
ar
X

iv
:0

81
0.

56
34

v2
  [

he
p-

la
t] 

 5
 D

ec
 2

00
8

Lattice QCD: a critical status report

DESY 08-138

Karl Jansen∗

DESY,
Platanenallee 6, 15738 Zeuthen
E-mail: Karl.Jansen@desy.de

The substantial progress that has been achieved in lattice QCD in the last years is pointed out.

I compare the simulation cost and systematic effects of several lattice QCD formulations and

discuss a number of topics such as lattice spacing scaling, applications of chiral perturbation

theory, non-perturbative renormalization and finite volume effects. Additionally, the importance

of demonstrating universality is emphasized.

The XXVI International Symposium on Lattice Field Theory
July 14-19 2008
Williamsburg, Virginia, USA

∗Speaker.

c© Copyright owned by the author(s) under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike Licence. http://pos.sissa.it/

http://arxiv.org/abs/0810.5634v2
mailto:Karl.Jansen@desy.de


Lattice QCD: a critical status report Karl Jansen

1. Introduction

At the Capri lattice symposium in 1989, it was stated that in lattice field theory it would have
been necessary“both a 108 increase in computing power AND spectacular algorithmic advances
before a useful interaction with experiments starts takingplace.” [1]. At the time of this statement,
in 1989, the available computing power was around 10− 100Gigaflops [2]. As a consequence,
lattice field theory would have needed at least Exaflops computers in order to perform realistic
simulations and to produce any experimentally interestingoutput.

In addition, at the lattice conference in Berlin in 2001 a serious attempt to determine the
scaling behaviour of the algorithms to simulate lattice QCDas a function of the quark mass, the
lattice spacing and the volume was made. It was found [3, 4] that the expense of lattice QCD
simulations increases with a large inverse power of the quark mass leading to exorbitant costs at
the physical value of the pseudo scalar mass, which we will denote as the physical point further on.
In fact, the simulations costs turned out to be already very large much before being able to reach
the physical point such that simulations with pseudo scalarmasses below, say, 300MeV seemed to
be completely out of reach.

However, in stark contrast to the above rather pessimistic scenario, it could be witnessed at
Lattice 2008 in Williamsburg that a number of lattice QCD simulations with pseudo scalar masses
well below 300MeV, values of the lattice spacings down toa≈ 0.05fm and box sizes with linear
extent& 2.5fm are currently being performed by various internationalcollaborations. Such simula-
tions allow then for an extrapolation of the results to the physical point and to the continuum limit
while keeping also the finite volume effects under control. And, there are even more ambitious
simulations starting presently which are performed at or very close to the physical point [5].

Thus, the prognosis which emerged in 1989 hasnot been fulfilled: already nowadays com-
pletely realistic simulations of lattice QCD are possible on available machines delivering a few
100 Teraflops. The values of the lattice spacings and pseudo scalar masses which are employed in
todays simulations are compiled in fig. 1. In the figure, the blue dot indicates the physical point.
The black cross represents a state of the art simulation in the year 2001. As can be seen in the
graph, most of the simulations now go well beyond what could be reached in 2001 demonstrating
clearly the progress in performing realistic simulations.

This phase transition-like change in the situation is due tothree main developments:i) algo-
rithmic breakthroughs that either shifted the wall of the algorithm scaling in the quark mass or even
changed this scaling behaviour itself drastically,ii) machine development; the computing power of
the present BG/P systems is even outperforming Moore’s law,iii ) conceptual developments, such as
the use of improved actions which reduce lattice artefacts and the development of non-perturbative
renormalization.

To illustrate the status of present lattice QCD simulationslet me give just two examples for
the results obtained at the moment.

1.1 Baryon spectrum

When simulations of lattice QCD were started, the computation of the baryon spectrum was
one of the main goals. Although such a computation can only beconsidered as a post diction since
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experiment
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Figure 1: The values of the lattice spacinga and pseudo scalar massesmPS as employed presently in typical
QCD simulations by various collaborations as (incompletely) listed in the legend. The blue dot indicates the
physical point where in the continuum the pseudo scalar assume assumes its experimentally measured value.
The black cross represents a state of the art simulation by the JLQCD collaboration in 2001.

the masses are measured precisely in experiment, their determination on the lattice has always been
considered as an important benchmark calculation.

It is very reassuring that many international collaborations working with lattice field theoretical
methods are either very close to finish the computation of thebaryon spectrum [6, 7, 8, 9, 10, 11, 12]
or, as in the case of the Budapest-Marseille-Wuppertal collaboration have already accomplished the
goal [13]. In fig. 2 the recent results from the BMW-collaboration presented at this conference is
shown.

In order to obtain the baryon spectrum shown in the graph, simulations at three different values
of the lattice spacing 0.065fm. a. 0.125fm have been performed. The values of the pseudo scalar
masses are bracket by 200MeV. mPS. 500MeV. Finally, the box size has been chosen such that
mPSL & 4. This setup allows for extrapolations to the physical point. It also allows for a continuum
limit extrapolation and suppresses finite volume effects for many quantities. Thus, the spectrum
calculation shown in fig. 2 can be considered as a first latticebenchmark calculation with, however,
the caveat of the need for an eventual cross-check. Nevertheless, the agreement of the lattice results
with the experimentally measured Baryon spectrum is highlynon-trivial.

The work of ref. [13] is a lattice computation from only one group and from only one lattice
discretization. In order to say with confidence that this is adirect non-perturbativeQCD result,
it is mandatory, in my opinion, that the computation is repeated by at least one different collab-
oration with most preferably a different lattice action. Only then we will have demonstrated that
lattice methods provide a reliable tool to obtain physical results from first principles and in a non-
perturbative fashion.

The reason for additional calculations of physical quantities is that different lattice formula-
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Figure 2: The Baryon spectrum as obtained by the Budapest-Marseille-Wuppertal collaboration [13].

tions of QCD will show different systematic errors and only the continuum limit will reveal whether
consistent results are obtained, thus demonstrating non-perturbatively that universality is realized.
This point is further discussed below. There it will be demonstrated that for the baryon masses
different discretizations indeed seem to give the same continuum limit values. However, for other
quantities the situation is much less clear which presumably just means that we need to understand
better the inherent systematic effects in our lattice simulations.

1.2 Low energy constants

Another field where a substantial progress could be achievedis the determination of low energy
constants of chiral perturbation theory. In the past such determinations were blocked by the expense
of performing dynamical fermion simulations with pseudo scalar masses of 300MeV or lower.

With the advances in lattice field theory in recent years, pseudo scalar mass values ofmPS≈
300MeV are simulated today by a number of collaborations as shown in fig. 1. In particular, many
collaborations now have very precise results for the pseudoscalar masses and decay constants for
250MeV.mPS. 450MeV. The existing data show strong indications, at leastfor the case ofNf =

2 flavours of quarks, that chiral perturbation theory is applicable in this regime of corresponding
quark masses.

Thus, fits to formulae from chiral perturbation to the very accurate numerical data allow for
the determination of the low energy constants of chiral perturbation theory with a high precision. In
fig. 3 two examples for fits to formulae from chiral perturbation theory are given. The first example
is from the European Twisted Mass collaboration (ETMC) [14,15, 16]. It shows the pseudo scalar
decay constant as a function of the renormalized quark mass,both in units ofr0. In the range of the
fit, indicated by the two vertical dotted lines, both, the next to leading order (NLO) and the next to
next leading order (NNLO) curves are shown. There is no sensitivity to the NNLO corrections and
the NLO formula describes the data very well.
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(a) Results from the European twisted mass collaboration
(ETMC) comparing NLO and NNLO chiral perturbation
theory fits to their numerical data at two values of the lat-
tice spacing,a ≈ 0.085 fm (β = 3.9) and a ≈ 0.075 fm
(β = 4.05). In the fit region, covering pseudo scalar masses
between 250MeV and 450MeV no sensitivity to the NNLO
correction can be detected.
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(b) Results from the Japanese lattice QCD (JLQCD)
collaboration. The different expansion parameters are:
x= 2B0mq

(4π f )2 , x̂= ( mπ
4π f )

2 andξ = ( mπ
4π fπ

)2.

