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Abstract

Haisheng Li showed that given a module (W,YW (·, x)) for a vertex algebra
(V, Y (·, x)), one can obtain a new V -module W∆ = (W,YW (∆(x)·, x)) if ∆(x) sat-
isfies certain natural conditions. Li presented a collection of such ∆-operators for
V = L(k, 0) (a vertex operator algebra associated with an affine Lie algebras, k
a positive integer). In this paper, for each irreducible L(k, 0)-module W , we find
a highest weight vector of W∆ when ∆ is associated with a miniscule coweight.
From this we completely determine the action of these ∆-operators on the set of
isomorphism equivalence classes of L(k, 0)-modules.
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1 Introduction

Haisheng Li introduced his ∆-operators in a very general setting in [Li1]. These operators
allow one to obtain new vertex algebra modules from old ones by modifying the vertex
algebra’s action on the module while leaving the underlying vector space unchanged.
Thus, given a vertex algebra V and a collection ∆-operators, we obtain (usually quite
interesting) symmetries of the category of V -modules.

Consider the ĝ-module L(k, 0) = L(kΛ0) where k is a positive integer and ĝ is an
untwisted affine Lie algebra. It is well known that L(k, 0) has the structure of a vertex
operator algebra (VOA), and that ĝ-modules L(k, λ) for certain λ are modules for this

VOA. Define ∆(H, x) = xH(0) exp

(∑

n≥1

H(n)

−n
(−x)−n

)
where H is a coweight of g (the

underlying finite dimensional Lie algebra). If (W,Y (·, x)) is an L(k, 0)-module, then
(W,Y (∆(H, x)·, x)) (call this module W (H)) is also an L(k, 0)-module. In fact, Li proved

Sadowski acknowledges support from the the Rutgers Mathematics/DIMACS REU Program during
the summers of 2007 and 2008, and NSF grant DMS-0603745.
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[Li2] that these two modules are equivalent if H is a coroot. However, when H is not
a coroot, we may get a new (inequivalent) module. So, using Li’s ∆-operators we can
induce an action on the equivalence classes of L(k, 0)-modules. In his thesis [C] (see also
[CLM]), the first author was able to use these operators to obtain recurrence relations
for characters of integrable highest weight ĝ-modules which in turn lead to interesting
combinatorial identities. These recurrence relations were obtained by studying the effect
of ∆(H, x) (for H a coroot) on characters. If we consider a coweight instead of a coroot,
we obtain a relation between the characters of two different integrable ĝ-modules.

In this paper, we completely determine the action of ∆(H, x) on equivalence classes
of L(k, 0)-modules for all coweights H .

First, recall that L(k, 0) is a regular VOA. This implies (among other things) that its
modules are completely reducible. This means that we just need to determine ∆(H, x)’s
action on irreducible L(k, 0)-modules (these are precisely the integrable ĝ-modules of level
k).

Next, we know that the miniscule coweights provide a complete set of coset repre-
sentatives for the coweight lattice modulo the coroot lattice. So, since the coroots give
back equivalent modules, it is enough to study the action of ∆(H, x) on an irreducible
L(k, 0)-module L(k, λ) where H is one of the miniscule coweights. To determine which
module L(k, λ(H)) is obtained from L(k, λ) via the ∆(H, x)-action, it is enough to identify
a highest weight vector and “measure” its weight.

In this paper, we explicitly determine a highest weight vector for L(k, λ)(H) – that is,
the module (L(k, λ), Y (∆(H, x)·, x)) – if L(k, λ) is an L(k, 0)-module and H is a miniscule
coweight (of g).

Recall that the ĝ-modules L(k, λ) are induced up from g-modules L(λ) and in fact L(λ)
(the “finite dimensional part”) makes up the lowest conformal weight space of L(k, λ).
Now let us change the action of L(k, λ) from Y (·, x) to Y (∆(H, x)·, x) where H is a
miniscule coweight. We get a new L(k, 0)-module action while leaving the underlying
vector space fixed. It is interesting to note that in each case, the highest weight vector
stays inside the lowest conformal weight space of L(k, λ). Li in [Li2] considered the special
case, L(k, 0), and found that the old highest weight vector (which is the vaccuum vector)
is also the new highest weight vector. This happens because the lowest conformal weight
space is 1 dimensional – that is, the vector has nowhere to go. On the other hand, when
we consider L(k, λ), λ 6= 0, the lowest conformal weight space is bigger and so the highest
weight vector moves and thus is harder to find.

One rather interesting feature of the action of ∆(H, x) is that the restriction on λ
so that L(k, λ) is an L(k, 0)-module shows up explicitly in this action. We know that if
L(k, λ) is an L(k, 0)-module, then 〈λ, θ〉 ≤ k where θ is the highest long root of g. In each
case, when acting on L(k, λ) with ∆(H, x) where H is the jth miniscule coweight, we see
that the coefficent of λj (the jth fundamental weight) is replaced by k − 〈λ, θ〉.

Without making any changes, the calculations and proofs involved in determining the
new highest weight vectors of the L(k, 0)-modules L(k, λ)(H) apply to any V (k, 0)-module
as well (V (k, 0) is a generalized Verma module which also has VOA structure). It is
well known that L(k, λ) where λ is a dominant integral weight of g is a V (k, 0)-module.
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However, if 〈λ, θ〉 > k (so that L(k, λ) is not an L(k, 0)-module), then the ∆(H, x)-action

will produce an (irreducible) weak V (k, 0)-module L(k, λ(H)). But L(k, λ(H(j))) is not a

V (k, 0)-module (as a VOA) since the coffecient of λj in λ(H(j)) is negative (and thus not
a dominant integral weight). So for V (k, 0)-modules, the ∆-action can move (strong)
modules to weak modules.

This paper grew out of the second author’s summer research experience for under-
graduates (REU) mentored by the first author and Yi-Zhi Huang at Rutgers University
during the summer of 2007.

It is interesting to note that Li’s ∆-operators also allow one to create new intertwining
operators from old ones ([Li2], Proposition 2.12). In fact, since the ∆-operators are
invertible, they give isomorphisms between spaces of intertwining operators. Therefore,
using the results above, one can obtain symmetries of fusion rules. This is the topic of a
future project of the authors with Sjuvon Chung and Yi-Zhi Huang.

The authors would like to thank Yi-Zhi Huang for his encouragement and advice
throughout this project.

The contents of the paper are organized as follows:
In the second section, we begin by reviewing the definition of a vertex operator algebra

and its modules. Then, we set up all of the necessary notation related to finite dimensional
simple Lie algebras and untwisted affine Lie algebras and conclude by introducing Li’s
∆-operators and performing some preliminary calculations.

The third section illustrates our results in the most basic case – that of ĝ = ŝl2.
The fourth section tackles the general case where we must consider the effects of the ∆-
operators one type at a time. In the course of deriving these results, we need to perform
some tedious Weyl group calculations. The calculations for types Bℓ, Cℓ, and Dℓ are
located in an appendix (the fifth section). The appendix also contains a summary of
results for types E6 and E7. The calculations for types E6 and E7 were performed in
Maple using a modified version of a worksheet developed by the first author for another
project [CMS].

2 Definitions and Background

We will begin by reviewing the definition of a vertex operator algebra and its modules.
Further details can be found in [LL].

2.1 Vertex Algebras

A vertex algebra is a complex vector space V equipped with a linear map,

Y (·, x) : V → (EndV )[[x, x−1]]

v 7→ Y (v, x) =
∑

n∈Z

vnx
−n−1
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and a distinguished vector 1 ∈ V (the vacuum vector) such that for u, v ∈ V , unv = 0 for
n sufficiently large. The operator un is called the nth-mode of u.

It is assumed that the vacuum vector behaves like an identity in that Y (1, x) = IdV

and for v ∈ V

Y (v, x)1 ∈ V [[x]] and lim
x→0

Y (v, x)1 = v (the creation axiom).

Finally, we also must require that the Jacobi Identity holds: for all u, v ∈ V

x−1
0 δ

(
x1 − x2

x0

)
Y (u, x1)Y (v, x2)− x−1

0 δ

(
x2 − x1

−x0

)
Y (v, x2)Y (u, x1)

= x−1
2 δ

(
x1 − x0

x2

)
Y (Y (u, x0)v, x2) (2.1)

Please note that δ(x) =
∑

n∈Z x
n is the formal delta function and we adopt the binomial

expansion convention, namely, (x+ y)n should be expanded in non-negative powers of y.
The vertex algebras that we will consider have additional structure making them vertex

operator algebras. A vertex operator algebra is a vertex algebra V with the following
additional data:

V is a Z-graded vector space V =
∐

n∈Z V(n) (over C) such that dim V(n) < ∞ for all
n ∈ Z and V(n) = 0 for n sufficiently negative.

Elements of V(n) are said to have conformal weight n. The vacuum must have conformal
weight 0 (e.g. 1 ∈ V(0)).

