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Abstract

We study the duality cascade of softly broken supersymmetric theories.
We investigate the renormalization group (RG) flow of SUSY breaking
terms as well as supersymmetric couplings. It is found that the magnitudes
of SUSY breaking terms are suppressed in most regimes of the RG flow
through the duality cascade. At one stage of cascading, the gaugino mass
of the strongly coupled sector and scalar masses converge to certain values,
which are determined by the gauge coupling and the gaugino mass of the
weakly coupled sector. At the next stage, the strongly and weakly coupled
sectors are interchanged with each other. We also show the possibility that
cascading would be terminated by the gauge symmetry breaking, which is
induced by the so-called B-term.
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1 Introduction

Conformal dynamics plays important roles in various aspects of (supersym-
metric) field theories and particle phenomenology. Conformal fixed points
and conformal field theories (CFTs) are essential in Seiberg duality [1, 2].
That leads to more complicated and interesting renormalization group (RG)
flows of dual field theories, that is, the duality cascade [3, 4], which is a suc-
cessive chain of the dualities from the ultraviolate (UV) region to the infrared
(IR) region and reduces the rank of gauge groups one after another. Further-
more, the AdS/CFT (gravity/gauge) correspondence [5] suggests that the
cascading theories would be realized in supergravity theory with a warped
background, that is, the Klebanov-Strassler warp throat. In the supergravity
description, the energy scale of the field theory corresponds to the distance
from a tip of the throat. The duality cascade process means that the charges
of D-branes disappear as the prove brane gets closer to the tip. The in-
vestigation of the duality cascade from the string/supergravity viewpoint is
highly non-trivial check for the gravity/gauge correspondence.

Superconformal dynamics is also important in applications to particle
phenomenology. For example, conformal dynamics may generate realistic
hierarchies of quark and lepton masses [6, 7, 8]. Conformal dynamics has
significant effects on supersymmetry (SUSY) breaking terms, too. In sim-
ple gauge theories, soft SUSY breaking terms, i.e. the gaugino mass and
soft scalar masses, are exponentially suppressed toward the IR attractive
fixed point [9, 7, 10]. Thus, sfermion masses are exponentially suppressed in
the above models with CFT-induced Yukawa hierarchy [6, 7, 8].1 Another
aspect of conformal dynamics relevant to SUSY breaking terms is confor-
mal sequestering [12, 13, 14, 15, 16, 17]. Conformal dynamics may suppress
flavor-dependent SUSY breaking terms and make flavor-blind contributions
dominant. Conformal dynamics may be important to realize a SUSY break-
ing model [18].

Thus, superconformal dynamics is important in particle physics. Here
we study more about the duality cascade. Recently, several models have
been proposed to realize supersymmetric standard models as well as their
extensions at the bottom of the cascade [19, 20]. If we would like to realize
the gauge theories in Type IIA/IIB string theory, it admits high ranks of
the gauge groups since there are configurations with the various number of

1 Five-dimensional warped theory with the same behavior was studied e.g. in [11].
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the D-branes. To explain how we obtain the standard model like theories
with fewer ranks from the infinitely many string vacua with large ranks,
those models are quite interesting and have opened possible candidates for
high energy theories. Those models are exactly supersymmetric. At any
rate, supersymmetry is broken in Nature even if supersymmetric theory is
realized at high energy. Thus, if the cascading theories are relevant to the
particle physics at the weak scale, supersymmetry should be broken at a
certain stage, e.g. at the top or bottom of the cascade (high or low energy)
or between them (intermediate energy). Here we assume that SUSY is softly
broken at the beginning of the cascade. Then, we study RG flows of SUSY
breaking terms as well as supersymmetric couplings.

This paper is organized as follows. In section 2, we review briefly the RG
flow of supersymmetric couplings in the duality cascade. In section 3, we
study RG flows of SUSY breaking terms. In section 4, we study symmetry
breaking due to the B-term by using illustrative examples. Section 5 is
devoted to conclusion and discussion.

2 RG flow in duality cascade of rigid super-

symmetric theories

Here, we give a brief review on the RG flow in the duality cascade of rigid
supersymmetric theories [3, 4]. We consider the gauge group SU(kN) ×
SU((k − 1)N) and we denote their gauge couplings, gk and gk−1. Also, our
model has two chiral multiplets Qr (r = 1, 2) in the bifundamental repre-
sentation of SU(kN) × SU((k − 1)N), i.e. the fundamental representation
for SU(kN) and the anti-fundamental representation for SU((k− 1)N), and
two chiral multiplets Q̄s (s = 1, 2) in the anti-bifundamental representation.
Then we introduce the following superpotential,

W = h tr det
r,s

(QrQ̄s) = h
[

(Q1)
α
a (Q̄1)

a
β(Q2)

β
b (Q̄2)

b
α − (Q1)

α
a (Q̄2)

a
β(Q2)

β
b (Q̄1)

b
α

]

,

(1)
where the indices α and β are group indices for SU(kN) and the indices a
and b are group indices for SU((k − 1)N).