Figure 3: Confronting lattice QCD results for the pseudo scalar decayconstant with chiral perturbation
theory.

In fig. 3(b) another example, taken from the Japanese latticeQCD (JLQCD) collaboration [17],
is given again for the case of the pseudo scalar decay constant. A comparison is made using differ-
ent expansion parameters for the chiral fit formula. For pseudo scalar masses ofmPS. 500MeV all
fits agree indicating again that for such a range of pseudo scalar masses chiral perturbation theory
is applicable. We will discuss chiral perturbation theory fits and possible problems below again.

2. Cost of simulation

For sure, conceptual developments – such as O(a)-improvement or non-perturbative renorma-
lization – and new supercomputer architectures are playingan important role for the breakthrough
advances in lattice QCD described above. However, the majorfactor in this development is due
to substantial advances in the algorithms that are used to perform our lattice QCD simulations. In
fig. 4(a) we show the cost to produce 1000 independent configurations on a lattice of linear size
of L = 2.1fm with a value of the lattice spacing ofa= 0.08fm. Although the physical size of the
considered box is, by today’s standards, not very ambitious, it is chosen in order to compare with
the situation at the Lattice symposium 2003 in Tsukuba [4]. There, it was shown that a Wilson
fermion simulation at a renormalized quark mass of about 20MeV (in the MS-scheme at scale
2GeV) would have needed an unrealistic amount of computer resources. The progress that took
place in the last years is illustrated in fig. 4(a). Note that all the cost data were scaled to match
a lattice time extend ofT/a = 40. In fig. 4(a) it is also shown that simulations with staggered
fermions were much faster in 2003 than corresponding Wilsonfermion simulations.

The situation as of today is summarized in fig. 4(b). The red squares in the graph of fig. 4(a)
correspond to measured performance costs from maximally twisted mass fermions (TM) using the
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Tflops · years

staggered ref [13]

ref [12]
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(a) A comparison of the cost estimate taken from
ref. [18]. The solid line [23] (indicated as ref. 12
in the plot) indicates the cost of simulations around
the time of the Berlin lattice symposium in 2001.
The data represented by the filled squares are ex-
trapolated with(mPS/mV)

−4 (dashed) and with
(mPS/mV)

−6 (dotted), respectively. The arrow indi-
cates the physical pion to rho meson mass ratio. Ad-
ditionally, points from staggered simulations were
used for the corresponding plot taken from ref. [4].

(b) The cost of dynamical fermion simulations using differ-
ent kind of algorithms and lattice fermions. TM stands for
twisted mass and data are taken from [18]. DW are domain
wall fermions and the performance figures are from [24].
The Wilson performance line is taken from ref. [20], the
Wilson performance line using also the deflation technique
of ref. [25] is shown as the dotted line. Finally, the stag-
gered performance cost [21] using the algorithm of ref. [22]
is represented by the lowest lying (blue) line.

Figure 4: The Berlin wall plots.

algorithm described in [18]. These costs compare nicely with the performance figure for Wilson
fermions using the DD-HMC algorithm [19] shown as the solid black line which uses the cost
formula,

Cop = k

(

20 MeV
m̄

)cm
(

L
3 fm

)cL
(

0.1 fm
a

)ca

Teraflops×years (2.1)

with parameters as given in ref. [20]. In eq. (2.1), ¯m is the renormalized quark mass at a scale of
2GeV in theMS-scheme. Typical values for the exponents in this formulaarecm= 1−2,cL = 4−5
andca = 4−6. Note that these values have a large uncertainty and shouldhere only be taken as a
guideline. The prefactork is typically O(1) for Wilson fermions using the algorithms described in
[19, 18] andO(0.01) for staggered fermions [21] when the algorithm of ref. [22] is employed. The
performance results for Wilson fermions using the above mentioned algorithms show a tremendous
gain when compared to the situation in 2003 [4], see fig. 4(a).

However, this is not even the end of the story. The dotted black line in fig. 4(b) shows the effect
of using in-exact eigenvalue deflation of the lattice Dirac operator as described in ref. [25]. As can
be observed, the cost is almost flat as a function of the quark mass and the wall-like behaviour sets in
only at values of the quark mass below 5MeV. This striking result is even beaten by simulation costs
of staggered fermions [21] which are again a noticeable factor below the cost of the best Wilson
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fermion simulation. It should be stressed that the lines representing deflated Wilson and staggered
fermions are fitting curves that are based on measured performance costs for values of ¯m& 20MeV
only. For completeness, in the graph the simulation costs [26, 9] of domain wall fermions are
also plotted [24]. As can be seen, this formulation of lattice fermions, although requiring an extra
dimension, is only moderately more expensive than the one for Wilson formulations. Note that
in principle deflation techniques can also be applied to twisted mass, domain wall and staggered
fermions, leading possibly to similarly large gains as for Wilson fermions.

In conclusion, the Berlin Wall that was frightening the lattice community in 2001/2003 has
been shifted to such small values of the quark mass that for all practical simulations a realistic
amount of computer time is needed which matches the capacityof modern supercomputers such
as BG/P. (See [27] for an overview of present supercomputer architectures.) Typical physical sit-
uations of today are boxes withL = 3fm and pseudo scalar masses of 200MeV or even 140MeV.
Living in a time where a number of machines are available thatreach several hundreds of Teraflops
or even Petaflops, we will see therefore in the near future many precise and phenomenologically
relevant results from the lattice. Of course, if physical problems are to be addressed that need large
boxes withL > 4fm or small values of the lattice spacing witha< 0.05fm, the computing expense
will again be beyond present capabilities. Therefore, there is still the need for further developing
algorithms and machines for lattice QCD.

Whether simulations are performed directly at the physicalpoint or whether chiral pertur-
bation theory will be used to extrapolate to the physical point is a decision left to the particular
collaboration performing such simulations. It is my belief, however, that we need both approaches
and that we should understand the mass dependence of physical observables. There is a number
of examples, e.g., moments of parton distribution functions, where the present results at about
mPS= 300MeV are still pretty far away from the experimental valueand it will be very interesting
to see how the approach to the physical point is realized, as this can provide a valuable insight
into the physics of the considered problem. In addition, precise determinations of the low energy
constants of chiral perturbation theory from the mass dependence of physical observables will be
one of the main accomplishments of lattice QCD.

3. Universality

A demonstration of universality of lattice QCD, i.e. showing that different lattice fermion
formulations give consistent continuum limit values for physical observables, is, in my opinion,
a crucial goal. Basically all present formulations of lattice QCD have some kinds of conceptual
weaknesses (or are too expensive to simulate) leading to different kind of systematic effects which
will (hopefully) disappear in the continuum limit. Checking that alternative lattice fermion for-
mulations give consistent results in the continuum limit –and thus demonstrating universality– is
hence of utmost importance.

Let me illustrate this point with the example of the Schwinger model taken from ref. [28]. In
fig. 5 the continuum limit extrapolation of the mass of the lightest pseudo scalar particle, denoted
here asMπ , in the Schwinger model is shown. In this super-renormalizable model the coupling
β ∝ 1/a2 can be used as scaling variable andMπ

√

β has a well defined continuum limit for a fixed
physical quark mass, i.e.mquark

√

β fixed. The graph in fig. 5 shows an example of the continuum
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Figure 5: Schwinger model results for the lightest pseudo scalar particle mass
√

βMπ as a function of
a2 = 1/β . The continuum limit scaling is shown for Wilson, maximallytwisted mass, hypercube and overlap
fermions for a fixed value of the quark mass. The common continuum limit value for all these kind of lattice
fermions demonstrates universality for this model.

limit for one choice of a fixed quark mass using Wilson [29], maximally twisted mass [30], hyper-
cube [31] and overlap fermions [32]. Taken aside the overlapfermion simulations which have too
large errors to be really conclusive, all formulations showthe expecteda2 scaling behaviour and
converge to the same continuum limit value thus demonstrating nicely universality.

