On the classifying space of the family of finite and of virtually cyclic subgroups for CAT(0)-groups

Wolfgang Lück^{*} Fachbereich Mathematik Universität Münster Einsteinstr. 62 48149 Münster Germany

October 29, 2018

Abstract

Let G be a discrete group which acts properly and isometrically on a complete CAT(0)-space X. Consider an integer d with $d = 1$ or $d \geq 3$ such that the topological dimension of X is bounded by d . We show the existence of a G -CW-model EG for the classifying space for proper G actions with $\dim(EG) \leq d$. Provided that the action is also cocompact, we prove the existence of a $G-CW$ -model $\underline{E}G$ for the classifying space of the family of virtually cyclic subgroups satisfying $\dim(\underline{EG}) \leq d+1$.

Key words: classifying spaces of families, dimension, finite and virtually cyclic subgroups

Mathematics Subject Classification 2000: 55R35.

0 Introduction

Given a group G , denote by $\underline{E}G$ a G -CW-model for the classifying space for proper G-actions and by $\underline{EG} = E_{\mathcal{VCY}}(G)$ a G-CW-model for the classifying space of the family of virtually cyclic subgroups. Our main theorem which will be proven in Section [3](#page-9-0) is

Theorem 0.1. *Let* G *be a discrete group which acts properly and isometrically on a complete proper* $CAT(0)$ *-space* X. Let top-dim(X) be the topological *dimension of* X. Let *d be an integer satisfying* $d = 1$ *or* $d \geq 3$ *such that* $top\text{-dim}(X) \leq d$.

[∗]email: lueck@math.uni-muenster.de

www: http://www.math.uni-muenster.de/u/lueck/

FAX: 49 251 8338370

- *(i)* Then there is G -CW-model \underline{EG} with $\dim(\underline{EG}) \leq d$;
- *(ii) Suppose that* G *acts by semisimple isometries. (This is the case if we additionally assume that the* G*-action is cocompact.)*

Then there is G -CW-model \underline{EG} with $\dim(\underline{EG}) \leq d+1$.

There is the question whether for any group G the inequality

$$
\text{hdim}^G(\underline{EG}) - 1 \le \text{hdim}^G(\underline{EG}) \le \text{hdim}^G(\underline{EG}) + 1 \tag{0.2}
$$

holds, where hdim^G(EG) is the minimum of the dimensions of all possible G-CW-models for EG and $hdim^G(\underline{EG})$ is defined analogously (see [11, Introduction]). Since $\text{hdim}(\underline{EG}) \leq 1 + \text{hdim}(\underline{EG})$ holds for all groups G (see [11, Corollary 5.4]), Theorem [0.1](#page-0-0) implies

Corollary 0.3. *Let* G *be a discrete group and let* X *be complete* CAT(0)*-space* X *with finite topological dimension* top-dim(X)*. Suppose that* G *acts properly and isometrically on* X*. Assume that the* G*-action is by semisimple isometries. (The last condition is automatically satisfied if we additionally assume that the* G-action is cocompact.) Suppose that top-dim(X) = hdim^G(EG) \neq 2.

Then inequality [\(0.2\)](#page-1-0) *is true.*

We will prove at the end of Section [3](#page-9-0)

Corollary 0.4. *Suppose that* G *is virtually torsionfree. Let* M *be a simply connected complete Riemannian manifold of dimension* n *with non-negative sectional curvature. Suppose that* G *acts on* M *properly, isometrically and cocompactly. Then*

$$
\begin{array}{rcl}\n\text{hdim}(\underline{EG}) & = & n; \\
n-1 & \leq & \text{hdim}(\underline{EG}) & \leq & n+1.\n\end{array}
$$

In particular [\(0.2\)](#page-1-0) *holds.*

If G is the fundamental group of an *n*-dimensional closed hyperbolic manifold, then $hdim(\underline{EG}) = hdim(\underline{EG}) = n$ by [11, Example 5.12]. If G is virtually \mathbb{Z}^n for $n \geq 2$, then $\text{hdim}(\underline{EG}) = n$ and $\text{hdim}(\underline{EG}) = n+1$ by [11, Example 5.21]. Hence the cases $hdim(EG) = hdim(EG)$ and $hdim(EG) = hdim(EG) + 1$ do oc-cur in the situation of Corollary [0.4.](#page-1-1) There exists groups G with $\text{hdim}(\underline{EG}) =$ hdim($\underline{E}G$) − 1 (see [11, Example 5.29]). But we do not believe that this is possible in the situation of Corollary [0.3](#page-1-2) or Corollary [0.4.](#page-1-1)

The paper was supported by the Sonderforschungsbereich 478 – Geometrische Strukturen in der Mathematik – and the Max-Planck-Forschungspreis and the Leibniz-Preis of the author.