Now, we study the RG flow of gauge couplings gk and gk−1 and the quartic
coupling h and their fixed points. The fields Qr and Q̄s have the same
anomalous dimension, which we denote by γQ. In the NSVZ scheme [21],
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beta-function of the gauge coupling g in generic gauge theory is written as

µ
dα

dµ
= βα = −F (α)[3TG −

∑

i

Ti(1− γi)], (2)

where α = g2/(8π2) and

F (α) =
α2

1− TGα
. (3)

Here, Ti and γi denote Dynkin indices and anomalous dimensions of the chiral
matter fields, while TG denotes the Dynkin index of the adjoint representa-
tion. For example, we have TG = N for the SU(N) gauge group and Ti = 1/2
for the fundamental representation of the SU(N) gauge group. Using this
scheme, beta-functions of the gauge couplings gk and gk−1 are written as

βαk
= −F (αk)N [k + 2 + 2(k − 1)γQ], (4)

βαk−1
= −F (αk−1)N [k − 3 + 2kγQ]. (5)

In addition, we can write the beta-function of η = hµ as

βη = η(1 + 2γQ). (6)

Suppose that both SU(kN) and SU((k − 1)N) sectors are within the
conformal window [1], i.e. 3k/2 ≤ 2(k − 1) ≤ 3k and 3(k − 1)/2 ≤ 2k ≤
3(k − 1). Then, we have two fixed points [23, 1, 2],

A : k − 3 + 2kγQ = 0, αk = η = 0, (7)

and
B : k + 2 + 2(k − 1)γQ = 0, αk−1 = η = 0. (8)

The anomalous dimension γQ is a function of the couplings. We represent a
value of the gauge coupling gk−1 (gk) at the first (second) fixed point by g∗k−1

(g∗k).
At the vicinity of the first fixed point A given by (7) with gk−1 ≈ g∗k−1

and 0 < αk, η ≪ 1 (region I), it is found that βαk−1
≈ 0, βαk

< 0 and
βη > 0, that is, αk increases and η decreases toward the IR direction. Thus,
the theory would flow to the other fixed point B given by (8) toward the IR
direction. On the other hand, around the fixed point B with gk ≈ g∗k and
0 < αk−1, η ≪ 1 (region II), it is found that βαk

≈ 0, βαk−1
> 0 and βη < 0.
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Hence, the quartic operator h tr detr,s(QrQ̄s) is relevant and the coupling η
increases toward the IR, while αk−1 shrinks.

We could examine the RG flows of the gauge couplings αk and αk−1, if we
admit using the anomalous dimension γQ obtained in the 1-loop level. For a
sufficiently large N , the anomalous dimension γQ is given as

γQ = −N(kαk + (k − 1)αk−1). (9)

In Fig. 1, the RG flows in the coupling space (αk, αk−1) obtained in the
NSVZ scheme are shown in the case of k = 5. Here we rescale the couplings
as Nα → α. The points A (0, 0.05) and B (0.175, 0) represent the fixed
points. The renormalized trajectory (R.T.) connecting these fixed points is
shown by the bold line.

The flows in the region I are subject to the conformal dynamics around
the UV fixed point A, while the flows in the region II are subject to that
around the IR fixed point B. The convergence in the region I is not strong,
since the fixed point coupling α∗

k−1 is not so strong in the case of k = 5. It is
seen in Fig. 1 that the R.T. bends on the way and the behavior of the R.T.
changes quickly there. Thus the RG property on the R.T. in Fig. 1 may be
characterized well as that in the region I or II.

Figure 1: RG flows in the coupling space (αk, αk−1) in the case of k = 5.
The points A and B represents the UV and IR fixed points respectively. The
renormalized trajectory connecting these fixed points is shown by the bold
line.

The theory around the fixed point B is strongly coupled and would be
well-described by its Seiberg dual [1, 2], which has the gauge group SU((k−
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1)N) × SU((k − 2)N) and two bifundamental chiral multiplets qr and two
anti-bifundamental chiral multiplets q̄s and another kind of chiral multiplets
Mrs, which correspond to QrQ̄s and belong to the adjoint representation for
SU((k − 1)N) 2 and singlet for SU((k − 2)N). This dual theory has the
following superpotential,

W = y tr q̄rMrsqs +m tr det
r,s

Mrs. (10)

The second term is the mass term ofMrs, which corresponds to h tr detr,s(QrQ̄s).
The mass m would be related with the coupling h as

h(Λk)Λk ∼
m(Λk)

Λk

, (11)

where Λk is a typical energy scale of SU(kN) gauge theory such as the energy
scale, where the theory enters the conformal regime, i.e. gk(Λk) ≈ g∗k. The
β-function of αk−2 is written in a way similar to those of αk−1 and αk. In
addition, the β-function of y is written as

βy =
y

2
(γM + 2γq), (12)

where γM is the anomalous dimension of Mrs. The dual theory has a non-
trivial fixed point, gk−2 = g∗k−2 and y = y∗ when gk−1 = 0, where g∗k−2, y

∗ 6=
0. At the fixed point, it is satisfied that γM = −2γq, that is Mrs has the
same conformal dimension as QrQ̄s. Thus, at the vicinity of the fixed point,
gk−2 = g∗k−2, y = y∗ and gk−1 = 0, both operators, h tr detr,s(QrQ̄s) and
m tr detr,sMrs are relevant, and the mass m/µ and coupling hµ increase
towards the IR direction. Because the fields Mrs become heavy, we integrate
out them and the effective superpotential results in [4]3

W = h̃ tr det
rs

qr q̄s, (13)

where h̃ = −y2/m. The operator h̃ tr detrs qr q̄s is irrelevant and the coupling
h̃ decreases towards the IR direction. Thus, the low energy effective theory is
the same as the starting theory except replacing the gauge group SU(kN)×

2In the followings, we will ignore the irrelevant mesons M0
rs which are singlet for

SU((k − 1)N).
3See also [22].