In my opinion, it would be most important to have analogous graphs for various quantities
in case of lattice QCD demonstrating convincingly that we can obtain consistent results in the
continuum limit from various formulations of lattice QCD. Unfortunately, we are not yet in the
position to show such a graph. On the contrary, we have even examples where discrepancies seem
to be visible when the continuum limit is taken. Let me discuss the situation here at the examples
of the nucleon mass and the pseudo scalar decay constant.

3.1 Nucleon mass

For the following discussion, I will user0 [33] as a scaling variable. This choice is motivated
by the fact that here I am not interested in direct physical values in terms of MeV but only in the
scaling behaviour. In addition, determiningr0 is by now a standard and well understood procedure
[34] and which is used by many groups. It avoids the difficultyof using the lattice spacing itself
which is often determined from different observables in thevarious collaborations thus leading
possibly to large systematic effects.

In the following, an attempt is made to show the continuum limit scaling for the nucleon mass
r0Mnucleon at fixed pseudo scalar massesr0mPS= 0.8,1.0,1.2. Let me start with a compilation
graph, fig. 6, showingr0Mnucleon versus(r0mPS)

2 as evaluated from a number of collaborations
using Wilson, twisted mass, staggered, domain wall and overlap fermions, see the figure caption
for corresponding references. The overall impression in this graph is a nice consistency of all the
results and a rough scaling behaviour since all results fallinto a rather narrow band. Note that in
this graph results fromNf = 2 andNf = 2+1 flavours of quarks are mixed. Of course, it is not too
surprising that for the nucleon mass there is no big effect ofhaving a dynamical strange quark.
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LHP nf = 2 + 1
PACS-CS nf = 2 + 1

JLQCD nf = 2
QCDSF-UKQCD nf = 2

RBC-UKQCD nf = 2 + 1
MILC, nf = 2 + 1
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(a) Scatter graph of the nucleon mass as function of the pseudo
scalar mass squared usingr0 to set the scale. Data are taken from
maximally twisted mass fermions, ref. [6] (ETMC), rooted stag-
gered fermions, ref. [7, 8] (MILC), domain wall fermions, ref. [9]
(RBC-UKQCD), non-perturbatively improved Wilson fermions,
ref. [12] (QCDSF-UKQCD) and ref. [10] (PACS-CS), overlap
fermions, ref. [17, 35] and domain wall fermions on rooted stag-
gered sea quarks, ref. [11] (LHP). A number of values presented
in the graph are from private communications.

PACS-CS nf = 2 + 1
JLQCD nf = 2

RBC-UKQCD nf = 2 + 1
MILC nf = 2 + 1

ETMC nf = 2

r0mPS = 1.2

r0mPS = 1.0

r0mPS = 0.8

(a/r0)
2

r 0
m

N

0.120.10.080.060.040.020

3.4

3.2

3

2.8

2.6

2.4

2.2

2

(b) The nucleon mass as a function of the lattice spacing squared
at fixed values ofr0mPS. For explanations what kind of fermions
is used, see the left panel of the graph.

Figure 6: The scaling behaviour of the nucleon mass.

The scaling behaviour is shown in more detail in fig. 6(b) where the nucleon mass is plotted as
a function of(a/r0)

2 for three values ofr0mPS. The data follow basically the expecteda2 behaviour
and are consistent with each other.

In summary, for the nucleon sector the scaling properties look promising and with results
at more values of the lattice spacing, as will be obtained in the near future, a detailed scaling
comparison can be performed.

3.2 The pseudo scalar decay constant

In fig. 7(a) a compilation of various results forr0 fPS versus(r0mPS)
2 is shown. This graph is

very surprising and, at least to me, rather scary. In contrast to the corresponding compilation graph
for the nucleon mass in fig. 6, the data forr0 fPS scatter a lot and do not show a common scaling
behaviour.

The cause of the apparent inconsistencies shown in fig. 7(a) is not clear presently. One possible
reason could be that for a number of formulations, such as Wilson fermions a renormalization of
fPS is required. I therefore show in fig. 7(b) the scaling ofr0 fPS for only those lattice fermion for-
mulations for which an explicit renormalization is not required, i.e. staggered, maximally twisted
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(a) Scatter graph of the pseudo scalar decay constant as function
of the pseudo scalar mass squared usingr0 to set the scale. Data
are taken from maximally twisted mass fermions, ref. [14, 15]
(ETMC), rooted staggered fermions, ref. [36] (MILC), domain
wall fermions, ref. [9] (RBC-UKQCD), non-perturbatively im-
proved Wilson fermions, ref. [37] (QCDSF-UKQCD) and ref. [38]
(CERN) and overlap fermions [39] (JLQCD). A number of values
are taken from private communications of the various collabora-
tions.
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(b) The scaling in the lattice spacing of the pseudo scalar decay
constant as function of the lattice spacing squared at fixedr0mPS.
Only those formulations of lattice QCD are taken for which no
explicit renormalization is necessary.

Figure 7: Lattice spacing scaling of the pseudo scalar decay constant.

mass and overlap fermions. Here the situation looks indeed better and a rough consistency among
these results can be seen.

Of course, this does not mean that it is indeed the renormalization of fPS that is behind the
very visible differences forfPS from different fermions. This is in particular so, since precise non-
perturbative computations ofZA are available [40]. Other causes could be the values ofr0 used in
the comparison and finite size effects can be significant infPS as is discussed also below, although
in the analysis used here the data forfPS were finite size corrected. Another possibility is that the
values of the lattice spacing might be still too coarse. Finally, it might be that we see a problem with
fPS and seemingly not withmN because the data forfPS are much more precise and that only such
an accuracy can reveal lattice spacing artefacts, i.e. thatthere might still be large O(a2) effects.

Which of the above mentioned possibilities will turn out to be the culprit in the end, or whether
there is a completely different cause, is not possible to sayat the moment. However, I think that the
lattice community must investigate this issue in the future. For me, a clarification of the problem
with fPS should be high position on the priority list.

4. The actions

In the introductory section I have given two examples of precision continuumcalculations
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coming from lattice QCD simulations, namely the classical benchmark computation of the baryon
spectrum and the accurate determination of low energy constants of chiral perturbation theory.

These nice results, however, do not mean that we have latticeQCD fully under control yet.
A striking example is the lattice spacing scaling of the pseudo scalar decay constant discussed
above. As argued already, a most important point is therefore the verification of universality. The
lattice formulations of QCD used today all have their shortcomings each leading to a number of
systematic effects and only reaching consistent continuumresults from alternative formulations
will show that such systematic errors are under control. Letus go shortly through a number of
different formulations of lattice fermions and discuss their shortcomings.

4.1 Wilson fermions

Wilson fermions [29] with improvement terms [41] and non-perturbative improvement [42, 43]
are used widely in lattice calculations. Their major drawback –besides the demanding computation
of the non-perturbative operator improvement– is the explicit breaking of chiral symmetry at non-
vanishing values of the lattice spacing. In the past, when using the quenched approximation, one
of the consequences was the appearance of unphysical, smalleigenvalues of the Wilson-Dirac
operator.