1 Classifying Spaces for Families

We briefly recall the notions of a family of subgroups and the associated classifying space. For more information, we refer for instance to the original source [13] or to the survey article [10].

A *family* F *of subgroups* of G is a set of subgroups of G which is closed under conjugation and taking subgroups. Examples for $\mathcal F$ are

$$
\{1\} = \{\text{trivial subgroup}\};
$$

$$
\mathcal{FIN} = \{\text{finite subgroups}\};
$$

$$
\mathcal{VCV} = \{\text{virtually cyclic subgroups}\};
$$

$$
\mathcal{ALC} = \{\text{all subgroups}\}.
$$

Let F be a family of subgroups of G. A model for the *classifying space* $E_{\mathcal{F}}(G)$ *of the family* $\mathcal F$ is a *G-CW*-complex X all of whose isotropy groups belong to F such that for any G-CW-complex Y with isotropy groups in $\mathcal F$ there exists a G -map $Y \to X$ and any two G -maps $Y \to X$ are G -homotopic. In other words, X is a terminal object in the G -homotopy category of $G-CW$ complexes whose isotropy groups belong to \mathcal{F} . In particular, two models for $E_{\mathcal{F}}(G)$ are G-homotopy equivalent.

There exists a model for $E_{\mathcal{F}}(G)$ for any group G and any family F of subgroups. There is even a functorial construction (see [5, page 223 and Lemma 7.6 $(iii)]$).

A G -CW-complex X is a model for $E_{\mathcal{F}}(G)$ if and only if the H-fixed point set X^H is contractible for $H \in \mathcal{F}$ and is empty for $H \notin \mathcal{F}$.

We abbreviate $\underline{EG} := E_{\mathcal{FIN}}(G)$ and call it the *universal G-CW-complex for proper G-actions.* We also abbreviate $\underline{E}G := E_{\mathcal{VCY}}(G)$.

A model for $E_{\mathcal{ALC}}(G)$ is G/G . A model for $E_{\{1\}}(G)$ is the same as a model for EG, which denotes the total space of the universal G-principal bundle $EG \rightarrow$ BG.

One can also define a numerable version of the space for proper G-actions to G which is denoted by JG. It is not necessarily a $G-CW$ -complex. A metric space X on which G acts isometrically and properly is a model for JG if and only if the two projections $X \times X \to X$ onto the first and second factor are G-homotopic to one another. If X is a complete $CAT(0)$ -space on which G-acts properly and isometrically, then X is a model for $\overline{J}G$, the desired G -homotopy is constructed using the geodesics joining two points in X (see [3, Proposition 1.4) in II.1 on page 160 .

One motivation for studying the spaces $\underline{E}G$ and $\underline{E}G$ comes from the Baum-Connes Conjecture and the Farrell-Jones Conjecture.

2 Topological and CW-dimension

Let X be a topological space. Let U be an open covering. Its *dimension* $\dim(\mathcal{U}) \in \{0, 1, 2, \ldots\}$ II $\{\infty\}$ is the infimum over all integers $d \geq 0$ such that for any collection U_0, U_1, \ldots, U_d of pairwise distinct elements in $\mathcal U$ the intersection $\bigcap_{i=0}^d U_i$ is empty. An open covering V is a refinement of U if for every $V \in V$ there is $U \in \mathcal{U}$ with $V \subseteq U$.

Definition 2.1 (Topological dimension). The *topological dimension* of a topological space X

$$
top\text{-dim}(X) \in \{0, 1, 2, \ldots\} \amalg \{\infty\}
$$

is the infimum over all integers $d \geq 0$ such that any open covering U possesses a refinement V with $\dim(V) \leq d$.

Let Z be a metric space. We will denote for $z \in Z$ and $r \geq 0$ by $B_r(z)$ and $\overline{B}_r(z)$ respectively the *open ball* and *closed ball* respectively around z with radius r. We call Z *proper* if for each $z \in Z$ and $r \geq 0$ the closed ball $\overline{B}_r(z)$ is compact. A group G acts *properly* on the topological space Z if for any $z \in Z$ there is an open neighborhood U such that the set ${g \in G \mid g \cdot U \cap U \neq \emptyset}$ is finite. In particular every isotropy group is finite. If Z is a $G-CW$ -complex, then Z is a proper G -space if and only if the isotropy group of any point in Z is finite (see [9, Theorem 1.23]).