5



SU((k − 1)N) by SU((k − 1)N) × SU((k − 2)N). This RG flow would
continue and the low-energy effective theory would become the SU((k −
n)N) × SU((k − n − 1)N) gauge theory with the quartic superpotential
W = h̃ tr detrs qrq̄s until the theory becomes outside of the conformal window.
The RG flow toward the IR is illustrated as

(gk ≈ 0, gk−1 ≈ g∗k−1, η ≈ 0)
↓

(gk ≈ g∗k, gk−1 ≈ 0, η ≈ 0) ↔ (gk−2 ≈ g∗k−2, gk−1 ≈ 0, y ≈ y∗, m/µ ≈ 0)
↓ dual ↓

(gk ≈ g∗k, gk−1 ≈ 0, η ≫ 1) ↔ (gk−2 ≈ g∗k−2, gk−1 ≈ 0, y ≈ y∗, m/µ ≫ 1)
↓ integrating out Mrs

(gk−2 ≈ g∗k−2, gk−1 ≈ 0, η̃ ≈ 0).

At the end of cascade we would obtain the SU(2N) × SU(N) gauge
theory. The SU(2N) gauge sector has the 2N flavors and the quantum
deformed moduli space [24, 2], ∆W = X(detall Mrs − BB̄ − Λ4N), where
X is a Lagrange multiplier superfield, B and B̄ are baryon and anti-baryon
superfields, which are singlets under SU(N). If we assume that only B
and B̄ develop their vacuum expectation values (VEVs), then baryons and
mesons become massive. Thus the effective theory becomes the pure SU(N)
supersymmetric Yang-Mills theory and finally the theory is confined.

3 RG flow of soft SUSY breaking terms

Here, we study the RG flow of SUSY breaking terms in softly broken super-
symmetric theories. It is convenient to use the spurion method [25, 26, 27,
28, 29, 10] to derive RG equations of soft SUSY breaking terms from those
for supersymmetric couplings.

3.1 A simple theory with conformal fixed point

Here, we give a brief review on the spurion method and apply for a simple
gauge theory with a conformal fixed point. We consider a generic gauge
theory with the gauge coupling g, the gaugino mass M1/2, Yukawa couplings
yijk, corresponding A-terms aijk and soft scalar masses mi. We define the
following superfield couplings

α̃ = α
(

1 +M1/2θ
2 + M̄1/2θ̄

2 + (2|M1/2|
2 +∆g)θ

2θ̄2
)

, (14)
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ỹijk = yijk − aijkθ
2 +

1

2
(m2

i +m2
j +m2

k)yijkθ
2θ̄2, (15)

where ∆g is written as [28]

∆g = −
F (α)

α

[

∑

i

Tim
2
i − TG|M1/2|

2

]

. (16)

Then, beta-functions of superfields α̃ and ỹijk (¯̃yijk) including soft SUSY
breaking terms are obtained from those of α and yijk (ỹijk), βα(α, yijk, ȳijk)
and βyijk(α, yijk, ȳijk) by replacing α and yijk (ȳijk) by α̃, ỹijk (˜̄yijk), i.e.,

µ
dα̃

dµ
= βα(α̃, ỹijk, ˜̄yijk), µ

dỹijk
dµ

= βyijk(α̃, ỹijk, ˜̄yijk). (17)

That implies that the beta-function of the gaugino mass M1/2 is obtained as

µ
dM1/2

dµ
=

(

M1/2α
∂

∂α
− aijk

∂

∂yijk

)(

βα

α

)

≡ D1

(

βα

α

)

. (18)

The RG equation for the soft scalar mass mi of a chiral superfield φi is
also easily obtained as

µ
dm2

i

dµ
= γi(α̃, ỹijk, ˜̄yijk)

∣

∣

θ2θ̄2
. (19)

These equations are found to be consistent with the equations for the θ2θ̄2

components of Eqs. (17). Explicitly, the RG equations are written down as

µ
dm2

i

dµ
= D2γi , (20)

D2 = D1D̄1 + (|M1/2|
2 +∆g)α

∂

∂α

+
1

2
(m2

i +m2
j +m2

k)

(

yijk
∂

∂yijk
+ ȳijk

∂

∂ȳijk

)

. (21)

It is found that these RG equations lead to very interesting properties of
the soft SUSY breaking parameters at the vicinity of an IR attractive fixed
point [9, 7, 10]. Deviations of the gauge coupling and the Yukawa coupling

7



from their fixed point values, δα = α − α∗ and δyijk = yijk − y∗ijk, decrease
exponentially. Then the spurion method tells that both of

δα̃ = α∗M1/2θ
2 − F (α∗)

∑

i

Tim
2
i θ

2θ̄2, (22)

δỹijk = −aijkθ
2 +

1

2
(m2

i +m2
j +m2

k)y
∗

ijkθ
2θ̄2, (23)

also decrease exponentially towards the IR direction. Therefore, the gaugino
massM1/2 and the A-term aijk are found to be suppressed4 and the soft scalar
masses satisfy the IR sum rules given by

∑

i Tim
2
i = 0 and m2

i +m2
j+m2

k = 0.
It is easy to see the above mentioned behavior in the case with a single

gauge coupling only. We consider the perturbation around the fixed point as
α = α∗ + δα, where δα ≪ 1. The beta-function of δα around the fixed point
is written as

µ
dδα

dµ
=

(

∂βα

∂α

)

α=α∗

δα ≡ Γδα. (24)

Because this fixed point is the IR attractive, that leads to Γ > 0. Then, the
spurion method leads immediately to the RG flow of the gaugino mass, that
is, the gaugino mass is renormalized as

M1/2(µ) = M1/2(µ0)

(

µ

µ0

)Γ

. (25)