With modern simulations of lattice QCD employing the quarksas dynamical degrees of free-
dom, it turns out, however, that these small eigenmodes do not appear even when much smaller
values of the pseudo scalar mass are simulated than it was possible in the quenched approximation.
In fact, in ref. [38] a stability criterion has been developed,

mPSL ≥
√

3
√

2aB/Z (4.1)

providing a bound on the pseudo scalar mass down to which stable simulations can be performed.
In eq. (4.1),B is a low energy constant of chiral perturbation theory related to the scalar condensate
andZ the quark mass renormalization constant. This bound derives from the observation that there
is a spectral gap and from the demand that this gap is, say, three times larger than the width of the
corresponding eigenvalue distribution.

In recent years, another feature of Wilson type fermions hasbeen observed. When approach-
ing, for sufficiently large values of the gauge couplingβ , the chiral limit at zero quark mass, a
rather strong first order phase transition occurs. This phenomenon is a remnant of the continuum
first order phase transition when changing the quark mass from positive to negative values.

The lattice distorted first order phase transition has been anticipated already in ref. [44]. First
signs of such a phase transition have been seen in refs. [45, 46, 47, 4] and thorough numerical
investigations have been performed in refs. [48, 49, 50, 51,52, 53] in the twisted mass formulation.
These numerical findings are in accord with results from chiral perturbation theory, see refs. [44,
54, 55, 56, 57, 58, 59, 60], and a complete picture resulted from these works. As an aside, we also
mention that at small values ofβ an Aoki phase [61] with a spontaneous breaking of parity appears
[62, 63].

The strength of the first order phase transition strongly depends on the value of the lattice
spacing and of the twisted mass used in the simulation. It is clearly visible at rather coarse lattice
spacings and can there even invalidate the stability criterion discussed above. This is demonstrated
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(a) Eigenvalue distribution of the (Hermitean) Wilson-Dirac oper-
ator atβ = 5.2 on a 164 lattice. The median̄µ of this distribution
is µ̄ = 0.0103 while its widthσ is σ = 0.0013 thus obeying the
bound given in of eq. (4.1).
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(b) The Monte Carlo time history of the plaquette starting from
hot and cold configurations. The parameters are the same as those
in the left panel. A clear metastable behaviour is observed.

Figure 8: First order phase transition and stability [64].

in fig. 8 [64]. From the width of the eigenvalue distribution shown in fig. 8(a) in the left panel
one would conclude that the simulations are stable and safe.However, in the right panel, fig. 8(b),
a metastable behaviour of the simulation is observed when starting with hot and cold configura-
tions. Thus, this simulation point, although fulfilling thestability criterion, suffers from metastable
behaviour. Let me remark that the value of the lattice spacing used in this investigation has been
large,a> 0.1fm.

Although with decreasing lattice spacing for fixed twisted mass (zero or non-zero) the effects
of the first order phase transition gets weaker and the stability criterion may become more relevant,
I still think that it is not sufficient toonlycheck the median and the width of the eigenvalue distribu-
tion but to also check for the existence of a possible first order phase transition. Checks on both the
existence of meta stabilities and the stability criterion from the eigenvalue distribution at the actual
simulations points have become routine for a number of collaborations already. As a result of such
checks, Wilson fermions are in the fortunate situation thatby respecting the bound in eq. (4.1) and
avoiding meta stabilities, e.g. by going to sufficiently small lattice spacings, simulations can be
expected to be performed and controlled even when applied atpseudo scalar masses as small as
200MeV or even at the physical point.

4.2 Staggered fermions

The staggered fermion community is comprised of mainly the MILC collaboration [65], at
least as far as the generation of gauge field configurations isconcerned. MILC has by now produced
a large and impressive set of configurations with dynamical up and down as well as strange quark
degrees of freedom. These configurations are also uploaded to the International Lattice Data Grid
(ILDG). (See ref. [66] for a recent overview on ILDG.) MILC has produced these configurations
in a project which is ongoing now for many years and has produced configurations at small values
of the lattice spacing ofa= 0.06fm and correspondingly large lattice sizes with 643 ·144 number
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of lattice points to obtain a reasonable box size in physicalunits. There are furthermore plans for
future runs with a lattice spacing ofa= 0.045fm.

Therefore, the question whether this approach to lattice QCD has a conceptual flaw when
taking the fourth root is of the greatest importance. The last years have seen many discussions on
the issue, see refs. [4, 67, 68, 69, 70] for reviews on the subject. The locality of rooted staggered
fermions is addressed in Shamir’s work [71, 72]. A controversial and still ongoing debate can be
found in refs. [73, 74, 75, 76, 77, 78] and refs. [79, 80, 81, 82, 83, 84, 85]. It is not the aim of this
contribution to enter this debate or to even judge between the opponents. However, the picture that
emerges –at least to my understanding– can be summarized in two scenarios.

In scenario one, thepractitioner scenario, we do not insist that we reach thechiral limit at zero
quark mass for non-zero values of the lattice spacing. Rather, we follow a procedure to stop at some
threshold quark mass for a given value of the lattice spacingand then first perform the continuum
limit and only afterwards the extrapolation to the physicalpoint. A discussion using staggered
chiral perturbation theory to obtain bounds on such threshold quark mass values can be found in
refs. [86, 84]. A summary of these results is that for applying continuumchiral perturbation theory
the taste splitting of staggered fermions has to be much smaller than the lightest pseudo scalar mass.
If instead staggered chiral perturbation theory is applied, the taste splitting can be at the order of
the lightest pseudo scalar mass, since the taste breaking effects can then be taken into account. For
example [87], at a lattice spacing ofa≈ 0.06fm the lightest pseudo scalar mass simulated is about
mPS= 220MeV which is three times larger than the observed taste splitting. For a≈ 0.125fm the
lightest pseudo scalar mass of 250MeV is about the order of the taste splitting and it would thus
make not much sense to simulate even smaller masses. More general bounds on the quark mass
that follow from the locality considerations of rooted staggered fermions can be found in [72]. A
nice discussion of the question of interchanging continuumand chiral limits is given in [88] for the
case of the 1-flavour Schwinger model.

In scenario two, thetheorist scenario, we want to explore the behaviour of staggered fermions
with the fourth root trick at or very close to the chiral point. This could reveal some non-perturbative
effects of the fourth root trick (e.g. related to the ’t Hooftvertex) which could eventually lead to a
failure of this approach to lattice QCD. However, when respecting the bounds on the quark mass
discussed above, the possible difficulties of rooted staggered fermions in the chiral limit may not
affect the results obtained following scenario one. Possible quantities to explore the extreme chiral
regime are those related to instanton physics. In my opinion, the exploration of the chiral limit
for staggered fermions is of theoretical importance and further scientific discussions, beyond the
literature given above, on the topic are certainly welcome.An investigation on this topic can be
found in [89].

Another disturbing observation about present staggered fermion simulations is the fact that for
the very large lattice simulations an inexact Hybrid Monte Carlo algorithm is used. The inexact-
ness comes from the fact that no accept/reject step is applied at the end of a molecular dynamics
trajectory. Although there are some arguments and investigations that this might be a harmless pro-
cedure [21], doubts are legitimate and re-introducing the accept/reject step would certainly enlarge
the trust in the staggered fermion simulations.
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β aµq RO

a fPS 3.90 0.004 0.04(06)

4.05 0.003 −0.03(06)

amV 3.90 0.004 0.02(07)

4.05 0.003 −0.10(11)

a fV 3.90 0.004 −0.07(18)

4.05 0.003 −0.31(29)

am∆ 3.90 0.004 0.022(29)

4.05 0.003 −0.004(45)

Table 1: Examples of relative differences between charged and neutral operator expectation values,RO =

(O±−O0)/O±, measuring the isospin breaking effects in twisted mass lattice QCD.