Lemma 2.2. *Let* Z *be a proper metric space. Suppose that* G *acts on* Z *isometrically and properly. Then we get for the topological dimensions of* X *and* $G\backslash X$

$$
top\text{-dim}(G\backslash X) \leq \text{top-dim}(X).
$$

Proof. Since G acts properly and isometrically, we can find for every $z \in Z$ a real number $\epsilon(z) > 0$ such that we have for all $q \in G$

$$
g \cdot B_{7\epsilon(z)}(z) \cap B_{7\epsilon}(z) \neq \emptyset \Longleftrightarrow g \cdot B_{7\epsilon(z)}(z) = B_{7\epsilon(z)}(z) \Longleftrightarrow g \in G_z.
$$

We can arrange that $\epsilon(gz) = \epsilon(z)$ holds for $z \in Z$ and $g \in G$. Consider $G \cdot \overline{B}_{\epsilon}(z)$. We claim that this set is closed in Z. We have to show for a sequence $(z_n)_{n\geq 0}$ of elements in $\overline{B}_{\epsilon}(z)$ and $(g_n)_{n\geq 0}$ of elements in G and $x \in Z$ with $\lim_{n\to\infty} g_n z_n = x$ that x belongs to $G \cdot \overline{B}_{\epsilon}(z)$. Since X is proper, we can find $y \in \overline{B}_{\epsilon}(z)$ such that $\lim_{n\to\infty} z_n = y$. Choose $N = N(\epsilon)$ such that $d_X(g_nz_n, x) \leq \epsilon$ and $d_X(z_n, y) \leq \epsilon$ holds for $n \geq N$. We conclude for $n \geq N$

$$
d_x(g_ny, x) \leq d_X(g_ny, g_nz_n) + d_X(g_nz_n, x)
$$

=
$$
d_X(y, z_n) + d_X(g_nz_n, x)
$$

\$\leq \epsilon + \epsilon\$
=
$$
2\epsilon.
$$

This implies for $n \geq N$

$$
d_X(g_n^{-1}g_Nz, z) = d_X(g_Nz, g_nz)
$$

\n
$$
\leq d_X(g_Nz, g_Ny) + d_X(g_Ny, x) + d_X(x, g_ny) + d_X(g_ny, g_nz)
$$

\n
$$
= d_X(z, y) + d_X(g_Ny, x) + d_X(g_ny, x) + d_X(y, z)
$$

\n
$$
\leq \epsilon + 2\epsilon + 2\epsilon + \epsilon
$$

\n
$$
= 6\epsilon.
$$

Hence $g_n^{-1}g_N \in G_z$ for $n \geq N$. Since G_z is finite, we can arrange by passing to subsequences that $g_0 = g_n$ holds for $n \geq 0$. Hence

$$
x = \lim_{n \to \infty} g_n z_n = \lim_{n \to \infty} g_0 z_n = g_0 \cdot \lim_{n \to \infty} z_n = g_0 \cdot y \in G \cdot \overline{B}_{\epsilon}(z).
$$

Choose a set-theoretic section $s: G/G_z \to G$ of the projection $G \to G/G_z$. The map

$$
G/G_z\times B_{7\epsilon(z)}(z)\xrightarrow{\cong} G\cdot B_{7\epsilon(z)}(z),\quad (gG_z,x)\mapsto s(gG_z)\cdot x
$$

is bijective, continuous and open and hence a homeomorphism. It induces a homeomorphism

$$
G/G_z \times \overline{B}_{\epsilon(z)}(z) \xrightarrow{\cong} G \cdot \overline{B}_{\epsilon(z)}(z).
$$

This implies

top-dim
$$
(\overline{B}_{\epsilon(z)}(z))
$$
 = top-dim $(G \cdot \overline{B}_{\epsilon(z)}(z))$. (2.3)

Let $pr: Z \to G \backslash Z$ be the projection. It induces a bijective continuous map $G_z\setminus\overline{B}_{\epsilon(z)}(z) \stackrel{\cong}{\to} \text{pr}\big(\overline{B}_{\epsilon(z)}(z)\big)$ which is a homeomorphism since $\overline{B}_{\epsilon(z)}(z)$ and hence $G_z\backslash\overline{B}_{\epsilon(z)}(z)$ is compact. Hence we get

top-dim
$$
(pr(\overline{B}_{\epsilon(z)}(z)))
$$
 = top-dim $(G_z \setminus \overline{B}_{\epsilon(z)}(z))$. (2.4)

Since the metric space $\overline{B}_{\epsilon(z)}(z)$ is compact and hence contains a countable dense set and G_z is finite, we conclude from [2, Exercise in Chapter II on page 112]

$$
\text{top-dim}\big(G_z \setminus \overline{B}_{\epsilon(z)}(z)\big) \quad \leq \quad \text{top-dim}\big(\overline{B}_{\epsilon(z)}(z)\big). \tag{2.5}
$$

From [\(2.3\)](#page-4-0), [\(2.4\)](#page-4-1) and [\(2.5\)](#page-4-2) we conclude that $G \cdot \overline{B}_{\epsilon(z)}(z) \subseteq Z$ and $pr(\overline{B}_{\epsilon(z)}(z)) \subseteq$ $G\backslash Z$ are closed and satisfy

top-dim
$$
(pr(\overline{B}_{\epsilon(z)}(z))) \leq
$$
top-dim $(G \cdot \overline{B}_{\epsilon(z)}(z))$. (2.6)