Thus the gaugino mass M1/2 is found to be exponentially suppressed around
the IR fixed point. Similarly, we can show that the sum

∑

i Tim
2
i is exponen-

tially suppressed in this theory. Furthermore, it is straightforward to extend
this discussion to the theory with a gauge coupling and Yukawa couplings
and to show that the gaugino mass M1/2 and the A-term aijk as well as the
sums

∑

i Tim
2
i and m2

i +m2
j +m2

k are exponentially suppressed.
For the dual gauge theory with the dual quarks q and q̄ and the meson

field M , the superpotential is given by yq̄Mq. Therefore the second sum rule
is reduced to be m2

q+m2
q̄+m2

M = 0. We may also understand this as follows.
For example, when we use the one-loop anomalous dimensions, we can show
that at the fixed point the gauge coupling and Yukawa coupling are related as
y∗ = Cg∗, where C is a constant determined by group-theoretical factors [30].

4That implies that the ratio aijk/yijk is also suppressed exponentially, because the
Yukawa coupling yijk has a fixed point.
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At the fixed point, this relation is realized as the relation between superfield
couplings as |ỹ|2/(8π2) = C2α̃, and their θ2θ̄2-terms lead to [31, 22]

m2
q +m2

q̄ +m2
M = |M1/2|

2. (26)

Since the gaugino mass M1/2 is exponentially damping toward the confor-
mal fixed point, the sum m2

q + m2
q̄ + m2

M is also exponentially damping as
mentioned above.

3.2 Cascading theory

Applying the above spurion method to the cascading theory, we investigate
the RG flow of soft SUSY breaking terms through the duality cascade. We
consider the SU(kN)× SU((k − 1)N) gauge theory with two pairs of chiral
matter fields Qr and Q̄s and their superpotential (1). The beta-functions of

their gaugino masses, M
(k)
1/2 and M

(k−1)
1/2 , are written as

µ
dM

(k)
1/2

dµ
= −N(k + 2 + 2(k − 1)γQ)H

′(αk)αkM
(k)
1/2

−2(k − 1)NH(αk)
∂γQ
∂αk

αkM
(k)
1/2

−2(k − 1)NH(αk)
∂γQ
∂αk−1

αk−1M
(k−1)
1/2 , (27)

µ
dM

(k−1)
1/2

dµ
= −N(k − 3 + 2kγQ)H

′(αk−1)αk−1M
(k−1)
1/2

−2kNH(αk−1)
∂γQ
∂αk−1

αk−1M
(k−1)
1/2

−2kNH(αk−1)
∂γQ
∂αk

αkM
(k)
1/2, (28)

where H(α) = F (α)/α ≈ α and H ′(α) = dH/dα.
As in Section 2, we start the RG flow at the energy scale Λ from the

vicinity of the fixed point A, i.e. (gk, gk−1, η) = (0, g∗k−1, 0). Around the fixed
point A, we have k − 3 + 2kγQ ≈ 0. As long as gk−1 is large and stable,

the second term in (28) reduces the gaugino mass M
(k−1)
1/2 exponentially as

the energy scale µ decreases. On the other hand, we find β
M

(k)
1/2

< 0 because

k + 2 + 2(k − 1)γQ > 0 and H(αk) ≈ αk ≈ 0. Thus, the gaugino mass M
(k)
1/2

9



increases as the energy scale µ decreases. However, such increase of M
(k)
1/2 is

not drastic during the weak coupling region of αk.
Next, the theory moves from the vicinity of the fixed point (gk, gk−1, η) =

(0, g∗k−1, 0) towards another fixed point, (gk, gk−1, η) = (g∗k, 0, 0), where k +
2+2(k−1)γQ ≈ 0. Around the latter fixed point, we find β

M
(k−1)
1/2

> 0 because

k− 3+ 2kγQ < 0, H(αk−1) ≈ 0 and M
(k)
1/2 becomes irrelevant as below. That

is, the gaugino mass M
(k−1)
1/2 decreases perturbatively as the energy scale µ

decreases.
On the other hand, the gaugino mass M

(k)
1/2 would be suppressed expo-

nentially in turn due to the second term in (27), as going towards the IR
fixed point. However we note that the third term cannot be neglected, when
αkM

(k)
1/2 is reduced to be comparable with αk−1M

(k−1)
1/2 . Then the gaugino

mass M
(k)
1/2 does not follow a simple exponential suppression. Rather it con-

verges to a certain value determined by αk−1 and M
(k−1)
1/2 obtained at the

renormalized scale.
If we admit using the one-loop anomalous dimension, then the RG behav-

ior discussed above could be explicitly examined. Here we shall look into the
theory on the renormalized trajectory given in Fig. 1. In Fig. 2, the gaugino
masses M

(k−1)
1/2 (µ) and M

(k)
1/2(µ) of the theory with k = 5 are plotted with

respect to the scale parameter ln(µ/µ0). At the scale µ0, the gauge couplings
are chosen as (αk, αk−1) = (0.0128, 0.04), which is a point on the renormal-
ized trajectory rather close to the fixed point A in Fig. 1. The initial values
at µ = µ0 are taken to be 1.0 for both gaugino masses.