4.3 Twisted mass fermions

Twisted mass fermions at maximal twist [30, 90] have by now proved to be a practical and
successful tool for performing lattice QCD simulations, see e.g. refs. [14, 91, 92, 93, 6, 94, 95] and
contributions to this conference [96, 97, 98, 99, 16, 100]. The expected O(a)-improvement [30]
has been demonstrated for many observables by now in the quenched approximation [101, 102,
103, 104] as well as employing dynamical quarks [14, 15, 105,93]. In particular, it was shown that
stable simulations down to pseudo scalar masses of aboutmPS≈ 260MeV are possible.

Twisted mass fermions share with standard Wilson fermion the drawback of breaking chiral
symmetry at any non-zero lattice spacing. An additional major drawback of twisted mass fermions
is the explicit violation of isospin symmetry at non-zero values of the lattice spacing. From the
simulations by the European twisted mass collaboration (ETMC) there are two basic observations
concerning this lattice artefact. The first is that the isospin breaking, although consistent with the
expected O(a2) scaling, is large when the mass difference of the charged andthe neutral pseudo
scalar mass is considered as can be seen in fig. 9(a). Note thatfor the computation of the neutral
pseudo scalar mass disconnected diagrams need to be taken into account. In contrast, the scaling
behaviour of the charged pseudo scalar mass is very flat showing almost no lattice artefacts as
demonstrated in fig. 9(b). Thus, the large lattice artefact seen in fig. 9(a) must be due to the neutral
pseudo scalar mass alone.

A second observation is that other quantities seem not to be affected by the isospin violation,
as can be seen from table 1. There the relative difference of charged and neutral quantities,RO =

(O±−O0)/O± turns out to be compatible with zero, at least within the errors.

The two observations described above find an interpretationin terms of the Symanzik effective
theory analysis [106]. In particular, there it can be shown that the charged pseudo scalar mass re-
ceives only O(a2m2

π ,a
4) corrections while the neutral pseudo scalar mass has corrections at O(a2).

This explains the scaling behaviour of the masses shown in fig. 9. The results listed in table 1
must then correspondingly be interpreted that in these quantities the neutral pseudo scalar mass (or
related quantities) do not play a dominant role.
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(a) The difference of the charged and neutral pseudo scalar mass
as a function ofa2 in the twisted mass formulation of lattice QCD
at different values of the charged pseudo scalar mass. A large
O(a2) lattice artefact is observed.
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(b) The scaling behaviour of the charged pseudo scalar mass at
fixed values of the pseudo scalar decay constant. The scalingbe-
haviour is basically flat ina2 demonstrating that the cutoff effect
in the left panel originates solely from the neutral pseudo scalar
mass.

Figure 9: Isospin violations for twisted mass fermions at the exampleof the charged and neutral pseudo
scalar masses.

Whether the Symanzik type analysis provides the correct interpretation of the numerically ob-
tained results or whether other interpretations are possible and, maybe, more applicable is presently
being investigated by ETMC. In any case, there exists no general argument, whether or not large
isospin breaking effects can appear in certain quantities.Although there exist indications that large
isospin breaking effects may only appear in certain observables (like the neutral pion mass), this
issue must be studied carefully on a case by case basis by any group employing twisted mass
fermions.

4.4 Smearing

Many simulations use nowadays some method of smearing of thelinks [107, 108, 109] that
enter the lattice-Dirac operator. This procedure has the advantage to smooth out the configurations
seen by the lattice Dirac operator. As a consequence, the condition number can be reduced and also
the gauge field fluctuations are suppressed leading to possibly faster and more stable simulations
compared to the case when no smearing is employed. In addition, also the effects of the first order
phase transition mentioned above seem to be diminished [110].

An open question is of course, to what extent smearing shouldbe used. Performing only
moderate smearing as done in e.g. refs. [111, 112] will presumably not affect the simulations
much. However, already one level of stout smearing [107] leads in perturbation theory [113] to
values for the renormalization constants and improvement coefficients that are close to their tree-
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level values when smearing is employed [111, 114]. This holds at least for certain values of the
smearing parameterρ ≈ 0.1.

When many levels of smearing are performed as used in ref. [115], there is the danger that
uncontrolled systematic effects emerge as the Dirac operator may become quite non-local. In the
simulation, which revealed the baryon spectrum shown in fig.2, 6-levels of stout smearing had been
used [13]. Many concerns about a possible alteration of the short distance behaviour of physical
quantities have been put forward by this rather high level ofsmearing and a suspicion that the
action is too non-local has been raised. The BMW collaboration themself has performed a locality
test following the principle idea of ref. [116]. Note that a locality test of the Dirac-operator itself
will not reveal any non-local effects since it anyway acts onnearest neighbours only.

Therefore, the quantity investigated has been the responseof the Dirac operatorD(x,y) with
respect to a gauge link variation‖∂D(x,y)/∂Uµ (x+ z)‖ as a function of the distancez/a. With a
smearing parameterρ chosen to be well below one, it can be expected that smearing effects decay
like ρn and hence the effects of smearing vanish rapidly for increasing distances. However, it is
important to realize that there is a high degree of degeneracy of lattice points at large distances
which become relevant through the smearing procedure. In addition, in most quantities the be-
haviour of the inverse fermion matrix (propagator) matters, not of the fermion matrix itself. This
might strongly increase the effect of a high level smearing.Thus it is unclear what the net effect of
smearing will be.

The outcome of the locality test by the BMW collaboration is shown in fig. 10(a). For this
test three different values of the lattice spacing were usedas indicated in the graph. The data
demonstrates that there is an exponentially fast decay of the norm of the variation of the lattice
Dirac operator with respect to the gauge fieldUµ(x+z) as a function ofz/a. Thus, an action with
6-levels of stout smearing still shows an exponential localization. In this respect, it is similar to
the locality properties of overlap fermions. Therefore, although a strict transfer matrix is missing
when high-levels of smearing are performed, the action can be considered as being local in the
field theoretical sense. It might still be that certain shortdistance quantities, such as the scalar
condensate, renormalization factors or the Coulomb part ofthe static potential are affected by
smearing. But, so far there is no convincing evidence for such a distortion. The positive –and,
maybe, rather surprising– outcome of the locality investigation of the BMW collaboration suggests
that it would be very worthwhile to investigate high-level stout smearing further on and test or rule
out possible conceptual shortcomings.

4.5 Fermions with exact/approximate lattice chiral symmetry

Domain wall fermions

Domain wall fermions [117, 118] areonly chiral invariant in the limit of aninfinite extra di-
mension. They are theoretically on the same footing (see ref. [119] and references therein) as
overlap fermions [120, 32, 121]. It is important to realize that truncating the number of slices in the
extra dimension is equivalent to reduce, e.g., the degree ofthe polynomial when constructing the
overlap operator. In both ways chirally improved actions are obtained. However, chiral symmetry
will be broken explicitly, the effects of which ought to be studied. For domain wall fermions such
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(a) The response of the Wilson Dirac operator
on a variation of a gauge field at a distancez/a.
The graph illustrates that locality is realized with
an exponentially fast decrease of the norm of
‖∂D(x,y)/∂Uµ (x+z)‖.
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(b) The residual massmresat fixed value of the extra dimension,Ls=

32, as a function of the gauge couplingβ . Note the logarithmic scale
indicating the exponentially fast vanishing ofmres.

Figure 10: Effects of smearing on the locality (left panel). The behaviour of the residual mass as function
of β (right panel).

investigations have been performed by the RBC-UKQCD collaborations in refs. [122, 123, 9]. The
outcome of these investigations is that chirality breakingeffects can essentially be quantified by the
size of the residual quark mass in relation to the quark mass values employed in the simulations.
When comparing the residual massmres with the sea and valence quark masses in recent domain
wall simulations, at a coarse value of the lattice spacing,mres is dangerously close to the sea quark
mass and even bigger than the valence quark mass. However, for smaller lattice spacing the situa-
tion improves considerably. It is worth to stress that domain wall fermion simulations are not too
much more expensive than Wilson-type fermion simulations as illustrated in fig. 4(a). In addition,
algorithmic tricks such as inexact deflation or multigrid ideas can also be applied for domain wall
fermions thus leading to possibly large improvement factors.