Since Z is proper, it is the countable union of compact subspaces and hence contains a countable dense subset. This is equivalent to the condition that Z has a countable basis for its topology. Obviously the same is true for $G\backslash Z$. We conclude from [12, Theorem 9.1 in in Chapter 7.9 on page 302 and Exercise 9 in Chapter 7.9 on page 315]

top-dim(*Z*) = sup{top-dim(
$$
G \cdot \overline{B}_{\epsilon(z)}(z)
$$
)}; (2.7)

$$
\text{top-dim}(G \setminus Z) = \sup \{ \text{top-dim}(\text{pr}(\overline{B}_{\epsilon(z)}(z))) \}.
$$
 (2.8)

Now Lemma [2.2](#page-3-0) follows from (2.6) , (2.7) and (2.8) . \Box

In the sequel we will equip a simplicial complex with the weak topology, i.e., a subset is closed if and only if its intersection with any simplex σ is a closed subset of σ . With this topology a simplicial complex carries a canonical CW-structure.

Let X be a G-space. We call a subset $U \subseteq X$ a \mathcal{FIN} -set if we have $gU \cap U \neq \emptyset \implies gU = U$ for every $g \in G$ and $G_U := \{ g \in G \mid g \cdot U = U \}$ is finite. Let U be a covering of X by open FLN -subset. Suppose that U is G-invariant, i.e., we have $g \cdot U \in \mathcal{U}$ for $g \in G$ and $U \in \mathcal{U}$. Define its *nerve* $\mathcal{N}(U)$ to be the simplicial complex whose vertices are the elements in U and for which the pairwise distinct vertices U_0, U_1, \ldots, U_d span a d-simplex if and only if $\bigcap_{i=0}^d U_i \neq \emptyset$. The action of G on X induces an action on U and hence a simplicial action on $\mathcal{N}(\mathcal{U})$. The isotropy group of any vertex is finite and hence the isotropy group of any simplex is finite. Let $\mathcal{N}(U)'$ be the barycentric subdivision. It inherits a simplicial G-action from $\mathcal{N}(\mathcal{U})$ such that for any $g \in G$ and any simplex σ whose interior is denoted by σ° and which satisfies $g \cdot \sigma^{\circ} \cap \sigma^{\circ} \neq \emptyset$ we have $gx = x$ for all $x \in \sigma^{\circ}$. In particular $\mathcal{N}(\mathcal{U})'$ is a $G-CW$ -complex and agrees as a G -space with $\mathcal{N}(\mathcal{U})$.

Lemma 2.9. Let n be an integer with $n \geq 0$. Let X be a proper metric space *whose topological dimension satisfies* top-dim $(X) \leq n$ *. Suppose that* G *acts properly and isometrically on* X*.*

Then there exists a proper n*-dimensional* G*-*CW*-complex* Y *together with a* G *-map* $f: X \rightarrow Y$ *.*

Proof. Since the G-action is proper we can find for every $x \in X$ an $\epsilon(x) > 0$ such that for every $q \in G$ we have

$$
g \cdot \overline{B}_{2\epsilon(x)}(x) \cap \overline{B}_{2\epsilon(x)}(x) \neq \emptyset \Leftrightarrow g \cdot \overline{B}_{2\epsilon(x)}(x) = \overline{B}_{2\epsilon(x)}(x)
$$

$$
\Leftrightarrow g \cdot B_{2\epsilon(x)}(x) = B_{2\epsilon(x)}(x) \Leftrightarrow g \cdot B_{\epsilon(x)}(x) = B_{\epsilon(x)}(x) \Leftrightarrow g \in G_x.
$$

We can arrange that $\epsilon(gx) = \epsilon(x)$ for $g \in G$ and $x \in X$ holds. We obtain a covering of X by open \mathcal{FIN} -subsets $\{B_{\epsilon(x)}(x) \mid x \in X\}$. Let $\mathrm{pr}: X \to G\backslash X$ be the canonical projection. We obtain an open covering of $G\backslash X$ by $\{pr(B_{\epsilon(x)}(x))\mid$ $x \in X$. Since top-dim $(X) \leq n$ by assumption and G acts properly on X, we get top-dim($G\backslash X$) $\leq n$ from Lemma [2.2.](#page-3-0) Since G acts properly and isometrically on X, the quotient $G\backslash X$ inherits a metric from X. Hence $G\backslash X$ is paracompact by Stone's theorem (see [12, Theorem 4.3 in Chap. 6.3 on page 256]) and in particular normal. By [6, Theorem 3.5 on page 211] we can find a locally finite open covering U of $G\backslash X$ such that $\dim(\mathcal{U}) \leq n$ and U is a refinement of $\{pr(B_{\epsilon(x)}(x)) \mid x \in X\}$. For each $U \in \mathcal{U}$ choose $x(U) \in X$ with $U \subseteq$ $pr(B_{\epsilon(U)}(x(U))$. Define the index set

$$
J = \big\{ (U, \overline{g}) \mid U \in \mathcal{U}, \overline{g} \in G/G_{x(U)} \big\}.
$$