V has a second distinguished vector ω ∈ V(2) (the conformal vector), where

Y (ω, x) =
∑

n∈Z

ωnx
−n−1 =

∑

n∈Z

L(n)x−n−2

The modes of the conformal vector satisfy the Virasoro relations:

[L(m), L(n)] = (m− n)L(m+ n) +
m3 −m

12
δm+n,0 cV for m,n ∈ Z. (2.2)

The scalar cV ∈ C is called the central charge (or rank) of V . Finally, we must require
that

Y (L(−1)v, x) =
d

dx
Y (v, x) for v ∈ V, (2.3)

V(n) = {v ∈ V |L(0)v = nv} for n ∈ Z.

Let V be a vertex algebra. A V -module is a complex vector space W equipped with
a linear map

YW (·, x) : V → (EndW )[[x, x−1]]

v 7→ Y (v, x) =
∑

n∈Z

vnx
−n−1
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such that for v ∈ V and w ∈ W , vnw = 0 for n sufficiently large. Also, YW (1, x) = IdW

and the Jacobi identity holds.
If V is a vertex operator algebra, we say W is a (strong) V -module if W is a module

for V thought of as a vertex algebra and in addition W is a C-graded vector space W =∐
n∈Z W(n) where W(n) = {w ∈ W |L(0)w = nw} such that for all n ∈ C dimW(n) < ∞

and W(n+r) = 0 for r sufficiently negative.
If W is a vertex algebra module for a vertex operator algebra V , we say that W is a

weak V -module.

2.2 Affine Lie Algebras

Following [H] and [K], we now establish some notation and review some basic definitions
and facts concerning (untwisted) affine Lie algebras.

Let g be a finite dimensional simple Lie algebra of rank ℓ (over C). Fix a Cartan
subalgebra h ⊂ g, and let 〈·, ·〉 be the standard form such that ‖α‖2 = 〈α, α〉 = 2 for
any long root α. Let ∆ be the set of roots of g. Fix a set of simple roots {α1, . . . , αℓ},
simple coroots {H1, . . . , Hℓ}, and Chevalley generators {Ei, Fi, Hi | i = 1, . . . , ℓ}. Recall
that αj(Hi) = aij where C = (aij)

ℓ
i,j=1 is the Cartan matrix of g Let ∆+ ⊂ ∆ be the

system of positive roots corresponding to the α’s. We have the triangular decomposition:

g = g+ ⊕ h⊕ g− where g± =
∑

α∈∆+

g±α

Let {λ1, . . . , λℓ} ⊂ h∗ be the fundamental weights and let {H(1), . . . , H(ℓ)} be the
fundmental coweights. Of course, the fundamental weights are dual to the simple coroots
(i.e. λi(Hj) = δij) and the fundamental coweights are dual to the simple roots (i.e.

αi(H
(j)) = δij). We should also note that Hi =

∑ℓ
i=1 ajiH

(j).
Let Q and P denote the root lattice and weight lattice of g, respectively:

Q = Zα1 + · · ·+ Zαℓ and P = Zλ1 + · · ·+ Zλℓ

and let Q∨ and P ∨ denote the coroot lattice and coweight lattice of g, respectively:

Q∨ = ZH1 + · · ·+ ZHℓ and P ∨ = ZH(1) + · · ·+ ZH(ℓ).

Define the set of dominant integral weights by:

P+ = {λ ∈ h∗|λ(Hi) ∈ Z≥0, 1 ≤ i ≤ ℓ}

For λ ∈ h∗, define the Verma module of highest weight λ by:

V (λ) = U(g)⊗U(h⊕g+) Cλ, (2.4)

where Cλ is a 1-dimensional h⊕ g+-module given by:

h · 1 = λ(h) for all h ∈ h and
g · 1 = 0 for all g ∈ g+.
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Let J(λ) be the maximal proper submodule of V (λ). Then L(λ) = V (λ)/J(λ) is an
irreducible (highest weight) g-module. Of course, L(λ) is finite dimensional if and only if
λ ∈ P+.

Let α be a root, then the map σα : h∗ → h∗ defined by

σα(λ) = λ−
2〈α, λ〉

‖α‖2
α = λ−

2〈α, λ〉

〈α, α〉
α

is called the reflection associated with α (notice that σα(α) = −α and σ2
α = Idh∗). The

group W generated by these reflections is called the Weyl group of g. Let σi = σαi
for

each simple root αi. The σi’s are called simple reflections. It is well known that W is
generated by simple reflections. The elements of W are isometries (with respect to the
standard form) of h∗. Note: We can (and do) transport the action of W on h∗ to an action
on h using the standard form.

The (untwisted) affine Lie algebra associated with g is given by

ĝ = g⊗ C[t, t−1]⊕ Cc, (2.5)

where for a, b ∈ g, m,n ∈ Z,

[a⊗ tm, b⊗ tn] = [a, b]⊗ tm+n +m〈a, b〉δm+n,0c, (2.6)

[ĝ, c] = 0.

For a ∈ g, n ∈ Z, let a(n) denote the action of a ⊗ tn ∈ ĝ on a ĝ-module. Let
θ =

∑ℓ

i=1 aiαi be the highest long root of g, and choose (non-zero) vectors Eθ ∈ gθ and
Fθ ∈ g−θ such that 〈Eθ, Fθ〉 = 1. Let Hθ = [Eθ, Fθ]. Define

e0 = Fθ ⊗ t, f0 = Eθ ⊗ t−1, and h0 = [e0, f0] (2.7)

and for i = 1 · · · ℓ define:

ei = Ei ⊗ 1, fi = Fi ⊗ 1, and hi = Hi ⊗ 1. (2.8)

Then, by [K], {ei, fi, hi | 0 ≤ i ≤ ℓ} is a set of Chevalley generators for ĝ.
Let ĝ>0 = g ⊗ tC[t] and ĝ0 = g ⊗ 1 ⊕ Cc. Also, let ĝ≥0 = ĝ>0 ⊕ ĝ0 = g ⊗ C[t] ⊕ Cc

and fix a scalar k ∈ C. We can make L(λ) into a ĝ≥0-module by extending the action of
g = g⊗ 1 as follows:

c · v = kv for all v ∈ L(λ) and
x · v = 0 for all x ∈ g>0.

We now induce up to a ĝ-module:

V (k, λ) = U(ĝ)⊗U(ĝ≥0) L(λ).

V (k, λ) is a generalized Verma module.
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Unless k is the negative of the dual Coxeter number of g, V (k, 0) has the structure of
a vertex operator algebra. For such k, V (k, λ) is a weak V (k, 0)-module for all λ ∈ h∗.
Moreover, V (k, λ) is a (strong) V (k, 0)-module if (and only if) λ ∈ P+.

Let J(k, λ) be the maximal proper submodule of V (k, λ), and define

L(k, λ) = V (k, λ)/J(k, λ).

If k is not the negative of the dual Coxeter number of g, then L(k, 0) has the structure of
a simple vertex operator algebra, and each L(k, λ) is an irreducible weak (unless λ ∈ P+)
V (k, 0)-module.

If k is a positive integer, then

Theorem 2.1. [DL] L(k, λ) is an L(k, 0)-module if and only if 〈λ, θ〉 ≤ k, where θ is the
highest long root of g.

2.3 Li’s ∆-Operators

Now, let Let H ∈ P ∨. Set

∆(H, x) = xH(0) exp

(∑

n≥1

H(n)

−n
(−x)−n

)
(2.9)

(recall the H(n) is the action of H ⊗ tn on a ĝ-module).
Note that ∆(H, x) enjoys the following properties:

∆(H1 +H2, x) = ∆(H1, x)∆(H2, x), (2.10)

∆(0, x) = Id. (2.11)

We fix the notation (L(k, λ)(H), Y
(H)
L(k,λ)(·, x)) = (L(k, λ), YL(k,λ)(∆(H, x)·, x)).