It is seen that M
(k−1)
1/2 is reduced as discussed, but turns to be negative

due to the third term in (28), since M
(k)
1/2 glows slightly first. In the region

II, the gaugino mass M
(k)
1/2 turns out to be suppressed strongly, while M

(k−1)
1/2

changes perturbatively. In Fig. 3, the log-plot of the gaugino mass M
(k)
1/2 is

shown by the bold line. It is also seen that the suppression behavior deviates
from the exponential one in the end and M

(k)
1/2 converges to a line. Indeed,

the convergence point of αkM
(k)
1/2 could be estimated as

αkM
(k)
1/2 ∼ −αk−1M

(k−1)
1/2 . (29)

Similarly, we examine the RG running of the soft mass squared m2
Q. At

the vicinity of the fixed points, m2
Q is also expected to be exponentially sup-

10



Figure 2: RG running of the gaugino masses M
(k−1)
1/2 (µ) and M

(k)
1/2(µ)

with respect to ln(µ/µ0). The gauge couplings are given at µ = µ0 as
(αk, αk−1)=(0.0128, 0.04) and run along the renormalized trajectory.

pressed as discussed in section 3.1. However existence of two gauge couplings
makes the situation more complicated. The RG equation for m2

Q is given as

µ
dm2

Q

dµ
= γQ(α̃k, α̃k−1)|θ2θ̄2 . (30)

Here, let us use the one-loop anomalous dimension given by (9). Then the
RG equation is reduced to be

µ
dm2

Q

dµ
= −kαk(2|M

(k)
1/2|

2 +∆k)− (k − 1)αk−1(2|M
(k−1)
1/2 |2 +∆k−1), (31)

where

∆k = H(αk)
[

3k|M
(k)
1/2|

2 − 2(k − 1)m2
Q

]

, (32)

∆k−1 = H(αk−1)
[

3(k − 1)|M
(k−1)
1/2 |2 − 2km2

Q

]

. (33)

In Fig. 3, the RG evolution of m2
Q of the same theory on the renormal-

ized trajectory is shown by dotted lines. The initial values are taken as
lnm2

Q = 0, 2.5, 5.0 just for the illustration. In the region I, we may neglect
subleading terms of αk and also Mk−1, since it is suppressed. Then, Eq. (31)
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Figure 3: RG running behaviors of the scalar mass lnm2
Q and the gaugino

mass 2 lnM
(k)
1/2 are shown by dotted lines and the bold line, respectively.

is approximated to be

µ
dm2

Q

dµ
≃ 2k(k − 1)(α∗

k−1)
2m2

Q − 2kαk|M
(k)
1/2|

2. (34)

This equation tells us that m2
Q is not just suppressed but converges as

m2
Q →

1

(k − 1)(α∗

k−1)
2
αk|M

(k)
1/2|

2, (35)

since running of αk|M
(k)
1/2|

2 is rather slow. In the case of k = 5, the fixed point
coupling g∗k−1 is not large and the convergence is not so strong. In the region

II, running of M
(k)
1/2 changes to exponential suppression. However, similarly

to the behavior in the region I, it converges in the IR limit as

m2
Q →

1

k(α∗

k)
2
αk−1|M

(k−1)
1/2 |2. (36)

We summarize the RG flow of the gaugino masses and soft scalar masses
as the theory moves from the fixed point (gk, gk−1, η) = (0, g∗k−1, 0) toward the
fixed point (gk, gk−1, η) = (g∗k, 0, 0). At the first stage, i.e. the perturbative

regime of αk, the gaugino mass M
(k−1)
1/2 is suppressed, while M

(k)
1/2 and the soft

scalar mass squared m2
Q increase perturbatively. In entering the conformal
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regime of αk, both M
(k)
1/2 and m2

Q begin exponential damping, while M
(k−1)
1/2

runs perturbatively. In the IR limit, the gaugino mass M
(k)
1/2 and the soft

scalar mass squared m2
Q are found to converge to certain values determined

by αk−1 and M
(k−1)
1/2 . Hence, these parameters evolute to be of the same order

and are fixed in the IR limit irrespectively of their initial values.
In addition to the gaugino masses M

(k)
1/2, M

(k−1)
1/2 and scalar mass mQ,

the SUSY breaking terms corresponding to the superpotential (1) may be
important, that is,

W = h(1−Ahθ
2) tr det

r,s
(QrQ̄s). (37)

The RG flow behavior of the coupling µhAh is drastic following the anomalous
dimensions of Qr and Q̄s. Both RG flows of µh and µhAh are almost the
same. That implies that their ratio Ah does not change drastically5.

The theory around the fixed point (gk, gk−1, η) = (g∗k, 0, 0) would be well-
described by its dual theory with the gauge coupling gk−2 and the Yukawa

coupling y. The dual theory has the gaugino mass M
(k−2)
1/2 , soft scalar masses

of qr, q̄s and Mrs as mq and mM , the A-term a and the B-term b. The latter
two terms are associated with the superpotential (10) and are written as

W = y(1− Ayθ
2)tr q̄rMrsqs +m(1− Bθ2)tr det

r,s
Mrs. (38)

Here, we denote a = yAy and b = mB. The exact matching relations of soft

terms between dual theories are not clear, but we assume that M
(k)
1/2(Λk) ∼

M
(k−2)
1/2 (Λk) and all of soft scalar masses are of the same order at Λk. Fur-

thermore, we assume that all of Ah, Ay and B are of the same order at
Λk.

When the gauge coupling gk−2 approaches toward its non-trivial fixed

point, the gaugino mass M
(k−2)
1/2 and soft scalar mass squared m2

q are also

exponentially suppressed. This behavior is similar to that of M
(k)
1/2 and m2

Q

discussed previously. Moreover, in the dual theory the Yukawa coupling y
approaches to the fixed point y∗. In this case, a small deviation δy = y − y∗

5Note that the RG flow of η has no fixed point with a finite value of η. In our case, the
RG flow of Ah will be ruled by gauge couplings and gaugino masses which can be finite

values. In the region II, Ah will be affected by mainly αn
k−1M

(k−1)
1/2 in the dimensionful

parameters.
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is exponentially damping as (24). The spurion method leads that the A-
term coupling Ay is also suppressed exponentially. On the other hand, the
RG behavior of B is rather similar to one of Ah. It is found that both RG
flow behaviors of the mass m/µ and b/µ are almost the same and they are
determined by large anomalous dimensions of Mrs. However, their ratio B
does not change drastically6.