For $(U, \overline{g}) \in J$ define an open \mathcal{FIN} -subset of X by

$$
V_{U,\overline{g}} := pr^{-1}(U) \cap g \cdot B_{2\epsilon(x(U))}(x(U)).
$$

Obviously this is well-defined, i.e., the choice of $g \in \overline{g}$ does not matter, and we have $pr(V_{U,\overline{g}}) \subseteq U$ and $V_{U,\overline{g}} \subseteq g \cdot B_{2\epsilon(x(U))}(x(U)).$

Consider the collection of subsets of X

$$
\mathcal{V} = \{V_{U,\overline{g}} \mid (U,\overline{g}) \in J\}.
$$

This is a G-invariant covering of X by open \mathcal{FIN} -subsets. Its dimension satisfies

$$
\dim(\mathcal{V}) \le \dim(\mathcal{U}) \le n
$$

since for $U \in \mathcal{U}$, $\overline{g_1}, \overline{g_2} \in G/G_{x(U)}$ we have

$$
V_{U,\overline{g_1}} \cap V_{U,\overline{g_2}} \neq \emptyset \implies g_1 \cdot B_{2\epsilon(x(U))}(x(U)) \cap g_2 \cdot B_{2\epsilon(x(U))}(x(U)) \implies \overline{g_1} = \overline{g_2}.
$$

Since U is locally finite and $G\backslash X$ is paracompact, we can find a locally finite partition of unity $\{e_U: G \backslash X \to [0,1] \mid U \in \mathcal{U}\}\$ which is subordinate to \mathcal{U} , i.e., $\sum_{U \in \mathcal{U}} e_U = 1$ and supp $(e_U) \subset U$ for every $U \in \mathcal{U}$. Fix a map $\chi: [0, \infty) \to [0, 1]$ satisfying $\chi^{-1}(0) = [1, \infty)$. Define for $(U, \overline{g}) \in J$ a function

$$
\phi_{U,\overline{g}}\colon X\to [0,1], \quad y\mapsto e_U(\mathrm{pr}(y))\cdot \chi\big(d_X(y,gx(U))/\epsilon(x(U))\big).
$$

Consider $y \in X$. Since U is locally finite and $G\backslash X$ is locally compact, we can find an open neighborhood T of pr(y) such that \overline{T} meets only finitely many elements of U. Choose an open neighborhood W_0 of y such that $\overline{W_0}$ is compact. Define an open neighborhood of y by

$$
W := W_0 \cap \mathrm{pr}^{-1}(T).
$$

Since $\overline{W_0}$ is compact, \overline{W} is compact. Since G acts properly, there exists for a given $U \in \mathcal{U}$ only finitely many elements $g \in G$ with $\overline{W} \cap g \cdot B_{\epsilon(x(U))}(x(U)) \neq \emptyset$. Since \overline{T} meets only finitely elements of U, the set

$$
J_W := \left\{ (U, \overline{g}) \in J \mid \overline{W} \cap g \cdot B_{\epsilon(x(U))}(x(U)) \cap \mathrm{pr}^{-1}(U) \neq \emptyset \right\}
$$

is finite. Suppose $\phi_{U,\overline{g}}(z) > 0$ for $(U,\overline{g}) \in J$ and $z \in W$. We conclude $z \in$ $pr^{-1}(U) \cap g \cdot B_{\epsilon(x(U))}(x(U))$ and hence $(U, \overline{g}) \in J_W$. Thus we have shown that the collection $\{\phi_{U,\overline{g}} \mid (U,\overline{g}) \in J\}$ is locally finite.

We conclude that the map

$$
\sum_{(U,\overline{g})\in J} \phi_{U,\overline{g}}\colon X\to [0,1], \quad y\mapsto \sum_{(U,\overline{g})\in J} e_U(\mathrm{pr}(y))\cdot \chi\big(d_X(y,gx(U))/\epsilon(x(U))\big)
$$

is well-defined and continuous. It has always a value greater than zero since for every $y \in X$ there exists $U \in \mathcal{U}$ with $e_U(\text{pr}(y)) > 0$, the set $\text{pr}^{-1}(U)$ is contained in $\bigcup_{g\in G} g \cdot B_{\epsilon(U)}(x(U))$ and $\chi^{-1}(0) = [1,\infty)$. Define for $(U,\overline{g}) \in J$ a map

$$
\psi_{U,\overline{g}}\colon X\to [0,1], \quad y\mapsto \frac{\phi_{U,\overline{g}}(y)}{\sum_{(U,\overline{g})\in J}\phi_{U,\overline{g}}(y)}.
$$