For v ∈ L(k, 0), set

Y
(H)
L(k,λ)(v, x) = YL(k,λ)(∆(H, x)v, x) =

∑

n∈Z

v(H)(n)x−n−1. (2.12)

Let us take care of some preliminary calculations involving ∆(H, x). For g ∈ gβ,
β ∈ ∆ ∪ {0}, so that [h, g] = β(h)g for all h ∈ h (Here, g0 = h), we have:

[h(m), g(−1)] = [h, g](m− 1)1+m〈h, g〉(m− 1)1+ δm−1,0k1 (2.13)

= β(h)g(m− 1)1+ 〈h, g〉δm,1k1 (2.14)

=

{
β(h)g(−1)1 m = 0

〈h, g〉kδm,11 m > 0
. (2.15)

Note that g(m− 1)1 = 0 for m > 0 by the creation axiom.
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We also have (for any g ∈ g):
(∑

m≥1

H(m)

−m
(−x)−m

)
g = 〈H, g〉k1x−1.

and for n ≥ 2

(∑

m≥1

H(m)

−m
(−x)−m

)n

g = k〈H, g〉x−1

(∑

m≥1

H(m)

−m
(−x)−m

)n−1

1 = 0 (2.16)

(again using the creation axiom, H(m)1 = 0 for m ≥ 1).
Therefore,

∆(H, x)g = xH(0)g + xH(0)〈H, g〉k1x−1 (2.17)

= xβ(H)g + 〈H, g〉k1x−1. (2.18)

Applying this to our vertex operator map, we have:

Y (H)(g, x) = Y (∆(H, x)g, v) (2.19)

= xβ(H)Y (g, x) + 〈H, g〉k(Id)x−1. (2.20)

Let k be a positive integer and λ ∈ P+ (a dominant integral weight). In addition,
assume that 〈λ, θ〉 ≤ k so that L(k, λ) is an (irreducible) L(k, 0)-module. It was proved

in ([Li2], Proposition 2.9) that (L(k, λ)(H), Y
(H)
L(k,λ)) carries the structure of an irreducible

(weak) L(k, 0)-module. However, since L(k, 0) is a regular vertex operator algebra, its
weak modules are in fact (strong) modules. So we have that

Proposition 2.2. There exists a (unique) λ(H) ∈ P+ such that 〈λ(H), θ〉 ≤ k and (L(k, λ))(H) ∼=
L(k, λ(H)) as L(k, 0)-modules.

Also, Li established that

Theorem 2.3. ([Li2], Proposition 2.25) For H ∈ Q∨, (L(k, λ))(H) and L(k, λ) are iso-
morphic as L(k, 0) modules.

That is, in our notation, λ(H) = λ when H ∈ Q∨.
Our objective is to see what happens when we allow H to be any element of P ∨ (not

just Q∨).
Because ∆(H ′ +H ′′, x) = ∆(H ′, x)∆(H ′′, x), we have the following:

L(k, λ(H′+H′′)) ∼= L(k, λ)(H
′+H′′)

= (L(k, λ)(H
′))(H

′′)

∼= L(k, λ(H′))(H
′′)

∼= L(k, (λ(H′))(H
′′))

8



Therefore, λ(H′+H′′) = (λ(H′))(H
′′).

The coweights {H(1), . . . , H(ℓ)} form a basis for P ∨ and so, by the observation above, all

we need to find is action of ∆(H(i), x). Let us fix the notation (L(k, λ))(i) = (L(k, λ))(H
(i))

and λ(i) = λ(H(i)) for i = 1, . . . , ℓ that is L(k, λ(i)) ∼= (L(k, λ))(i) = (L(k, λ))(H
(i)).

Actually, since the operators associated with coroots act trivially, we only need to
consider one representative for each coset of P ∨/Q∨. This pares down the list of coweights
considerably.

We know that the irreducible L(k, 0)-modules are precisely the irreducible integrable
highest weight modules (i.e. standard modules) for ĝ ([DL]). Now, an irreducible highest
weight module is completely determined by its highest weight. Therefore, if we can locate
a highest weight vector in (L(k, λ))(i) and measure its weight, we have determined λ(i)

and thus the action of ∆(H(i), x) on L(k, λ).
Now, for our Chevalley generators ei, fi, hi 0 ≤ i ≤ ℓ, we define ei

(j) to be the action
of ei on L(k, λ(j)), fi

(j) to be the action of fi on L(k, λ(j)), and hi
(j) to be the action of hi

on L(k, λ(j)). Let us calculate these actions:

Y (j)(Hi, x) = Y (∆(H(j), x)Hi, x)

= Y (Hi, x) +
2k

‖αi‖2
δi,jx

−1

and so we have that

(Hi)
(j)(0) = Hi(0) +

2k

‖αi‖2
δi,j. (2.21)

For ei, 1 ≤ i ≤ ℓ, we have

Y (j)(Ei, x) = Y (∆(H(j), x)Ei, x)

= xαi(H(j))Y (Ei, x)

= xδi,jY (Ei, x)

and so
ei

(j) = Ei
(H(j))(0) = Ei(δi,j). (2.22)

Finally, for e0, we have:

Y (j)(Fθ, x) = Y (∆(H(j), x)Fθ, x)

= x−θ(H(j))Y (Fθ, x)

= x−ajY (Fθ, x),

(recall that θ =
∑ℓ

i=1 aiαi) and so

e0
(j) = Fθ

(j)(1) = Fθ(1− aj). (2.23)
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3 The sl2(C) case

Before answering our question for all finite dimensional simple Lie algebras let us consider
the simplest case – that of g = sl2(C).

Let E =

(
0 1
0 0

)
, F =

(
0 0
1 0

)
, andH =

(
1 0
0 −1

)
. We know that E, F,H are Cheval-

ley generators of sl2(C). Let α be the fundamental root of sl2(C) (that is, α(H) = 2),
and λ = 1

2
α be the fundamental weight of sl2(C). Since α is the only positive root, it is

the highest long root – that is α = θ.
Then, H is the coroot corresponding to α andH(1) = 1

2
H is the coweight corresponding

to λ.
In the sl2(C) case, we denote L(k, nλ) by L(k, n). Let k be a positive integer and

n ∈ Z such that 0 ≤ n ≤ k.

Theorem 3.1. (L(k, n))(1) ∼= L(k, k − n)
Moreover, if v is a highest weight vector for L(k, n), then F (0)nv is a highest weight vector
for (L(k, n))(1) (with weight Λ = (k, (k − n)λ)).

Proof. Since −θ = −α, we have F = Fθ and so, recalling (2.7), we have e0 = Fθ⊗t = F⊗t.
By (2.23), we have that e0

(1) · w = F (0) · w. Therefore,

e0
(1) · F (0)nv = F (0) · F (0)nv = F (0)n+1 · v = 0

by the representation theory of sl2(C).
Next, we have

e1
(1) · F (0)nv = E(1)F (0)nv.

Since L(k, n) is a vertex operator algebra module, we can consider conformal weights.
Notice that as operators wt F (0) = wt (F )−0−1 = 0 and wt E(1) = wt (E)−1−1 = −1.
This implies that e1

(1) · F (0)nv has a lower (conformal) weight than v. However, the
highest weight vector occupies the lowest (conformal) weight space of L(k, n). Thus
e1

(1)F (0)nv = 0. Therefore, F (0)nv is a highest weight vector for (L(k, n))(1).
Now let us determine the weight of F (0)nv. We will use the fact that [H,F n] = −2nF n

(in U(sl2)).

(H)(1) · F (0)nv = H(0)F (0)nv + kF (0)nv

= F (0)nH(0)v + [H(0), F (0)n]v + kF (0)nv

= nF (0)nv − 2nF (0)nv + kF (0)nv

= (k − n)F (0)nv.

Hence, (L(k, n))(1) ∼= L(k, k − n).

Remark 3.2. The lowest conformal weight space of L(k, n) is a copy of L(nλ) (the finite
dimensional sl2-module with highest weight nλ). The highest weight vector of L(k, n) is
located in this (lowest) conformal weight space.

Observe that the new highest weight vector for (L(k, n))(1) is also located in this copy of
L(nλ). In fact, we can obtain the new highest weight vector from the old one by applying
the (only) reflection in the Weyl group of sl2.
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4 The General Case

Recall that, given an irreducible L(k, 0)-module W and coroot H , W (H) and W are
isomorphic as L(k, 0)-modules. This, along with the fact that W (H′+H′′) is isomorphic to
(W (H′))(H

′′), implies that we only need to consider one representative from each distinct
coset of P ∨/Q∨. It is well known that H = 0 (which acts as the identity – W (0) = W ),
along with the miniscule coweights, give us a complete set of coset representatives. We
give a list of such coweights below:

Type Aℓ Bℓ Cℓ Dℓ E6 E7

Coweights H(1), . . . , H(ℓ) H(1) H(ℓ) H(1), H(ℓ−1), H(ℓ) H(1), H(6) H(7)

Table 4.1

Types E8, F4, and G2 have no miniscule coweights, so the action of ∆(H, x) is always
trivial.