In the dual theory, not only m2
q but also the sum of soft scalar masses

squared, m2
q + m2

q̄ + m2
M , is also suppressed in the conformal region. That

implies that each of m2
q and m2

M is suppressed when m2
q = m2

q̄, which is the
relation we are assuming. However, we cannot neglect the effects through
SU(N(k−1)) gauge interaction such as the discussions of convergence points,
(29) and (36), in the original SU(Nk)× SU(N(k − 1)) theory.

The gaugino mass M
(k−2)
1/2 , the A-parameter Ay and the scalar masses

squared m2
q and m2

M in the dual theory are not just suppressed out, rather

converge to certain values given by αk−1 and M
(k−1)
1/2 in the IR limit again. It

is straightforward to solve the RG equations, if we admit using the one-loop
anomalous dimensions of q and M just as performed above. However, we
shall avoid to present a similar analysis here. It may be explicitly seen that
both m2

q and m2
M as well as M

(k−2)
1/2 and |Ay|

2 converge the values of the same

order given by αk−1|M
(k−1)
1/2 |2. The meson field M belongs to the adjoint

representation of SU(N(k − 1)) group and suffers from the effects through
SU(N(k−1)) gauge interaction more. Therefore, m2

M is found to be positive
and larger than m2

q in the IR 7.
When the supersymmetric mass m of the chiral fields Mrs becomes large,

we integrate out these fields. Then, the low energy theory becomes the
SU((k − 1)N) × SU((k − 2)N) gauge theory with two pairs of bifunda-
mental and anti-bifundamental fields and the quartic superpotential, W =
h̃tr det qrq̄s. The theory has soft SUSY breaking terms, i.e. the gaugino
masses, M

(k−1)
1/2 andM

(k−2)
1/2 , and soft scalar massmq. In addition, we have the

SUSY breaking term corresponding to the superpotential W = h̃tr det qr q̄s,
that is,

W = h̃(1− θ2Ah̃)tr det qr q̄s. (39)

6Note that the RG flow of m/µ has no fixed point with its fine value. In this IR region,

B will be affected by mainly αn
k−1M

(k−1)
1/2 in the dimensionful paramters.

7Soft masses for singlet mesonsM0
rs may be driven to be negative because of the Yukawa

couplings.
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The size of Ah̃ may be of the order of B or Ay at the decoupling scale of Mrs.
If these SUSY breaking terms are smaller than other mass scales such as the
energy scale µ and the supersymmetric mass m, the above cascade continues
as rigid SUSY theory in Section 2. Through the cascade, the gaugino masses
and soft scalar masses are damping except the perturbative regime, where
the theory moves from the fixed point (gk, gk−1, η) = (0, g∗k−1, 0) toward the
fixed point (gk, gk−1, η) = (g∗k, 0, 0). When we integrate out Mrs, which are
charged under the SU((k − 1)N) gauge group, threshold corrections would

appear. For example, the gaugino mass M
(k−1)
1/2 would receive such threshold

corrections ∆M
(k−1)
1/2 , which would be estimated by ∆M

(k−1)
1/2 = O(αk−1B).

That would be small, because αk−1 is small. At any rate, if the cascade

continues, the total gaugino mass M
(k−1)
1/2 would be suppressed at the next

stage such as the gaugino mass M
(k)
1/2 is suppressed at the stage discussed

above.
As discussed above, the cascade would continue unless SUSY breaking

terms are comparable with other mass scales such as the energy scale µ and
the supersymmetric mass m. Gaugino masses and SUSY breaking scalar
masses would be suppressed through the cascade except the regime I, where
the gaugino mass M

(k)
1/2 would increase. On the other hand, the SUSY break-

ing parameters, B and Ah, would not be suppressed like the others. Note
that the B-term corresponds to the off-diagonal entries of mass squared ma-
trix of the fields Mrs, that is, eigenvalues of mass squared would be written
by |m|2 +m2

M ± |mB|. A large value of |B| would induce a tachyonic mode.
Then, the scalar component of superfields Mrs may develop their VEVs and
the gauge symmetry SU((k − 1)N) may be broken. Also, through this sym-
metry breaking, the matter fields qr and q̄s may gain mass terms due to the
Yukawa coupling with Mrs. Then, the duality cascade would be terminated
when mass parameters, |m|2, |mB| and m2

M , are comparable 8. This type of
ending of the duality cascade could happen only in the softly broken super-
symmetric theories and such symmetry breaking would be important. Thus,

8Similarly, the singlet meson fields M0
rs may develop their VEVs depending on values

of their various mass terms. Their VEVs induce mass terms of dual quarks. If such masses
are large enough, the dual quarks would decouple and the flavor number would reduce to
be outside of the conformal window. Then, the cascade could end. In addition, scalar
components of qr and q̄s may develop their VEVs depending on values the A-terms and
their soft scalar masses as well as other parameters in the scalar potential. Their VEVs
break gauge symmetry and the cascade would end.