We conclude that

$$
\begin{array}{rcl}\n\sum_{(U,\overline{g})\in J}\psi_{U,\overline{g}}(y) & = & 1 & \text{for } y \in X; \\
\psi_{U,\overline{g}}(hy) & = & \psi_{U,\overline{h^{-1}g}}(y) & \text{for } h \in G, y \in Y \text{ and } (U,\overline{g}) \in J; \\
\text{supp}(\psi_{U,\overline{g}}) & \subseteq & V_{U,\overline{g}} & \text{for } (U,\overline{g}) \in J,\n\end{array}
$$

and the collection $\{\psi_{U,\overline{g}}\mid (U,\overline{g})\in J\}$ is locally finite. Define the desired proper *n*-dimensional *G-CW*-complex to be the nerve $Y := \mathcal{N}(V)$. Define a map by

$$
f: X \to \mathcal{N}(\mathcal{V}), \quad y \mapsto \sum_{(U,\overline{g}) \in J} \psi_{U,\overline{g}}(y) \cdot V_{U,\overline{g}}.
$$

It is well-defined since for $y \in X$ the simplices $V_{U,\overline{g}}$ for which $\psi_{U,\overline{g}}(y) \neq 0$ holds span a simplex because $y \in X$ with $\psi_{U,\overline{g}}(y) \neq 0$ belongs to $V_{U,\overline{g}}$ and hence the intersection of the sets $V_{U,\overline{q}}$ for which $\psi_{U,\overline{q}}(y) \neq 0$ holds contains y and hence is non-empty. The map f is continuous since $\{\psi_{U,\overline{g}} \mid (U,\overline{g}) \in J\}$ is locally finite. It is G-equivariant by the following calculation for $h \in G$ and $y \in Y$:

$$
f(hy) = \sum_{(U,\overline{g}) \in J} \psi_{U,\overline{g}}(hy) \cdot V_{U,\overline{g}}
$$

\n
$$
= \sum_{(U,\overline{g}) \in J} \psi_{U,\overline{h}\overline{g}}(hy) \cdot V_{U,\overline{h}\overline{g}}
$$

\n
$$
= \sum_{(U,\overline{g}) \in J} \psi_{U,\overline{h^{-1}h}\overline{g}}(y) \cdot V_{U,\overline{h}\overline{g}}
$$

\n
$$
= \sum_{(U,\overline{g}) \in J} \psi_{U,\overline{g}}(y) \cdot h \cdot V_{U,\overline{g}}
$$

\n
$$
= h \cdot \sum_{(U,\overline{g}) \in J} \psi_{U,\overline{g}}(y) \cdot V_{U,\overline{g}}
$$

\n
$$
= h \cdot f(y).
$$

Lemma 2.10. Let X and Y be G-CW-complexes. Let $i: X \rightarrow Y$ and $r: Y \rightarrow X$ *be* G*-maps such that* r ◦ i *is* G*-homotopic to the identity. Consider an integer* $d > 3$ *. Suppose that* Y *has dimension* $\leq d$ *.*

Then X is G-homotopy equivalent to a *G*-CW-complex *Z* of dimension $\leq d$.

 \Box

Proof. By the Equivariant Cellular Approximation Theorem (see [14, Theorem II.2.1 on page 104) we can assume without loss of generality that i and r are cellular. Let cyl(r) be the mapping cylinder. Let $k: Y \to cyl(r)$ be the canonical inclusion and $p:$ cyl $(r) \rightarrow X$ be the canonical projection. Then p is a G-homotopy equivalence and $p \circ k = r$. Let Z be the union of the 2-skeleton of $\text{cyl}(r)$ and Y. This is a G-CW-subcomplex of $\text{cyl}(r)$ and $\text{cyl}(r)$ is obtained from Z by attaching equivariant cells of dimension ≥ 3 . Hence the map $p|_Z: Z \to X$ has the property that it induces on every fixed point set a 2-connected map. Let $j: X \to Z$ be the composite of $i: X \to Y$ with the obvious inclusion $Y \to Z$. Then $p|Z \circ j = p \circ k \circ i = r \circ i$ is G-homotopy equivalent to the identity and the dimension of Z is still bounded by d since we assume $d \geq 3$. Hence we can assume in the sequel that $r^H: Y^H \to X^H$ is 2-connected for all $H \subseteq G$, otherwise replace Y by Z, i by j and r by $p|_Z$.