Given any coweight H from this list, we wish to determine λ(H) such that (L(k, λ))(H)

is isomorphic to L(k, λ(H)). To do this, we need to identify a highest weight vector for
(L(k, λ))(H) and then measure its weight. We will see that in each case our “new” highest
weight vector (for (L(k, λ))(H)) is located in the lowest (conformal) weight space. This
lowest (conformal) weight space is a copy of L(λ) – the finite dimensional g-module from
which L(k, λ) is built. In fact, our “new” highest weight vector can be obtained from our
“old” highest weight vector by applying the following Weyl group elements (For each type

Xℓ and coweight H(j), define and element σ
(j)
X as follows):

Type Weyl Group Element

Aℓ 1 ≤ j ≤ ℓ, σ
(j)
A = (σ1σ2 · · ·σℓ)

j

Bℓ σ
(1)
B = σ1σ2 · · ·σℓ−1σℓσℓ−1 · · ·σ2σ1

Cℓ σ
(ℓ)
C = (σℓσℓ−1 · · ·σ1)(σℓσℓ−1 · · ·σ2) · · · (σℓσℓ−1)(σℓ)

Dℓ σ
(1)
D = σ1σ2 · · ·σℓσℓ−2σℓ−3 · · ·σ2σ1

ℓ even σ
(ℓ−1)
D = (σℓ−1σℓ−2σℓ−3 · · ·σ2σ1)(σℓσℓ−2σℓ−3 · · ·σ3σ2)(σℓ−1σℓ−2σℓ−3 · · ·σ3) · · · (σℓ−1)

σ
(ℓ)
D = (σℓσℓ−2σℓ−3 · · ·σ2σ1)(σℓ−1σℓ−2σℓ−3 · · ·σ3σ2)(σℓσℓ−2σℓ−3 · · ·σ3) · · · (σℓ)

ℓ odd σ
(ℓ−1)
D = (σℓ−1σℓ−2σℓ−3 · · ·σ2σ1)(σℓσℓ−2σℓ−3 · · ·σ3σ2)(σℓ−1σℓ−2σℓ−3 · · ·σ4σ3) · · · (σℓ)

σ
(ℓ)
D = (σℓσℓ−2σℓ−3 · · ·σ2σ1)(σℓ−1σℓ−2σℓ−3 · · ·σ3σ2)(σℓσℓ−2σℓ−3 · · ·σ4σ3) · · · (σℓ−1)

E6 σ
(1)
E = σ1σ3σ4σ2σ5σ4σ3σ1σ6σ5σ4σ2σ3σ4σ5σ6

E6 σ
(6)
E = σ6σ5σ4σ2σ3σ4σ5σ6σ1σ3σ4σ2σ5σ4σ3σ1

E7 σ
(7)
E = σ7σ6σ5σ4σ3σ2σ4σ5σ6σ7σ1σ3σ4σ5σ6σ2σ4σ5σ3σ4σ1σ3σ2σ4σ5σ6σ7

Table 4.2

Let w be a Weyl group element and v ∈ L(λ)µ (a vector of weight µ). Then w(v) ∈
L(λ)w(µ). We begin by calculating the effects of the Weyl group elements defined above
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on the fundamental weights and simple roots of g. To simplify computations, we will use
the following conventions:

λ0 = 0 λj = λj(mod(l+1))

α0 = −θ αj = αj(mod(l+1))

We will repeatedly use the fact that σi(λj) = λj − δi,jαj .

4.1 The Weyl group elements’ actions

Let us begin by calculating the action of σ
(1)
A on the fundamental weights and then use

that to determine the action of our type Aℓ Weyl group elements.
For λ1, we have: σ1σ2 · · ·σℓ(λ1) = σ1(λ1) = −λ1 + λ2.
For λj , with 1 < j < ℓ:

σ1σ2 · · ·σℓ(λj) = σ1σ2 · · ·σj(λj)

= σ1σ2 · · ·σj−1(λj−1 − λj + λj+1)

= σ1σ2 · · ·σj−2(λj−2 − λj−1 + λj+1)

= · · ·

= σ1(λ1 − λ2 + λj+1)

= −λ1 + λj+1.

Finally, for λℓ:

σ1σ2 · · ·σℓ(λℓ) = σ1σ2 · · ·σℓ−1(λℓ−1 − λℓ)

= σ1σ2 · · ·σℓ−2(λℓ−2 − λℓ−1)

= · · ·

= σ1(λ1 − λ2)

= −λ1.

Adhering to our above convention, we conclude that for 1 ≤ j ≤ l:

σ1σ2 · · ·σℓ(λj) = −λ1 + λj+1. (4.3)

Therefore, for 1 ≤ j < ℓ (recall that λ0 = 0),

σ1σ2 · · ·σℓ(αj) = σ1σ2 · · ·σℓ(−λj−1 + 2λj − λj+1)

= −(−λ1 + λj−1+1) + 2(−λ1 + λj+1)− (−λ1 + λj+1+1)

= −λj + 2λj+1 − λj+2 = αj+1.

For αℓ, we have that

σ1σ2 · · ·σℓ(αℓ) = σ1σ2 · · ·σℓ(−λℓ−1 + 2λℓ)

= −(−λ1 + λℓ− 1 + 1) + 2(−λ1 + λℓ+1)

= −λ1 − λℓ = −θ (= α0).
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For α0 = −θ, we have:

σ1σ2 · · ·σℓ(−θ) = σ1σ2 · · ·σℓ(−λ1 − λℓ)

= −(−λ1 + λ2)− (−λ1 + λℓ+1)

= 2λ1 − λ2 = α1.

So we have found that for all 0 ≤ i ≤ ℓ, σ
(1)
A (αi) = αi+1 and therefore

σ
(j)
A (αi) = (σ1σ2 · · ·σℓ)

j(αi) = αi+j. (4.4)

The calculations for types Bℓ, Cℓ, andDℓ are similar and can be found in the Appendix.
Calculations for types E6 and E7 were done with the help of a Maple worksheet written and
updated by the first author which was orginally written for [CMS]. This worksheet is avail-
able at: http://dimax.rutgers.edu/~sadowski/LieAlgebraCalculations/index.html

The Weyl group elements’ actions can be summed up as follows (recall that α0 = −θ):

Aℓ : σ
(j)
A (αj) = αj+i (mod ℓ+1) (for 0 ≤ j ≤ ℓ and 1 ≤ i ≤ ℓ)

Bℓ : σ
(1)
B (α0) = α1, σ

(1)
B (α1) = α0, and σ

(1)
B (αj) = αj (for 1 < j ≤ ℓ)

Cℓ : σ
(ℓ)
C (α0) = αℓ, σ

(ℓ)
C (αj) = αℓ−i (for 1 ≤ j < ℓ), and σ

(ℓ)
C (αℓ) = α0

Dℓ : σ
(1)
D (α0) = α1, σ

(1)
D (α1) = α0, σ

(1)
D (αj) = αj (for 1 < j < ℓ− 1),

σ
(1)
D (αℓ−1) = αℓ, and σ

(1)
D (αℓ) = αℓ−1

ℓ odd σ
(ℓ−1)
D (α0) = αℓ−1, σ

(ℓ−1)
D (α1) = αℓ, and σ

(ℓ−1)
D (αj) = αℓ−j (for 1 < j ≤ ℓ)

σ
(ℓ)
D (α0) = αℓ, σ

(ℓ)
D (αj) = αℓ−j (for 1 ≤ j < ℓ− 1),

σ
(ℓ)
D (αℓ−1) = α0, and σ

(ℓ)
D (αℓ) = α1

ℓ even σ
(ℓ−1)
D (α0) = αℓ−1, σ

(ℓ−1)
D (α1) = αℓ, σ

(ℓ−1)
D (αj) = αℓ−j (for 1 < j < ℓ− 1),

σ
(ℓ−1)
D (αℓ−1) = α0, and σ

(ℓ−1)
D (αℓ) = α1

σ
(ℓ)
D (αj) = αℓ−j (for 0 ≤ j ≤ ℓ)

E6 : σ
(1)
E (α0) = α1, σ

(1)
E (α1) = α6, σ

(1)
E (α2) = α3, σ

(1)
E (α3) = α5, σ

(1)
E (α4) = α4,

σ
(1)
E (α5) = α2, and σ

(1)
E (α6) = α0

σ
(6)
E (α0) = α6, σ

(6)
E (α1) = α0, σ

(6)
E (α2) = α5, σ

(6)
E (α3) = α2, σ

(6)
E (α4) = α4,

σ
(6)
E (α5) = α3, and σ

(6)
E (α6) = α1

E7 : σ
(7)
E (α0) = α7, σ

(7)
E (α1) = α6, σ

(7)
E (α2) = α2, σ

(7)
E (α3) = α5, σ

(7)
E (α4) = α4,

σ
(7)
E (α5) = α3, σ

(7)
E (α6) = α1, and σ

(7)
E (α7) = α0

Table 4.5
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4.2 The Main Theorems

Now we can apply our Weyl group calculations to determine the highest weight vector of
(L(k, λ))(i) (which is simultaneously an L(k, 0) and ĝ module). Suppose our underlying
finite dimensional simple Lie algebra g is of type Xℓ. Recall that θ =

∑
j ajαj is the

highest long root of g, k is a positive integer, λ ∈ P+ with 〈λ, θ〉 ≤ k, and H(i) is one of
the coweights appearing in table 4.1. Also, note that for each valid choice of index i, we
have ai = 1.