15



we will study such breaking more explicitly in the next section. Similar sym-
metry breaking would be realized not only in the “magnetic dual theory”,
but also in the original “electric theory” with the quartic A-term (37). If
the quartic A-term is comparable with SUSY breaking scalar masses mQ,
the origin of scalar potential of Q would be unstable and similar symmetry
breaking would happen. Such gauge symmetry breaking with reducing the
flavor number may correspond to the symmetry breaking by VEVs of Mrs

with inducing dual quark masses.
Whether Mrs include tachyonic modes depends on values of |m|2+m2

M ±
|mB|, i.e. their initial conditions as well as matching conditions. In a certain
parameter region, the scalar fields Mrs may include tachyonic modes and
symmetry breaking may happen. In the other parameter regions, the cascade
would continue like the rigid supersymmetric theory. For example, when the
magnitude of SUSY breaking terms is much smaller than the supersymmetric
mass m and the energy scale µ, the cascade would continue in almost the
same way as the rigid supersymmetric theory. Then, it would end with the
pure SU(N) supersymmetric Yang-Mills theory with non-vanishing gaugino
mass.

4 Symmetry breaking and illustrative model

4.1 Symmetry breaking

In the previous section, we have pointed out the possibility that a tachyonic
mode in the meson fields Mrs would appear because of soft SUSY breaking
terms and its VEV would break the symmetry. Here, we study this aspect
more explicitly.

4.1.1 SU(kN)× SU((k − 1)N) model

First, we study the SU((k − 2)N) × SU((k − 1)N) theory, which is dual to
the SU(N)×SU((k−1)N) theory. As discussed in the previous section, the
dual theory includes the meson fields Mrs, which have the supersymmetric
mass m, the SUSY breaking soft scalar masses mM and the B-term mB.
That is, their scalar potential V is written by

V = (|m|2 +m2
M)

∑

rs

|Mrs|
2 + (mB(M11M22 −M12M21) + h.c.) + V

(k−1)
D ,
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Figure 4:
∏

i SU(Ni) quiver model

V
(k−1)
D =

1

2
g2k−1D

2
(k−1), (40)

where D(k−1) denotes the D-term of the SU((k − 1)N) vector multiplet.
Here, we have assumed the SU(2) invariance for the (r, s) indices of Mrs.
The eigenvalues of mass squared matrix are given by

|m|2 +m2
M ± |mB|. (41)

If |m|2 ≫ |m2
M |, |mB|, the theory is almost supersymmetric and the duality

cascade would continue. (Note that m is the supersymmetric mass and the
others are masses induced by SUSY breaking.) However, if the masses (41)
include a negative eigenvalue, there appears a tachyonic mode at the origin
of the field space Mrs. Note that the D-flat direction corresponds to the
VEV direction, where Mrs are written by diagonal elements, that is, Cartan
elements. That implies that when a negative eigenvalue is included in (41),
such a direction would be unbounded from below in the tree-level scalar
potential. Thus, the meson fieldsMrs would develop their VEVs, whose order
would be equal to the cut-off scale of the SU((k−2)N)×SU((k−1)N) theory,
i.e. Λk. The VEVs of adjoint fields Mrs break the gauge group SU((k−1)N)
to a smaller group and induce mass terms of qr and q̄s through the Yukawa
couplings yqrMrsq̄s.

4.1.2
∏

i SU(Ni) quiver model

The above analysis can be extended to the
∏

i SU(Ni) quiver gauge the-
ory with their bifundamental matter fields. We consider a subsector of the
quiver theory, that is, the SU(N1) × SU(N2) × SU(N3) gauge theory with
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bifundamental matter fields, (N1, N̄2, 1) and (1, N2, N̄3) as shown in Fig. 4.
The SU(N1) and SU(N3) sectors would have other types of bifundamental
matter fields, but we neglect them 9. In addition, for simplicity we consider
the case with N1 = N3. Here, we dualize the SU(N2) sector. Then, there
appear the dual matter fields q and q̄ with the representations (N̄1, Ñ2, 1) and

(1, ¯̃N2, N3), where Ñ2 = N1 − N2. In addition, the meson field M with the
representation (N1, 1, N̄3) appears and has Yukawa couplings among q and
q̄. The supersymmetric mass term of the meson field in the superpotential
is not allowed, i.e. m = mB = 0. In this case, only the SUSY breaking
soft scalar mass mM as well as the D-term potentials appears in the scalar
potential of the meson field M . Thus, the scalar potential is simple. The
scalar mass squared m2

M tends to converge to a positive value as discussed in
the previous section. Thus, the symmetry breaking may not happen by the
VEV of M in this theory.

When N1 = N3 = 2, supersymmetric mass terms of meson fields in the
superpotential would be allowed. Alternatively, when the model includes
anti-meson fields M̄ , the supersymmetric mass term would be allowed in the
superpotential. In these models, the corresponding B-terms would also be
allowed. Furthermore, in the latter model, there are D-flat directions, i.e.
M = ±M̄ . In this case, the scalar potential would be written by

V = (|m|2 +m2
M)|M |2 + (|m|2 +m2

M̄)|M̄ |2 + (mBMM̄ + h.c.)