One interesting observation from recent domain wall simulations is the behaviour of the resid-
ual mass as a function of the lattice spacing. As fig. 10(b) shows, for a fixed value of the number of
slices in the extra dimensionLs the residual mass vanishes exponentially fast with decreasing lattice
spacing. Since the residual mass is proportional to the eigenvalue density at zero eigenvalues, this
means that at some value ofβ the topological charge will not change anymore. A corresponding
observation has been made by groups using the overlap operator [124]. These findings are a con-
sequence of the fact that at small enough values of the lattice spacing, the plaquette bound for the
existence of a spectral gap of the Wilson-Dirac operator of ref. [116] is satisfied leading to a spec-
tral gap of the corresponding kernel Dirac operator and therefore no topology change can occur.
This can lead to a severe conceptual problem for overlap or domain wall fermion simulations. The
spectral gap itself on the other hand is a consequence of the negative bare quark mass employed in
the kernel operator. For standard Wilson-type fermions, the bare quark mass is on the other hand
positive and hence the above arguments do not apply. Of course, this does not exclude that also
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standard Wilson-type fermions can run into problems with topology changes at large values ofβ .

Overlap fermions

The statement that the cost for overlap or domain wall fermions withexactlattice chiral sym-
metry is at least one order of magnitude larger than for Wilson or staggered fermions, is, unfor-
tunately still true today (see e.g. ref. [125]) although many developments and improvements have
already been taken place. The reasons are the nested iterations in inverting the operator and the
difficulty to tunnel between different topological charge sectors.

Nevertheless, simulations on small lattices are performednowadays and some first results are
emerging [126, 127, 128, 129, 130]. However, it seems to me that chiral invariant simulations in
lattice QCD are still a subject for the future1.

Fixed topology simulations

As a solution to the topology tunneling problem of overlap simulations, the usage of topology
fixing actions has been put forward since these actions avoidby construction the problem with
topology changes. Earlier attempts to use a modified gauge action to fix topology did not lead to
satisfactory results since it was not possible to fix topology completely when values of the lattice
spacings, say,a≈ 0.1fm were aimed at [135, 136].

As an alternative approach, the usage of a determinant ratio,

R= det
[

D2
W(−m0)

]

/det
[

D2
W(−m0)+µ2] (4.2)

has been proposed in ref. [137]. This constitutes another local modification of the gauge action
since the masses used in eq. (4.2) are taken to be large. In particular, the bare quark mass of
the Wilson Dirac operatorDW is taken to be negative which suppresses the occurrence of small
eigenvalues, forbidding therefore topology changes. A number of overlap fermion simulations
employing the determinant ratio of eq. (4.2) have already been performed [138, 139, 140, 35]. An
account of present simulations employing the determinant ratio is given in ref. [124].

In this still rather new approach to lattice QCD a number of issues have to be clarified such as
a test of the topological finite size effects [141, 142], the ergodicity of the simulations and possibly
long auto correlations. Nevertheless, I find this a very interesting way of obtaining the continuum
limit: in the continuum, the total topological charge will average out to zero, while local topological
charges will, of course, still appear. Thus, it is a valid andintriguing approach to fix topology to
zero from the very beginning and see how the system behaves towards the continuum limit. From
my point of view, this offers a nice alternative for QCD simulations.

4.6 Other approaches

There are more alternatives of lattice QCD formulations, such as FLIC fermions [143], chirally

1Note, however, that in chiral invariant Higgs-Yukawa like models which employ the overlap operator [131, 132,
133, 134] lattices with size 323 ·64 are used already.
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improved fermions [144], perfect action fermions [145] andHyp-link smearing techniques [112].
Simulations with these kind of fermions have not yet reachedas ambitious parameter values as
many of the large collaborations employ and which use the fermion formulations discussed above.

4.7 Summary of action discussion

There are a number of interesting fermion actions on the market. Each of them has certain
shortcomings the most important of which are:
O(a)-improved Wilson fermions: breaking of chiral symmetry, non-perturbative operator improve-
ment;
rooted staggered fermions: taste breaking, non-local lattice action;
twisted mass fermions: breaking of chiral symmetry, isospin breaking;
overlap fermion: expense of simulation;
domain wall fermions: expense of simulation and breaking of chirality;
smearing: effects of high levels of smearing;
fixed topology: topological finite size effects.

It seems that there is no ideal action which is obvious to select. Therefore, just to re-iterate,
a universality test showing which of these actions lead to consistent continuum limit values is a
necessity.

5. Chiral perturbation theory

The fact that nowadays pseudo scalar masses below 300MeV canbe reached, offers the pos-
sibility to confront the numerically obtained data with thecorresponding expressions from chiral
perturbation theory. It is important to realize that the values for the low energy constants obtained
from fits to chiral perturbation theory can be used in return for many phenomenological applica-
tions by inserting them into the relevant formulae of chiralperturbation theory. Thus a reliable
and precise calculation of the low energy constants is a mostvaluable outcome of lattice simula-
tions. In consequence, studying the mass dependence of manyphysical quantities in lattice QCD
is important and, of course, actively pursued.

When discussing chiral perturbation theory in the context of lattice simulations one has to
specify the setup in which the discussion is taking place. There are essentially three cases, (i) SU(2)
chiral perturbation theory applicable toNf = 2 mass degenerate quarks, (ii) the corresponding
SU(3) case and (iii) the case where we have light, mass-degenerate up and down quarks and a
strange quark at its physical value.

5.1 SU(2) chiral perturbation theory

The classical quantities to confront with chiral perturbation theory are the pseudo scalar mass
and the pseudo scalar decay constant which can be determinedvery precisely from lattice QCD
simulations. When a range of quark masses is considered thatcorresponds to an interval of pseudo
scalar masses of 250. mPS. 450MeV then it seems that the 1-loop chiral perturbation theory
formula (see refs. [146, 147] for the adequate fitting formulae) is applicable as seen in the examples
shown in fig. 3(a) (from ETMC) and fig. 3(b) (from the JLQCD collaboration). In fact, the data
are described by the 1-loop expression so well that there is no room for any sensitivity for the
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2-loop corrections. Fig. 3(b) also demonstrates that goingbeyond pseudo scalar masses of, say,
450MeV the chiral fits become problematic since fits using alternative expansion parameters lead
to significant differences.

A conclusion that for SU(2) chiral perturbation theory the 1-loop formula for the above given
mass range is satisfactory is, however, possibly pre-mature. Examples are the vector and the
charged radii of the pseudo scalar particle as computed by JLQCD [148] and ETMC [149]. Here,
a 1-loop chiral perturbation theory formula cannot describe the data appropriately and a NNLO
correction has to be taken into account. This holds true, even if the same range of pseudo scalar
masses is used for which the quark mass dependence offPS andmPS are described perfectly by
NLO chiral perturbation theory.

It is an open question, as to whether the failure to describe the pion radii by the 1-loop ex-
pression of chiral perturbation is due to the fact that even for 250. mPS. 450MeV the 2-loop
correction is necessary or, whether the zero quark mass asymptotics of different observables is
qualitatively different. To answer this question, presumably many quantities have to be fitted si-
multaneously such that the 2-loop low energy constants can be reliably determined. Having the
LECs in our hand, it will then become possible to quantify the2-loop corrections for given values
of the pseudo scalar mass.