The irreducible ĝ-module L(k, λ) was built up from the irreducible g-module L(λ). In
fact, the lowest (conformal) weight space of L(k, λ) is merely a copy of L(λ). In what
follows, let us identify L(λ) with this subspace of L(k, λ).

Let v be a highest weight vector for L(k, λ). Such a vector is also homogeneous vector
of lowest conformal weight in L(k, λ). So we have that v ∈ L(λ) ⊂ L(k, λ).

Theorem 4.1. σ
(i)
X (v) is a highest weight vector for (L(k, λ))(i).

Proof. Let w = σ
(i)
X (v) and µ = σ

(i)
X (λ).

Since σ
(i)
X is an invertible map, w 6= 0. The weight of v (as an element of L(λ)) is λ,

so the weight of w is µ. To establish that w is a highest weight vector for (L(k, λ))(i), we
need to show that (ej)

(i) ·w = 0 for j = 0, . . . , ℓ.
By (2.22), we have (ej)

(i) ·w = Ej(δij)(w) for 1 ≤ j ≤ ℓ.
When j = i, (ei)

(i) ·w = Ei(1)(w). Now recall that the operator Ei(1) lowers (confor-
mal) weights by −1. Since w is already a lowest (conformal) weight vector, (ei)

(i) ·w = 0.
Next, when j 6= i, (ej)

(i) · w = Ej(0)(w) which is a vector of weight µ + αj (in the
g-module L(λ)).

By (2.23), we have (e0)
(i) ·w = Fθ(1 − ai)(w) = Fθ(0)(w) which has weight µ − θ =

µ+ α0.
Therefore, we have reduced our problem to establishing that µ+αj for j 6= i, 0 ≤ j ≤ ℓ

are not weights of the g-module L(λ).
Since Weyl group elements permute the weights of L(λ), if µ + αj is a weight, then

(σ
(i)
X )−1(µ + αj) = λ + (σ

(i)
X )−1(αj) must be a weight as well. However, we can see by

inspecting table 4.5 that σ
(i)
X permutes the set of simple roots along with α0 = −θ. Notice

that each case σ
(i)
X (α0) = αi. Therefore, (σ

(i)
X )−1 maps each αj where j 6= i, 0 ≤ j ≤ ℓ to

some αk where 1 ≤ k ≤ ℓ. But λ is a highest weight vector for L(λ), therefore λ + αk

(1 ≤ k ≤ ℓ) is not a weight. This implies that µ + αj (for j 6= i, 0 ≤ j ≤ ℓ) is not a
weight. Therefore, w is annihilated by the action of each (ej)

(i) (for 0 ≤ j ≤ ℓ) and thus
is a highest weight vector for (L(k, λ))(i).

Remark 4.2. Elements of the Weyl group are linear transformations, so they always send
the linear functional λ = 0 to itself. This implies that a highest weight vector for L(k, 0)
(i.e. a non-zero scalar multiple of the vaccuum vector) is still a highest weight vector for
(L(k, 0))(i). This special case was discussed in [Li2].

Theorem 4.3. Recall (L(k, λ))(i) ∼= L(k, λ(i)). Let λ =
∑ℓ

j=1mjλj. Then we have the
following:
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Type

Aℓ λ(i) =
∑ℓ

j=1mjλj+i + (k − 〈λ, θ〉)λi

Bℓ λ(1) = (k − 〈λ, θ〉)λ1 +
∑ℓ

j=2mjλj

Cℓ λ(ℓ) =
∑ℓ

j=1mjλℓ−j − (k − 〈λ, θ〉)λℓ

Dℓ λ(1) = (k − 〈λ, θ〉)λ1 +
∑ℓ−2

j=2mjλj +mℓ−1λℓ +mℓλℓ−1

(ℓ odd) λ(ℓ−1) = mℓ−1λ1 +
∑ℓ−2

j=2mjλℓ−j + (k − 〈λ, θ〉)λℓ−1 +m1λℓ

(ℓ even) λ(ℓ−1) = mℓλ1 +
∑ℓ−2

j=2mjλℓ−j + (k − 〈λ, θ〉)λℓ−1 +m1λℓ

(ℓ odd) λ(ℓ) = mℓλ1 +
∑ℓ−2

j=2mjλℓ−j +m1λℓ−1 + (k − 〈λ, θ〉)λℓ

(ℓ even) λ(ℓ) = mℓ−1λ1 +
∑ℓ−2

j=2mjλℓ−j +m1λℓ−1 + (k − 〈λ, θ〉)λℓ

E6 λ(1) = (k − 〈λ, θ〉)λ1 +m5λ2 +m2λ3 +m4λ4 +m3λ5 +m1λ6

λ(6) = m6λ1 +m3λ2 +m5λ3 +m4λ4 +m2λ5 + (k − 〈λ, θ〉)λ6

E7 λ(7) = m1λ6 +m2λ2 +m3λ5 +m4λ4 +m5λ3 +m6λ1 + (k − 〈λ, θ〉)λ7

Proof. Let g be of type Xℓ and let H(i) be a coweight from table 4.1. Consider a vector
u ∈ L(λ)β ⊂ L(λ) ⊂ L(k, λ) (i.e. the h-weight of u is β). Consider u as a vector in
(L(k, λ))(i) (which is the same vector space as L(k, λ)). We have a new associated ĝ-
action and thus a new h-action. In particular, by 2.21), (Hj)

(i)(0) = Hj(0) +
2k

‖αi‖2
δi,j . If

we restrict i to the indices appearing in table 4.1, we see that in each case ‖αi‖
2 = 2.

Thus (Hj)
(i)(0) = Hj(0)+kδi,j . Therefore, when u is thought of as a weight vector under

the new h-action, the (new) h-weight of u is β + kλi.

Let v be a highest weight vector for L(k, λ). Theorem 4.1 states that w = σ
(i)
X (v) is a

highest weight vector for (L(k, λ))(i). As an element of the g-module L(λ), w has h-weight

µ = σ
(i)
X (λ). Therefore, the h-weight of w in terms of the new h-action is λ(i) = µ+ kλi.

For Xℓ = Aℓ, using (4.3), we have µ =
∑ℓ

j=1mj(λj+i − λi) =
∑ℓ

j=1mjλj+i −

(
∑ℓ

j=1mj)λi) =
∑ℓ

j=1mjλj+i − 〈λ, θ〉λi. Therefore, λ
(i) =

∑ℓ
j=1mjλj+i − 〈λ, θ〉λi + kλi.

For type Bℓ, by (5.1) and (5.2), we have µ =
∑ℓ−1

j=1mj(−2λ1 + λj) +mℓ(−λ1 + λℓ) =∑ℓ

j=1mjλj−2(
∑ℓ−1

j=1mj)λ1+mℓλ1 =
∑ℓ

j=2mjλj−〈λ, θ〉λ1. Therefore, λ
(1) =

∑ℓ

j=2mjλj−
〈λ, θ〉λ1 + kλ1.

For type Cℓ, by (5.3), we have µ =
∑ℓ

j=1mj(λℓ−j −λℓ) =
∑ℓ

j=1mjλℓ−j − (
∑ℓ

j=1mj)λℓ

=
∑ℓ

j=1mjλℓ−j − 〈λ, θ〉λℓ. Therefore, λ
(ℓ) =

∑ℓ
j=1mjλℓ−j − 〈λ, θ〉λℓ + kλℓ.

For type Dℓ and i = 1, by (5.4), (5.5), and (5.6), we have µ =
∑ℓ−2

j=1mj(−2λ1 + λj) +

mℓ−1(−λ1+λℓ)+mℓ(−λ1+λℓ−1) =
∑ℓ−2

j=1mj(−2λ1+λj)+mℓ−1(−λ1+λℓ)+mℓ(−λ1+λℓ−1)

= −〈λ, θ〉λ1+
∑ℓ−2

j=2mjλj +mℓ−1λℓ +mℓλℓ−1. Therefore, λ
(1) = −〈λ, θ〉λ1+

∑ℓ−2
j=2mjλj +

mℓ−1λℓ +mℓλℓ−1 + kλ1.
Now, consider type Dℓ when ℓ is odd and i = ℓ−1. By (5.9), (5.10), (5.11), and (5.12),

we have µ = m1(−λℓ−1 + λℓ) +
∑ℓ−2

j=2mj(λℓ−j − 2λℓ−1 + mℓ−1(λ1 − λℓ−1) + mℓ(−λℓ−1

= mℓ−1λ1 +
∑ℓ−2

j=2mjλℓ−j − (m1 + 2
∑ℓ−2

j=2mj + mℓ−1 + mℓ)λℓ−1 + m1λℓ = mℓ−1λ1 +∑ℓ−2
j=2mjλℓ−j−〈λ, θ〉λℓ−1+m1λℓ. Therefore, λ

(ℓ−1) = mℓ−1λ1+
∑ℓ−2

j=2mjλℓ−j−〈λ, θ〉λℓ−1+
m1λℓ+kλℓ−1. Considering a Dynkin diagram symmetry (interchanging the roles of nodes
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ℓ− 1 and ℓ), we also have λ(ℓ) = mℓλ1 +
∑ℓ−2

j=2mjλℓ−j +m1λℓ−1 − 〈λ, θ〉λℓ + kλℓ.