+V
(N1)
D + V

(N3)
D , (42)

where V
(N1)
D and V

(N3)
D are D-term scalar potentials for the SU(N1) and

SU(N3) vector multiplets. This potential at the tree level is unbounded
from below along the D-flat direction M = ±M̄ if

2|m|2 +m2
M +m2

M̄ < 2|mB|. (43)

In addition, the meson fields include a tachyonic mode when

(|m|2 +m2
M )(|m|2 +m2

M̄) < |mB|2, (44)

or

(|m|2 +m2
M )(|m|2 +m2

M̄) > |mB|2 and 2|m|2 +m2
M +m2

M̄ < 0. (45)

9In each non-abelian gauge group, for example, we need vector-like matter fields in
order to cancel anomaly. However, we assume that the theory is anomaly-free at every
stage.
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→

→

Figure 5: Quiver diagrams of the illustrating model

Thus, various phenomena could happen depending on values of mass param-
eters, m, mM , mM̄ and mB, that is, the unbounded-from-below direction,
the symmetry breaking without the unbounded-from-below direction or no
symmetry breaking. Indeed, this situation is quite similar to what happens
in the Higgs scalar potential of the minimal supersymmetric standard model
(MSSM).

4.2 Illustrating model

Here we give a simple example of theories, whose field contents are similar
to the MSSM or its extensions and where symmetry breaking would happen.

We consider the gauge group U(3) × USp(6)L × USp(6)R × U(1) and
three families of bifundamental fields, Q̃L : (3, 6, 1, 0), Q̃R : (3̄, 1, 6, 0), L̃L :
(1, 6, 1,−1) and L̃R : (1, 1, 6, 1) and the superpotential

W = hQ̃LQ̃RL̃LL̃R. (46)

We expect that first the gauge couplings of USp(6)L × USp(6)R would
approach to their non-trivial fixed point. Then, the USp(6)L × USp(6)R

19



sector is dualized, that is, the gauge group is U(3)×USp(2)L×USp(2)R×U(1)
as shown in Fig. 5. Note that USp(2) ≃ SU(2). In addition we would
have matter fields, Q̂L : (3̄, 2, 1, 0), Q̂R : (3, 1, 2, 0), LL : (1, 2, 1, 1) and
LR : (1, 1, 2,−1). Also, we would have several “meson fields” M : (3, 1, 1,−1)
and M̄ : (3̄, 1, 1, 1), which have mass terms mMM̄ and Yukawa couplings
with Q̂L, Q̂R, LL and LR, but they can be integrated out because of heavy
mass terms mMM̄ . Then, we obtain the superpotential

W = ĥQ̂LQ̂RLLLR. (47)

Next, we expect that the gauge coupling of SU(3) approaches to the
conformal fixed point. Then, the U(3) sector is dualized. The gauge group
is U(3)×USp(2)L ×USp(2)R ×U(1) and we would have matter fields, QL :
(3, 2, 1, 0), QR : (3̄, 1, 2, 0), LL : (1, 2, 1, 1) and LR : (1, 1, 2,−1) as well as
several “Higgs fields” H : (1, 2, 2, 0). The superpotential is obtained as

W = yQQLQRH + yLLLLRH +mHH. (48)

Note that the operator (47) corresponds to yLLLLRH . However, the gauge
symmetry U(3)×USp(2)L × USp(2)R ×U(1) allows the mass terms mHH .
Thus, we assume that such terms would be induced and we have added such
terms. Then, if SUSY breaking terms induce a tachyonic mode of H , the
symmetry USp(2)L × USp(2)R would be broken.

In this model, USp(2)L and USp(2)R symmetry breaking would happen at
the same time. Although the left-right asymmetry is required for a realistic
model, it would be difficult to generate such left-right asymmetry in this
model. Some modification is necessary for a realistic model. At any rate,
this model is an illustrating model for symmetry breaking. Such symmetry
breaking by SUSY breaking terms in the duality cascade may be important,
e.g. to realize the standard model at the bottom of the cascade. We would
study model building towards more realistic models elsewhere.

5 Conclusion

We have studied the RG flow of softly broken supersymmetric theories show-
ing the duality cascade. Gaugino masses and scalar masses are suppressed in
most regime of the RG flow although they increase in a certain perturbative
regime. After exponential damping, the gaugino mass M

(k)
1/2 corresponding to
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the strongly coupled sector converges to a certain value, which is determined
by the gauge coupling αk−1 and the gaugino mass M

(k−1)
1/2 in the weakly cou-

pled sector. The scalar mass would also converge to the same order value.
At the next stage of the cascade, the strongly and weakly coupled sectors
are interchanged with each other and the gaugino mass M

(k−1)
1/2 would be

suppressed. Thus, through the sequential cascade, the magnitude of gaugino
masses and scalar masses would be suppressed.

The B-term may be important. In a certain parameter region, the B-term
would induce tachyonic modes of Mrs and symmetry breaking would happen.
Such an aspect would be important to realistic model building.

The RG flow of SUSY breaking terms in the cascading theory is quite
non-trivial as the RG flow of gauge couplings. The gravity dual of the cas-
cade rigid supersymmetric theory has been studied extensively. However,
our analysis implies that the dilaton is also running as e−φ ∼ α−1

k + α−1
k−1

[3], but the supergravity solution of the D3-brane does not admit this run-
ning behavior and most of the supergravity dual theories concentrate on the
constant dilaton backgrounds. In this sense, the suppression of the gaugino
masses would be a quite different mechanism from the suppression due to
the warp factor as already pointed out in [32, 33, 34, 35]. The region of RG
flow in our study might be outside of the supergravity approximation, but
it would be quite interesting to study the gravity dual side corresponding to
the RG flow of SUSY breaking terms including the dilaton running.

We have considered the scenario that supersymmetry is broken at high
energy and investigated the RG flow of SUSY breaking terms. Alternatively,
we could consider another scenario that supersymmetry would be broken at
some stage of the cascade. For example, supersymmetry is broken dynami-
cally through the cascade and such breaking is mediated to the visible sector.
Such a study would also be important. We would study such a scenario else-
where.
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