

I0
=
δT

T0
= 4β

m(2E − V0)
2

V0
+

2βa

~
[2m(V0 − E)]

3

2

=
4β0m

MPl

(2E − V0)
2

V0MPlc2
+

4
√
2β0a

ℓPl

(

m

MPl

)
3

2

(

V0 − E

MPlc2

)
3

2

.

Then, assuming the following approximate (but realistic)
values [9]

m = me = 0.5 MeV/c2 , E ≈ V0 = 10 eV ,

a = 10−10 m , I0 = 10−9 A , G = 109 ,

we get

δI

I0
=
δT

T0
= 10−48β0 and δI ≡ GδI = 10−48β0 A . (32)

Thus, for the GUP induced excess current δI to add up
to the charge of just one electron, e ≈ 10−19 C, one would
have to wait for a time

τ =
e

δI = 1029β−1
0 s . (33)

If β0 ∼ 1, this is far greater than the age of our universe
(1018 s). However, if the quantity δI can be increased by
a factor of about 1021, say by a combination of increase
in I and G, and by a larger value of β0, the above time
will be reduced to about a year (≈ 108 s), and one can
hope to measure the effect of GUP. Conversely, if such
a GUP induced current cannot be measured in such a
time-scale, it will put an upper bound

β0 < 1021 . (34)
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Note that this is more stringent than the two previous
examples, and is in fact consistent with that set by the
electroweak scale! In practice however, it may be easier
to experimentally determine the apparent barrier height

ΦA ≡ V0 − E, and the (logarithmic) rate of increase of
current with the gap. From Eq.(30) they are related by
[9]

√

ΦA =
~√
8m

∣

∣

∣

∣

d ln I

da

∣

∣

∣

∣

(

1− β~2

4

∣

∣

∣

∣

d ln I

da

∣

∣

∣

∣

2
)

. (35)

The cubic deviation from the linear
√
ΦA vs

∣

∣

d ln I
da

∣

∣ curve
predicted by GUP may be easier to spot and the value
of β estimated with improved accuracies.
To summarize, our results indicate that either the

predictions of GUP are too small to measure at present
(β0 ∼ 1), or that they signal a new intermediate length
scale (β0 ≫ 1). It is not inconceivable that such a new
length scale may show up in future experiments in the

Large Hadron Collider. Perhaps more importantly, our
study reveals the universality of GUP effects, meaning
that the latter can potentially be tested in a wide class of
quantum mechanical systems, of which we have studied
just a handful here. Promising areas include statistical
systems (where a large number of particles may offset
the smallness of β), study of whether normally forbidden
transitions and processes can be allowed by the GUP
corrected Hamiltonian, and processes which may get
corrected by a fractional power of β0. We hope to report
on some of these in the near future. In the best case
scenario, this could open a much needed low-energy
‘window’ to Quantum Gravity Phenomenology.
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