When ℓ is even and i = ℓ−1, by (5.14), we have µ = m1(−λℓ−1+λℓ)+
∑ℓ−2

j=2mj(λℓ−j−

2λℓ−1+mℓ−1(−λℓ−1) +mℓ(λ1 − λℓ−1 = mℓλ1 +
∑ℓ−2

j=2mjλℓ−j − (m1 +2
∑ℓ−2

j=2mj +mℓ−1 +

mℓ)λℓ−1 +m1λℓ = mℓλ1 +
∑ℓ−2

j=2mjλℓ−j − 〈λ, θ〉λℓ−1 +m1λℓ. Therefore, λ
(ℓ−1) = mℓλ1 +∑ℓ−2

j=2mjλℓ−j−〈λ, θ〉λℓ−1+m1λℓ+kλℓ−1. Again, considering a Dynkin diagram symmetry

(interchanging the roles of nodes ℓ−1 and ℓ), we also have λ(ℓ) = mℓ−1λ1+
∑ℓ−2

j=2mjλℓ−j+
m1λℓ−1 − 〈λ, θ〉λℓ + kλℓ.

Finally, let us consider types E6 and E7. For type E6 and i = 1, by (5.16), we have µ =
m1(−λ1+λ6)+m2(−2λ1+λ3)+m3(−2λ1+λ5)+m4(−3λ1+λ4)+m5(−2λ1+λ2)+m6(−λ1)
= −(m1 + 2m2 + 2m3 + 3m4 + 2m5 + m6)λ1 + m5λ2 + m2λ3 + m4λ4 + m3λ5 + m1λ6

= −〈λ, θ〉λ1+m5λ2+m2λ3+m4λ4+m3λ5+m1λ6. Therefore, λ
(1) = −〈λ, θ〉λ1+m5λ2+

m2λ3+m4λ4+m3λ5+m1λ6+kλ1. Now we can use the symmetry of the Dynkin diagram
of E6 (interchanging nodes 1 and 6 and also interchanging nodes 3 and 5). Therefore, for
type E6 with i = 6, we have λ(6) = m6λ1 +m3λ2 +m5λ3 +m4λ4 +m2λ5 − 〈λ, θ〉λ6 + kλ6.

For type E7 and i = 7, by (5.18), we have µ = m1(−2λ7 + λ6) + m2(−2λ7 + λ2) +
m3(−3λ7+ λ5)+m4(−4λ7 + λ4) +m5(−3λ7+ λ3) +m6(−2λ7+ λ1) +m7(−λ7) = m1λ6 +
m2λ2 +m3λ5 +m4λ4 +m5λ3 +m6λ1 − (2m1 + 2m2 + 3m3 + 4m4 + 3m5 + 2m6 +m7)λ7

= m1λ6+m2λ2+m3λ5+m4λ4+m5λ3+m6λ1−〈λ, θ〉λ7. Therefore, λ
(7) = m1λ6+m2λ2+

m3λ5 +m4λ4 +m5λ3 +m6λ1 − 〈λ, θ〉λ7 + kλ7.

5 Appendix - Weyl group calculations

All of these calculations repeatedly use the fact that σi(λj) = λj − δi,jαj , so in particular,
σj−1σj−2 · · ·σ2σ1(λj) = λj . In addition, if C = (aij) is the Cartan matrix of our simple
Lie algebra g, then αi =

∑
j aijλj. Also, recall our conventions that λ0 = 0, α0 = −θ (the

negative of the highest long root of g), and λj = λj (mod ℓ+1) for all j ∈ Z.

5.1 Type Bℓ

Looking at the Cartan matrix of type Bℓ, we see that αi = −λi−1+2λi−λi+1 for i 6= ℓ−1

and αℓ−1 = −λℓ−2 + 2λℓ−1 − 2λℓ. Also, recall that σ
(1)
B = σ1σ2 · · ·σℓ−1σℓσℓ−1 · · ·σ2σ1
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For λj , 1 ≤ j ≤ ℓ− 1, we have:

σ
(1)
B (λj) = σ1σ2 · · ·σℓ−1σℓσℓ−1 · · ·σ2σ1(λj) = σ1σ2 · · ·σℓ−1σℓσℓ−1 · · ·σj+1σj(λj)

= σ1σ2 · · ·σℓ−1σℓσℓ−1 · · ·σj+2σj+1(λj−1 − λj + λj+1)

= σ1σ2 · · ·σℓ−1σℓσℓ−1 · · ·σj+3σj+2(λj−1 − λj+1 + λj+2) = · · ·

= σ1σ2 · · ·σℓσℓ−1(λj−1 − λℓ−2 + λℓ−1) = σ1σ2 · · ·σℓσℓ(λj−1 − λℓ−1 + 2λℓ)

= σ1σ2 · · ·σℓ−1(λj−1 + λℓ−1 − 2λℓ) = σ1σ2 · · ·σℓ−2(λj−1 + λℓ−2 − λℓ−1)

= σ1σ2 · · ·σℓ−3(λj−1 + λℓ−3 − λℓ−2) = · · ·

= σ1σ2 · · ·σj(λj−1 + λj − λj+1) = σ1σ2 · · ·σj−1(2λj−1 − λj)

= σ1σ2 · · ·σj−2(2λj−2 − 2λj−1 + λj) = · · ·

= σ1(2λ1 − 2λ2 + λj) = −2λ1 + λj . (5.1)

For λℓ, we have:

σ
(1)
B (λℓ) = σ1σ2 · · ·σℓ−1σℓσℓ−1 · · ·σ2σ1(λℓ) = σ1σ2 · · ·σℓ−1σℓ(λℓ)

= σ1σ2 · · ·σℓ−1(λℓ−1 − λℓ) = σ1σ2 · · ·σℓ−2(λℓ−2 − λℓ−1 + λℓ)

= σ1σ2 · · ·σℓ−3(λℓ−3 − λℓ−2 + λℓ) = · · ·

= σ1(λ1 − λ2 + λℓ) = −λ1 + λℓ. (5.2)

Applying these results to the fundamental roots and highest long root, we have:

σ
(1)
B (α0) = σ

(1)
B (−θ) = σ

(1)
B (−λ2) = 2λ1 − λ2 = α1

σ
(1)
B (α1) = σ

(1)
B (2λj − λj+1) = −2λ1 + 2λ1 − λ2 = −θ = α0

σ
(1)
B (αj) = αj for 1 < j ≤ ℓ

5.2 Type Cℓ

Looking at the Cartan matrix of type Cℓ, we see that αi = −λi−1+2λi−λi+1 for 1 ≤ i < ℓ

and αℓ = −2λℓ−1 + 2λℓ. Also, recall that σ
(ℓ)
C = (σℓ · · ·σ2σ1)(σℓ · · ·σ2) · · · (σℓσℓ−1)(σℓ).

σℓσℓ−1 · · ·σ1(λj) = σℓσℓ−1 · · ·σj(λj) = σℓσℓ−1 · · ·σj+1(λj−1 − λj + λj+1)

= σℓσℓ−1 · · ·σj+2(λj−1 − λj+1 + λj+2) = · · ·

= σℓ(λj−1 − λℓ−1 + λℓ) = λj−1 + λℓ−1 − λℓ

where 1 ≤ j < ℓ. Also, σℓσℓ−1 · · ·σ1(λℓ) = σ(λℓ) = 2λℓ−1−λℓ, so the above formula works
for all j. Applying this result multiple times, we have (for 1 ≤ j < ℓ):

σ
(ℓ)
C (λj) = (σℓσℓ−1 · · ·σ1)(σℓσℓ−1 · · ·σ2) · · · (σℓσℓ−1)(σℓ)(λj) = · · ·

= (σℓσℓ−1 · · ·σ1)(σℓσℓ−1 · · ·σ2) · · · (σℓσℓ−1 · · ·σj)(λj)

= (σℓσℓ−1 · · ·σ1)(σℓσℓ−1 · · ·σ2) · · · (σℓσℓ−1 · · ·σj − 1)(λj−1 + λℓ−1 − λℓ)

= (σℓσℓ−1 · · ·σ1)(σℓσℓ−1 · · ·σ2) · · · (σℓσℓ−1 · · ·σj − 2)(λj−2 + λℓ−2 − λℓ) = · · ·

= (σℓσℓ−1 · · ·σ1)(λ1 + λℓ−(j−1) − λℓ) = λℓ−j − λℓ
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For λℓ, we have:

σ
(ℓ)
C (λℓ) = (σℓσℓ−1 · · ·σ1)(σℓσℓ−1 · · ·σ2) · · · (σℓσℓ−1)(σℓ)(λℓ)

= (σℓσℓ−1 · · ·σ1)(σℓσℓ−1 · · ·σ2) · · · (σℓσℓ−1)(2λℓ−1 − λℓ)

= (σℓσℓ−1 · · ·σ1)(σℓσℓ−1 · · ·σ2) · · · (σℓσℓ−1σℓ−2)(2λℓ−2 − λℓ) = · · ·

= σℓσℓ−1 · · ·σ1(2λ1 − λℓ) = 2λℓ−1 − 2λℓ − 2λℓ−1 + λℓ = −λℓ.