We want to apply [9, Proposition 14.9 on page 282]. Here the assumption $d \geq 3$ enters. Hence it suffices to show that the cellular $\mathbb{Z}\Pi(G, X)$ -chain complex

 $C_*^c(X)$ is $\mathbb{Z}\Pi(G,X)$ -chain homotopy equivalent to a d-dimensional $\mathbb{Z}\Pi(G,X)$ chain complex. By [9, Proposition 11.10 on page 221] it suffices to show that the cellular $\mathbb{Z}\Pi(G,X)$ -chain complex $C_*^c(X)$ is dominated by a d-dimensional $\mathbb{Z}\Pi(G, X)$ -chain complex. This follows from the geometric domination (Y, i, r) by passing to the cellular chain complexes over the fundamental categories since r and hence also i induce equivalences between the fundamental categories because $r^H: Y^H \to X^H$ is 2-connected for all $H \subseteq G$ and $r \circ i \simeq_G id_X$.

The condition $d \geq 3$ is needed since we want to argue first with the cellular \mathbb{Z} Or(G)-chain complex and then transfer the statement that it is d-dimensional to the statement that the underlying $G-CW$ -complex is d-dimensional. The condition $d \geq 3$ enters for analogous reasons in the classical proof of the theorem that the existence of a d-dimensional $\mathbb{Z}G$ -projective resolution for the trivial $\mathbb{Z}G$ -module $\mathbb Z$ implies the existence of a d-dimensional model for BG (see [4, Theorem 7.1 in Chapter VIII.7 on page 205]).

Theorem 2.11. *Let* G *be a discrete group. Then*

- *(i)* There is a G-homotopy equivalence $\underline{J}G \rightarrow \underline{E}G$;
- *(ii) Suppose that there is a model for* JG *which is a metric space such that the action of* G *on* $\overline{J}G$ *is isometric. Consider an integer d with* $d = 1$ *or* $d \geq 3$ *. Suppose that the topological dimension* top-dim $(JG) \leq d$ *.*

Then there is a G-CW-model for EG *of dimension* $\leq d$;

(iii) Let *d be an integer* $d \geq 0$ *. Suppose that there is a G-CW-model for* EG *with* dim(\underline{EG}) \leq *d such that* \underline{EG} *after forgetting the group action has countably many cells.*

Then there exists a model for $\overline{J}G$ *with* top-dim $(\overline{J}G) \leq d$ *.*

Proof. [\(i\)](#page-8-0) This is proved in [10, Lemma 3.3 on page 278].

[\(ii\)](#page-8-1) Choose a G-homotopy equivalence $i: \underline{EG} \to \underline{J}G$. From Lemma [2.9](#page-5-0) we obtain a G-map $f: \underline{J}G \rightarrow Y$ to a proper G-CW-complex of dimension $\leq d$. By the universal properly of $\underline{E}G$ we can find a G -map $h: Y \to \underline{E}G$ and the composite $h \circ f \circ i$ is G-homotopic to the identity on EG.

Suppose $d \geq 3$. We conclude from Lemma [2.10](#page-7-0) that EG is G-homotopy equivalent to a G -CW-complex of dimension $\leq d$.

Suppose $d = 1$. By Dunwoody [7, Theorem 1.1] it suffices to show that the rational cohomological dimension of G satisfies $\text{cd}_{\mathbb{Q}}(G) \leq 1$. Hence we have to show for any QG-module M that $\text{Ext}^n_{\mathbb{Q}G}(\mathbb{Q},M) = 0$ for $n \geq 2$, where Q is the trivial QG-module. Since all isotropy groups of EG and Y are finite, their cellular $\mathbb{Q}G$ -chain complexes are projective. Since $\underline{E}G$ is contractible, $C_*(EG;\mathbb{Q})$ is a projective $\mathbb{Q}G$ -resolution and hence

$$
\text{Ext}^n_{\mathbb{Q}G}(\mathbb{Q},M)\cong H^n\big(\text{hom}_{\mathbb{Q}G}(C_*(\underline{E}G;\mathbb{Q}),M)\big).
$$

 \Box

Since $h \circ f \circ i \simeq_G \text{id}_{\underline{E}G}$, the Q-module $H^n(\text{hom}_{\mathbb{Q}G}(C_*(\underline{E}G;\mathbb{Q}),M))$ is a direct summand in the Q-module $H^n\big(\text{hom}_{\mathbb{Q} G}(C_*(Y;\mathbb{Q}),M)\big)$. Since Y is 1-dimensional by assumption, $H^n(\text{hom}_{\mathbb{Q}G}(C_*(Y;\mathbb{Q}),M))$ vanishes for $n \geq 2$. This implies that $\text{Ext}^n_{\mathbb{Q}G}(\mathbb{Q},M)$ vanishes for $n \geq 2$.