5.2 SU(3) chiral perturbation theory

Up to my knowledge there has been so far no attempt to perform dedicated simulations with
Nf = 3 mass degenerate quarks to compare with chiral perturbation theory [150, 151]. In my
opinion such simulations would, however, be important for two reasons. The first is obviously that
we want to compare the low energy constants from a SU(3) chiral perturbation theory fit to the
corresponding case of SU(2). The second is that for the non-perturbative renormalization ofNf =

2+1 lattice QCD simulations preferably a massless renormalization scheme should be used which
requires simulations at a number of quark masses employingNf = 3 mass degenerate flavours and
then to perform an extrapolation to the chiral point. Such simulations would automatically generate
the set of data to confront to SU(3) chiral perturbation theory and are planned by e.g. by the MILC
collaboration [152].

5.3 Nf = 2+1

In most simulations we have the situation that 2 mass degenerate up and down quarks and a
strange quark close to its physical value are employed. The simulations are then performed by
varying the light quark masses while keeping the strange quark mass roughly constant in physical
units.

Attempts to describe then the mass dependence of the pseudo scalar decay constant up to the
Kaon scale by SU(3) chiral perturbation theory [153] are notsuccessful. In fig. 11(a) we give an
example from the PACS-CS collaboration [10, 154, 155] whichshows the comparison of the Kaon
decay constantfK to NLO chiral perturbation theory. Clearly, there is a largediscrepancy between
the measured values from the lattice simulations and chiralperturbation theory. The description of
the numerical data breaks down rather early in the quark massand any attempt to extend the formu-
lae up to the strange quark mass fails. Such a behaviour is also observed by other collaborations:
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(a) Applying NLO SU(3) chiral perturbation theory to
the Kaon decay constantfK (from the PACS-CS col-
laboration). A clear discrepancy between the numeri-
cal data and chiral perturbation theory predictions can
be observed.

(b) Application of continuum NNLO chiral
perturbation theory to staggered fermion sim-
ulations at a value of the lattice spacing of
a≈ 0.06fm.

Figure 11: Chiral perturbation theory forNf = 2+1.

the RBC-UKQCD collaboration [9, 156] uses an effective Kaonchiral perturbation theory to fix the
problem; in the case of staggered fermions, the lattice artefact corrections are taken into account
[157] which enlarges, however, the set of parameters to be fitted substantially. But still, a NLO for-
mula from chiral perturbation theory does not seem to be sufficient to describe the numerical data
up to the Kaon scale. It is therefore tried to use [158]continuumNNLO chiral perturbation theory
for the smallest value of the lattice spacing ofa= 0.06fm for staggered fermion simulations. This
is shown in fig. 11(b). Since further simulations at an even smaller value of the lattice spacing are
planned (or even already ongoing) this offers a nice way to reduce the number of free parameters
and test the applicability of chiral perturbation theory inthe continuum.

To summarize, forNf = 2 mass degenerate flavours of quarks chiral perturbation theory seems
to work very well, although it is not clear whether the NLO formula is applicable for all quantities.
The situation when adding the strange quark mass is problematic and a simple application of chiral
perturbation theory does not work. Here, some input and interaction with experts from chiral
perturbation theory is highly welcome.

6. Some additional issues

6.1 Mixed actions

In order to compute physical observables, often a mixed action approach is used. Here, the
kind of lattice fermions used for generating the configurations, thesea quarks, is different from the
kind of lattice fermions used to compute the propagators,the valence quarks. Such a procedure
is particularly useful, if we think of computationally veryexpensive fermions such as overlap or
domain wall fermions and if ’wrong chirality’ mixings in thetwisted mass regularization are to be
tackled [159]. In order to relate valence and sea quarks, an appropriate matching condition ought
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to be applied. To this end, typically the bare parameters of the valence quark action is tuned in
such a way that the pseudo scalar mass of sea and valence quarks match. Keeping such a matching
condition towards the continuum limit will then give a unitary theory in the continuum limit, at
least if the lattice sea and valence quark actions were unitary by themselves.

Although such a mixed action approach is therefore conceptually sound, it is not studied in
great detail yet. In particular, for any non-zero value of the lattice spacing very special lattice
artefacts can appear. For example, the scalar correlator can become negative and the lattice spacing
corrections towards the continuum limit can get additionalcontributions from the fact that the sea
and the valence quark masses are different [160, 161, 162, 163, 164, 165, 166].

To illustrate that care has to be taken in this mixed action approach I give two examples. The
first is a calculation of overlap valence quarks on a maximally twisted mass sea [167] at a value
of the lattice spacing of abouta≈ 0.09fm. While matching the pseudo scalar mass, the values of
the pseudo scalar decay constants show a remarkable discrepancy at the matching point,a f tm

PS =

0.0646(4) while a foverlap
PS = 0.077(4). Another example is a domain wall valence computation on a

rooted staggered sea [11] at a value of the lattice spacing ofabouta≈ 0.124fm. Again matching the
pseudo scalar mass, a significant difference in the nucleon mass is found:aMstaggered

nucleon = 0.723(6)
while aMdomainwall

nucleon = 0.696(7). Since in the continuum limit the values of physical observables
have to agree, these two examples hint at rather large lattice artefacts appearing in a mixed action
setup. Thus, a careful check of lattice artefacts will be very useful and is almost mandatory. Note,
however, that for closely related actions such as Osterwalder-Seiler quarks [168] on a twisted mass
sea [169] or unrooted staggered valence on rooted staggeredsea fermions, physical observables
seem to match better.

Fortunately, the lattice spacing effects in a number of mixed action formulations have been
analyzed in lattice chiral perturbation theory [160, 161, 162, 164, 170, 171, 172]. These formulae
can and have been used to describe the numerical data.

6.2 Non-perturbative renormalization

Doubtlessly, non-perturbative renormalization is a necessity in lattice QCD simulations. This
can be illustrated with the example of the strange quark mass, which obtains a value ofmperturbative

strange =

72±2±9MeV whilemnonperturbative
strange = 105±3±9MeV [91]. Note that the values of the perturbative

renormalized strange quark mass taken here from ETMC is fully consistent with the corresponding
PACS-CS result [10]. A similar picture emerges for the lightquark masses.

In order to obtain the non-perturbatively evaluated renormalization constants in amass in-
dependentrenormalization scheme, either the RI-MOM [173] or the Schrödinger functional (SF)
scheme [174, 175] can be used. In the former case, an extrapolation to the chiral limit has to be
performed, while in the second case the theory can be simulated directly at or close to zero quark
masses.

For the case ofNf = 2 mass degenerate quarks such procedures have been already successfully
applied, see [176]. For the case ofNf = 2+1, there is the additional complication that the strange
quark mass is kept close to its physical value. Therefore, inorder to obtain a massless renormal-
ization scheme, additional runs withNf = 3 mass degenerate quarks would have to be performed
in principle. Such simulations are not available yet but e.g. MILC is planning such runs [152].
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Figure 12: Omega mass and finite size effects ofgA.

As mentioned above such simulations have the additional advantage that SU(3) chiral perturbation
theory can be checked and eventually the SU(3) low energy constants be extracted.

For the time being, collaborations such as RBC-UKQCD try to estimate the systematic effects
coming from a fixed and rather large strange quark mass and addthis as a systematic error in the
renormalization constants [9]. However, this needs an explicit check. Also, first investigations with
the SF scheme andNf = 3 flavours of quarks are under way [177]. For theoretical discussion of SF
boundary conditions at this conference see [178, 97].

6.3 Effects of strange quark

Often a question is asked whether the results fromNf = 2 flavours of quarks are reliable
since the strange quark is neglected and taken only as a valence quark in the calculation of various
observables.

In order to see any effects of a dynamical strange quark, a most sensitive quantity should be the
Ω baryon which consists of three strange quarks and has no strong decay. In fig. 12(a) results from
computations of MILC [8] (which has a dynamical strange quark) and ETMC [179] (which uses
only up and down quarks in the sea) for theΩ baryon are compared at various values of the lattice
spacing keepingr0mPS fixed. Within the error bars, no evidence of an effect of the strange quark
mass is seen. To reveal such an effect, presumably the error bars would have to shrink substantially.
Up to my knowledge, also in other quantities no evidence (with possibly the exception offDs) of
the relevance of a dynamical strange quark has been observedso far and it will be interesting to see
in the future whether and when such effects show up.