Adhering to our convention (i.e. λ0 = 0), we have that

σ
(ℓ)
C (λj) = λℓ−j − λℓ (5.3)

for all j = 1, . . . , ℓ.
A quick calculation now shows that

σ
(ℓ)
C (α0) = σ

(ℓ)
C (−θ) = αℓ

σ
(ℓ)
C (αj) = αℓ−j (for 1 ≤ j < ℓ)

σ
(ℓ)
C (αℓ) = −θ = α0

5.3 Type Dℓ (any rank)

Looking at the Cartan matrix of type Dℓ, we see that αi = −λi−1 + 2λi − λi+1 for
1 ≤ i < ℓ−2, αℓ−2 = −λℓ−3+2λℓ−2−λℓ−1−λℓ, αℓ−1 = −λℓ−2+2λℓ−1, and αℓ = −λℓ−2+2λℓ.

First, recall that σ
(1)
D = σ1σ2 · · ·σℓσℓ−2σℓ−3 · · ·σ2σ1.

As a first step, we determine that action of σ1σ2 · · ·σℓ on λj . For 1 ≤ j < ℓ − 2 we
have:

σ1σ2 · · ·σℓ(λj) = σ1σ2 · · ·σj(λj) = σ1σ2 · · ·σj−1(λj−1 − λj + λj+1) = · · ·

= σ1(λ1 − λ2 + λj+1) = −λ1 + λj+1

σ1σ2 · · ·σℓ(λℓ−2) = σ1σ2 · · ·σℓ−2(λℓ−2) = σ1σ2 · · ·σℓ−3(λℓ−3 − λℓ−2 + λℓ−1 + λℓ)

= σ1σ2 · · ·σℓ−4(λℓ−4 − λℓ−3 + λℓ−1 + λℓ) = · · ·

= σ1(λ1 − λ2 + λℓ−1 + λℓ) = −λ1 + λℓ−1 + λℓ

σ1σ2 · · ·σℓ(λℓ−1) = σ1σ2 · · ·σℓ−1(λℓ−1) = σ1σ2 · · ·σℓ−2(λℓ−2 − λℓ−1)

= σ1σ2 · · ·σℓ−3(λℓ−3 − λℓ−2 + λℓ) = σ1σ2 · · ·σℓ−4(λℓ−4 − λℓ−3 + λℓ)

= · · · = σ1(λ1 − λ2 + λℓ) = −λ1 + λℓ

σ1σ2 · · ·σℓ(λℓ) = σ1σ2 · · ·σℓ−1(λℓ−2 − λℓ) = σ1σ2 · · ·σℓ−2(λℓ−2 − λℓ)

= σ1σ2 · · ·σℓ−3(λℓ−3 − λℓ−2 + λℓ−1) = σ1σ2 · · ·σℓ−4(λℓ−4 − λℓ−3 + λℓ−1)

= · · · = σ1(λ1 − λ2 + λℓ−1) = −λ1 + λℓ−1
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For 1 ≤ j ≤ ℓ− 2 we have:

σ
(1)
D (λj) = σ1σ2 · · ·σℓσℓ−2σℓ−3 · · ·σ2σ1(λj) = σ1σ2 · · ·σℓσℓ−2 · · ·σj(λj)

= σ1σ2 · · ·σℓσℓ−2 · · ·σj+1(λj−1 − λj + λj+1)

= σ1σ2 · · ·σℓσℓ−2 · · ·σj+2(λj−1 − λj+1 + λj+2) = · · ·

= σ1σ2 · · ·σℓσℓ−2(λj−1 − λℓ−3 + λℓ−2)

= σ1σ2 · · ·σℓ(λj−1 − λℓ−2 + λℓ−1 + λℓ)

= (−λ1 + λj)− (−λ1 + λℓ−1 + λℓ) + (−λ1 + λℓ) + (−λ1 + λℓ−1)

= −2λ1 + λj (5.4)

σ
(1)
D (λℓ−1) = σ1σ2 · · ·σℓσℓ−2σℓ−3 · · ·σ2σ1(λℓ−1) = σ1σ2 · · ·σℓ(λℓ−1) = −λ1 + λℓ (5.5)

σ
(1)
D (λℓ) = σ1σ2 · · ·σℓσℓ−2σℓ−3 · · ·σ2σ1(λℓ) = σ1σ2 · · ·σℓ(λℓ) = −λ1 + λℓ−1 (5.6)

A quick calculation shows:

σ
(1)
D (α0) = σ

(1)
D (−θ) = α1

σ
(1)
D (α1) = −θ = α0

σ
(1)
D (αj) = αj (for 2 ≤ j ≤ ℓ− 2)

σ
(1)
D (αℓ−1) = αℓ

σ
(1)
D (αℓ) = αℓ−1.

To help determine the actions of σ
(ℓ−1)
D and σ

(ℓ)
D on each λj , we will first consider

σℓ−2σℓ−3 · · ·σ1. For 1 ≤ j ≤ ℓ− 2 we have:

σℓ−2σℓ−3 · · ·σ1(λj) = σℓ−2σℓ−3 · · ·σj(λj) = σℓ−2σℓ−3 · · ·σj+1(λj−1 − λj + λj+1)

= σℓ−2σℓ−3 · · ·σj+2(λj−1 − λj+1 + λj+2) = · · ·

= σℓ−2(λj−1 − λℓ−3 + λℓ−2) = λj−1 − λℓ−2 + λℓ−1 + λℓ

σℓ−2σℓ−3 · · ·σ1(λℓ−1) = λℓ−1 and σℓ−2σℓ−3 · · ·σ1(λℓ) = λℓ

Next, we consider σℓ−1σℓ−2σℓ−3 · · ·σ1. For 1 ≤ j ≤ ℓ− 2, we have:

σℓ−1σℓ−2σℓ−3 · · ·σ1(λj) = σℓ−1(λj−1 − λℓ−2 + λℓ−1 + λℓ) = λj−1 − λℓ−1 + λℓ (5.7)

σℓ−1σℓ−2σℓ−3 · · ·σ1(λℓ−1) = λℓ−2 − λℓ−1 and σℓ−1σℓ−2σℓ−3 · · ·σ1(λℓ) = λℓ

Finally, consider σℓσℓ−2σℓ−3 · · ·σ1. For 1 ≤ j ≤ ℓ− 2, we have:

σℓσℓ−2σℓ−3 · · ·σ1(λj) = σℓ(λj−1 − λℓ−2 + λℓ−1 + λℓ) = λj−1 + λℓ−1 − λℓ (5.8)

σℓσℓ−2σℓ−3 · · ·σ1(λℓ−1) = λℓ−1 and σℓσℓ−2σℓ−3 · · ·σ1(λℓ) = λℓ−2 − λℓ
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5.4 Type Dℓ (odd rank)

Now consider the case when ℓ is odd and recall that

σ
(ℓ−1)
D = (σℓ−1σℓ−2 · · ·σ1)(σℓσℓ−2σℓ−3 · · ·σ2)(σℓ−1σℓ−2 · · ·σ3) · · · (σℓ).

First, consider the case of λ1.

σ
(ℓ−1)
D (λ1) = (σℓ−1σℓ−2 · · ·σ1)(σℓσℓ−2σℓ−3 · · ·σ2)(σℓ−1σℓ−2 · · ·σ3) · · · (σℓ)(λ1) = · · ·

= (σℓ−1σℓ−2 · · ·σ1)(λ1) = −λℓ−1 + λℓ (5.9)

(We obtain the last step by using (5.7) above.)
Next, consider the case of λj, 1 < j ≤ ℓ − 2 and j odd. By applying (5.7) and (5.8)

successively, we obtain the following:

σ
(ℓ−1)
D (λj) = (σℓ−1σℓ−2 · · ·σ1)(σℓσℓ−2σℓ−3 · · ·σ2)(σℓ−1σℓ−2 · · ·σ3) · · · (σℓ)(λj) = · · ·

= (σℓ−1σℓ−2 · · ·σ1) · · · (σℓ−1σℓ−2 · · ·σj)(λj)

= (σℓ−1σℓ−2 · · ·σ1) · · · (σℓσℓ−2 · · ·σj−1)(λj−1 − λℓ−1 + λℓ)

= (σℓ−1σℓ−2 · · ·σ1) · · · (σℓ−1σℓ−2 · · ·σj−2)(λj−2 + λℓ−2 − 2λℓ)

= (σℓ−1σℓ−2 · · ·σ1) · · · (σℓσℓ−2 · · ·σj−3)(λj−3 + λℓ−3 − 2λℓ−1) = · · ·

= (σℓ−1σℓ−2 · · ·σ1)(λ1 + λℓ−(j−1) − 2λℓ)

= −λℓ−1 + λℓ + λℓ−j − λℓ−1 + λℓ − 2λℓ

= λℓ−j − 2λℓ−1

A similar calculation shows that the same holds for j even and 2 ≤ j ≤ ℓ−3. Therefore,
we have that

σ
(ℓ−1)
D (λj) = λℓ−j − 2λℓ−1 (for 1 < j ≤ ℓ− 2) (5.10)

This leaves the cases j = ℓ− 1 and j = ℓ.

σ
(ℓ−1)
D (λℓ−1) = (σℓ−1σℓ−2 · · ·σ1)(σℓσℓ−2σℓ−3 · · ·σ2)(σℓ−1σℓ−2 · · ·σ3) · · · (σℓ)(λℓ−1)

= (σℓ−1σℓ−2 · · ·σ1) · · · (σℓ−1σℓ−2)(λℓ−1)

= (σℓ−1σℓ−2 · · ·σ1) · · · (σℓσℓ−2σℓ−3)(λℓ−2 − λℓ−1)

= (σℓ−1σℓ−2 · · ·σ1) · · · (σℓ−1σℓ−2 · · ·σℓ−4)(λℓ−3 − λℓ) = · · ·

= (σℓ−1σℓ−2 · · ·σ1)(λ2 − λℓ)

= λ1 − λℓ−1 + λℓ − λℓ = λ1 − λℓ−1 (5.11)

σ
(ℓ−1)
D (λℓ) = (σℓ−1σℓ−2 · · ·σ1)(σℓσℓ−2σℓ−3 · · ·σ2)(σℓ−1σℓ−2 · · ·σ3) · · · (σℓ)(λℓ)

= (σℓ−1σℓ−2 · · ·σ1) · · · (σℓ−1σℓ−2)(λℓ−2 − λℓ)

= (σℓ−1σℓ−2 · · ·σ1) · · · (σℓσℓ−2σℓ−3)(λℓ−3 − λℓ−1)

= (σℓ−1σℓ−2 · · ·σ1) · · · (σℓ−1σℓ−2 · · ·σℓ−4)(λℓ−4 − λℓ) = · · ·

= (σℓ−1σℓ−2 · · ·σ1)(λ1 − λℓ)

= −λℓ−1 + λℓ − λℓ = −λℓ−1 (5.12)
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A quick calculation shows:

σ
(ℓ−1)
D (α0) = σ

(ℓ−1)
D (−θ) = αℓ−1

σ
(ℓ−1)
D (α1) = αℓ

σ
(ℓ−1)
D (αj) = αℓ−j (for 2 ≤ j ≤ ℓ− 1)

σ
(ℓ−1)
D (αℓ) = −θ = α0.

Using a Dynkin diagram symmetry, we see that all of these results should still hold if
we interchange the labels ℓ− 1 and ℓ. So we also have that

σ
(ℓ)
D (λ1) = λℓ−1 − λℓ

σ
(ℓ)
D (λj) = λℓ−j − 2λℓ (for 2 ≤ j ≤ ℓ− 2) (5.13)

σ
(ℓ)
D (λℓ−1) = −λℓ

σ
(ℓ)
D (λℓ) = λ1 − λℓ,

and also

σ
(ℓ)
D (α0) = σ

(ℓ)
D (−θ) = αℓ

σ
(ℓ)
D (αj) = αℓ−j (for 1 ≤ j ≤ ℓ− 2)

σ
(ℓ)
D (αℓ−1) = −θ = α0

σ
(ℓ)
D (αℓ) = α1.

5.5 Type Dℓ (even rank)

Almost identical calculations reveal that for even ℓ we have the following:

σ
(ℓ−1)
D (λ1) = −λℓ−1 + λℓ

σ
(ℓ−1)
D (λj) = λℓ−j − 2λℓ−1 (for 2 ≤ j ≤ ℓ− 2) (5.14)

σ
(ℓ−1)
D (λℓ−1) = −λℓ−1

σ
(ℓ−1)
D (λℓ) = λ1 − λℓ−1

and it follows that:

σ
(ℓ−1)
D (α0) = σ

(ℓ−1)
D (−θ) = αℓ−1

σ
(ℓ−1)
D (α1) = αℓ

σ
(ℓ−1)
D (αj) = αℓ−j (for 2 ≤ j ≤ ℓ− 2)

σ
(ℓ−1)
D (αℓ−1) = −θ = α0

σ
(ℓ−1)
D (αℓ) = α1.
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Again using a Dynkin diagram symmetry, we see that all of these results should still
hold if we interchange the labels ℓ− 1 and ℓ. So we also have that:

σ
(ℓ)
D (λ1) = λℓ−1 − λℓ

σ
(ℓ)
D (λj) = λℓ−j − 2λℓ (for 2 ≤ j ≤ ℓ− 2) (5.15)

σ
(ℓ)
D (λℓ−1) = λ1 − λℓ

σ
(ℓ)
D (λℓ) = −λℓ

and it follows that (recall −θ = α0):

σ
(ℓ)
D (αj) = αℓ−j (for 1 ≤ j ≤ ℓ).

5.6 Exceptional Types

Recall that if g is of type E8, F4 or G2, then g has no miniscule weights and so P ∨ = Q∨.
Thus the action of ∆(H, x) is always trivial. So we only need to consider g of type E6

and E7.
The following calculations for types E6 and E7 were done with the help of a Maple

worksheet which is available at:
http://dimax.rutgers.edu/~sadowski/LieAlgebraCalculations/index.html

For type E6 using H(1), we have:

σ
(1)
E (λ1) = −λ1 + λ6

σ
(1)
E (λ2) = −2λ1 + λ3

σ
(1)
E (λ3) = −2λ1 + λ5 (5.16)

σ
(1)
E (λ4) = −3λ1 + λ4

σ
(1)
E (λ5) = −2λ1 + λ2

σ
(1)
E (λ6) = −λ1

and so

σ
(1)
E (α0) = σ

(1)
E (−θ) = α1

σ
(1)
E (α1) = α6

σ
(1)
E (α2) = α3

σ
(1)
E (α3) = α5

σ
(1)
E (α4) = α4

σ
(1)
E (α5) = α2

σ
(1)
E (α6) = −θ = α0.
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For type E6 using H(6), we have:

σ
(6)
E (λ1) = −λ6

σ
(6)
E (λ2) = −2λ6 + λ5

σ
(6)
E (λ3) = −2λ6 + λ2 (5.17)

σ
(6)
E (λ4) = −3λ6 + λ4

σ
(6)
E (λ5) = −2λ6 + λ3

σ
(6)
E (λ6) = −λ6 + λ1

and so

σ
(6)
E (α0) = σ

(6)
E (−θ) = α6

σ
(6)
E (α1) = α5

σ
(6)
E (α2) = α4

σ
(6)
E (α3) = α3

σ
(6)
E (α4) = α2

σ
(6)
E (α5) = α1

σ
(6)
E (α6) = −θ = α0.

For type E7 using H(7), we have:

σ
(7)
E (λ1) = −2λ7 + λ6

σ
(7)
E (λ2) = −2λ7 + λ2

σ
(7)
E (λ3) = −3λ7 + λ5

σ
(7)
E (λ4) = −4λ7 + λ4 (5.18)

σ
(7)
E (λ5) = −3λ7 + λ3

σ
(7)
E (λ6) = −2λ7 + λ1

σ
(7)
E (λ7) = −λ7

and so

σ
(7)
E (α0) = σ

(7)
E (−θ) = α7

σ
(7)
E (α1) = α6

σ
(7)
E (α2) = α2

σ
(7)
E (α3) = α5

σ
(7)
E (α4) = α4

σ
(7)
E (α5) = α3

σ
(7)
E (α6) = α1

σ
(7)
E (α7) = −θ = α0.
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Boston, 2004.

[Li1] H.-S. Li, Local systems of vertex operators, vertex superalgebras and mod-
ules, J. Pure Appl. Alg. 109 (1996), 143-195.

[Li2] H.-S. Li, Certain extensions of vertex operator algebras of affine type,
Commun. Math. Phys. 217 (2001), 653-696.

24


	Introduction
	Definitions and Background
	Vertex Algebras
	Affine Lie Algebras
	Li's -Operators

	The sl2(C) case
	The General Case
	The Weyl group elements' actions
	The Main Theorems

	Appendix - Weyl group calculations
	Type B
	Type C
	Type D (any rank)
	Type D (odd rank)
	Type D (even rank)
	Exceptional Types