6.4 Finite size effects

Simple mesonic quantities such asmPS and fPS are computed so precisely in present day
numerical simulations that effects of a finite volume are clearly visible and become a dominant
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systematic error. However, it seems that the analysis performed in ref. [147] provides an adequate
description of the finite size effects formPS and fPS as confirmed by many groups. In particular, if
values ofmPSL& 3.5 are used, while keepingL itself large enough to avoid squeezing effects of the
wave function [180, 181], the finite size effects are at the percent level and can be fully controlled
by applying the formulae of ref. [147].

However, the nice results for these basic mesonic quantities cannot be taken over automatically
to other quantities. As demonstrated in fig. 12(b) by the example of gA (discussed by the QCDSF
collaboration [182]), other quantities may have finite volume effects that can reach 15%-20%.
Similar finite volume effects were observed for the ratiogA/gV by the RBC-UKQCD collaboration.
Thus, finite volume effects need to be carefully investigated on a case by case study.

6.5 Topology

The question of topology on the lattice is one of the most interesting and difficult one to
address. However, in the last years, we have seen much progress in this direction [183, 184, 185,
186, 187]. As only one example I show in fig. 13(a) the mass dependence of the topological
susceptibility towards the chiral limit as obtained by the RBC-UKQCD collaboration. The point I
want to make here is that the topological susceptibility shows the right behaviour towards the chiral
limit in that it vanishes as we approach massless quarks. This behaviour is also seen from other
formulations, see the references given above.

As a second example for a quantity which is directly related to topology, I show in fig. 13(b)
theη2 mass fromNf = 2 simulations. Theη2 mass is the analogue of theη ′ mass forNf = 2+1.
Using the much improved algorithms for the simulations, advances of computing disconnected
diagrams as well as new methods, it is possible to reach smallvalues of the pseudo scalar mass and
small errors for this difficult to compute quantity. The graph, compiled by ETMC, ref. [94], reveals
a basically flat behaviour of theη2 mass as a function of the pseudo scalar mass and confirms that at
the physical point a value of theη2 mass ofMη2 ≈ 865MeV can be extracted thus showing a large
contribution to the mass by topological effects. Note that with Nf = 1 dynamical quarks [188] the
correspondingη ′ (η1) mass comes out to be 330(20) MeV, in agreement with the Witten-Veneziano
formula.

6.6 Getting social

As a last section in this discussion of a number of selected topics concerning lattice QCD
simulations, I would like to address the communication within our lattice community. Although
a strong competition between various “dynasties” of international collaborations is very welcome,
there are, in my opinion, some easy to realize ways to homogenize our efforts and give therefore a
more coherent picture to the outside world.

ILDG: It would be very good if all collaborations were willing to upload their configurations to
the ILDG. Although there an initial threshold effort, afterwards using ILDG tools become rou-
tine and a number of collaborations employ the ILDG tools successfully and efficiently already
in their daily work. The usage of the ILDG format for the configurations allows for an easy ex-
change of configurations that can provide valuable cross checks among different collaborations.
See refs. [189, 190, 191, 66] for overviews of ILDG activities.
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(a) Topological susceptibility from the RBC-UKQCD
collaboration in the approach to the chiral limit. In
particular, the data on the larger lattice indicate that
the topological susceptibility will vanish when massless
quarks are reached.

DWF r0/a = 4.28
CP-PACS r0/a = 4.49
UKQCD r0/a = 5.04
UKQCD r0/a = 5.32

ETMC β = 4.05
ETMC β = 3.90 L = 32
ETMC β = 3.90 L = 24

(r0mπ)2

r 0
m

η

210

3

2

1

0

(b) Theη2 mass (the analogue of theη ′ mass
for two flavours of quarks) as a function of the
pseudo scalar mass. The flatness in the mass
dependence allows an estimate at the physical
point ofη2 ≈ 865MeV.

Figure 13: The topological susceptibility and theη2 mass.

Codes:The algorithms used for present days simulations have become rather complicated and it
is no longer true that it takes a few days to write a Hybrid Monte Carlo code that includes state of
the art improvements from scratch. In such a situation, it would be very good if such complicated
codes could be made available to the lattice community, preferably as an open source platform such
that useful additions can be implemented. Examples of published codes are [192, 193, 194]. Other
collaborations are encouraged to follow up on these examples.
Details: As discussed at length in the preceding sections, the results from lattice simulations suffer
from a number of systematic effects that have to be controlled as well as possible. In order to be
able to judge whether this has been achieved in the work of a particular collaboration, it would
therefore be necessary to know about the details of the simulation, the analysis and the estimates
of the systematic effects. Therefore, I would like to encourage all the collaborations to not only
publish high gloss papers with final results, but also technical papers with all technical details of
their work. This will allow everybody to judge and cross-check the results, but may also teach us
about the techniques and whether they are of interest for other collaborations. In addition, it would
be very useful to publish tables of raw data. Another aspect is to perform blind analyses in order to
avoid possible human interfaced biases.

7. Conclusions

The main message of this proceeding is the very substantial progress lattice field theory has
achieved in the last years. Due to algorithmic breakthroughs, (see fig. 4), as the major factor in
combination with a significant increase of super computer power and conceptual developments,
several international collaborations are nowadays performing simulations that were unthinkable
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even a few years ago. In particular, in lattice QCD we are now reaching lattice spacing values of
a≈ 0.05fm, pseudo scalar masses of about 250MeV and below and box sizes with linear extent of
L ≈ 3fm. Using O(a) improved lattice actions allows eventually for controlledcontinuum, chiral
and infinite volume extrapolations. Fig. 1 summarizes the values of the lattice spacing and pseudo
scalar masses that are covered in typical simulations presently.

Examples of physical results that are available already nowand which are computed as con-
tinuum quantities with systematic errors taken into account are the baryon spectrum as represented
in fig. 2 and the precise determinations of several low energyconstants, see fig. 3. Many more
physical results are to be expected in the near future since much of the raw data of lattice QCD, the
dynamically generated gauge field configurations, exist already or will be generated soon. They
are partly stored on the International Data Grid where they are often freely available.

Despite this undeniable progress, caveats remain. The actions employed for the dynamical
simulations lead to systematic errors that need to be controlled such as explicit breaking of chiral
symmetry, isospin and taste breaking, high-level of smearing and non-locality. In addition, the
various actions show different kind of lattice artefacts. Therefore, a check is needed that different
lattice fermion formulations lead to the same continuum limit values and a test of this universality
is, in my opinion, one of the most urgent demands in lattice QCD. This problem is highly non-
trivial as fig. 7(a) demonstrates: here a compilation of manyavailable lattice results for the pseudo
scalar decay constant reveals a warning: no common scaling is observed when different lattice
fermions are considered. This is in contrast to the nucleon mass of fig. 6(a) where a good overall
lattice spacing scaling can be observed.

There are also a number of open questions that remain to be clarified: how to use chiral
perturbation theory when a dynamical strange is fixed at its physical value? Related to this is the
question of how best to extrapolate e.g. baryons and other quantities to the physical point. How
about the non-perturbative renormalization in the case ofNf = 2+1 flavours? Can we control the
finite volume effects for quantities different from simple mesonic observables? Should we include
the charm as a dynamical degree of freedom and what will be thelattice artefacts? How to best
treat unstable particles in lattice QCD? These are some of the challenges that the lattice QCD
community has to address and solve.

Although there are for sure still a number of obstacles to overcome, lattice QCD simulations
have finally become realistic. The physics coming out of suchsimulations have therefore to be
discussed prudently. And, just to finish, it is maybe indeed the time now to make a serious effort
towards a lattice particle data booklet.
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