[\(iii\)](#page-8-2) Using the equivariant version of the simplicial approximation theorem and the fact that changing the G-homotopy class of attaching maps does not change the G-homotopy type, one can find a simplicial complex X with simplicial G action which is G-homotopy equivalent to EG , satisfies $dim(X) = dim(EG)$ and has only countably many simplices. Hence the barycentric subdivision X' is a simplicial complex of dimension $\leq d$ with countably many simplices and carries a G-CW-structure. The latter implies that X' is a G-CW-model for $\underline{E}G$ and hence also a model for JG. Since the dimension of a simplicial complex with countably many simplices is equal to its topological dimension, we conclude $top\text{-dim}(X') = \dim(X) = \dim(\underline{E}G) \leq d.$ \Box

3 The passage from finite to virtually cyclic groups

In [11] it is described how one can construct EG from EG . In this section we want to make this description more explicit under the following condition

Condition 3.1. We say that G satisfies condition (C) if for every $g, h \in G$ with $|h| = \infty$ and $k, l \in \mathbb{Z}$ we have

$$
gh^k g^{-1} = h^l \implies |k| = |l|.
$$

Let \mathcal{ICY} be the set of infinite cyclic subgroup C of G. This is not a family since it does not contain the trivial subgroup. We call $C, D \in \mathcal{ICY}$ *equivalent* if $|C \cap D| = \infty$. One easily checks that this is an equivalence relation on $I\mathcal{CV}$. Denote by $[\mathcal{ICY}]$ the set of equivalence classes and for $C \in \mathcal{ICY}$ by $[C]$ its equivalence class. Denote by

$$
N_G C := \{ g \in G \mid g C g^{-1} = C \}
$$

the *normalizer* of C in G. Define for $[C] \in [\mathcal{ICY}]$ a subgroup of G by

$$
N_G[C] := \{ g \in G \mid |gCg^{-1} \cap C| = \infty \}.
$$

One easily checks that this is independent of the choice of $C \in [C]$. Actually $N_G[C]$ is the isotropy of [C] under the action of G induced on $[\mathcal{ICY}]$ by the conjugation action of G on $\mathcal{I}\mathcal{CY}$.

Lemma 3.2. *Suppose that* G *satisfies Condition (C) (see [3.1\)](#page-9-1). Consider* $C \in$ ICY*.*

Then obtain a nested sequence of subgroups

$$
N_G C \subseteq N_G 2!C \subseteq N_G 3!C \subseteq N_G 4!C \subseteq \cdots
$$

where $k!C$ *is the subgroup of* C *given by* $\{h^{k!} | h \in C\}$ *, and we have*

$$
N_G[C] = \bigcup_{k \ge 1} N_G k!C.
$$

Proof. Since every subgroup of a cyclic group is characteristic, we obtain the nested sequence of normalizers $N_GC \subseteq N_G2!C \subseteq N_G3!C \subseteq N_G4!C \subseteq \cdots$.

Consider $g \in N_G[C]$. Let h be a generator of C. Then there are $k, l \in \mathbb{Z}$ with $gh^kg^{-1} = h^l$ and $k, l \neq 0$. Condition (C) implies $k = \pm l$. Hence $g \in N_G \langle h^k \rangle \subseteq$ $N_G k!C$. This implies $N_G[C] \subseteq \bigcup_{k \geq 1} N_G k!C$. The other inclusion follows from the fact that for $g \in N_G k!C$ we have $k!C \subseteq gCg^{-1} \cap C$. 口

Fix $C \in \mathcal{ICY}$. Define a family of subgroups of $N_G[C]$ by

$$
\mathcal{G}_G(C) := \left\{ H \subseteq N_G[C] \mid [H : (H \cap C)] < \infty \right\}
$$
\n
$$
\cup \left\{ H \subseteq N_G[C] \mid |H| < \infty \right\}. \tag{3.3}
$$

Notice that $\mathcal{G}_G(C)$ consists of all finite subgroups of $N_G[C]$ and of all virtually cyclic subgroups of $N_G[C]$ which have an infinite intersection with C. Define a quotient group of N_GC by

$$
W_G C := N_G C / C.
$$

Lemma 3.4. *Let* n *be an integer. Suppose that* G *satisfies Condition (C) (see* [3.1\)](#page-9-1)*.* Suppose that there exists a G-CW-model for <u>E</u>G with dim(EG) \leq *n* and for every $C \in \mathcal{ICY}$ there exists a W_GC -CW-model for $\underline{E}W_GC$ with $\dim(\underline{E}W_GC)\leq n$.

Then there exists a G-CW-model for <u>EG</u> with $\dim(E) \leq n+1$ *.*

Proof. Because of [11, Theorem 2.3 and Remark 2.5] it suffices to show for every $C \in \mathcal{ICY}$ that there is a $N_G[C]$ -model for $E_{\mathcal{G}_G(C)}(N_G[C])$ with

$$
\dim(E_{\mathcal{G}_G(C)}(N_G[C])) \leq n+1. \tag{3.5}
$$

Because of Lemma [3.2](#page-9-2) we have

$$
N_G[C] = \text{colim}_{k \to \infty} N_G k!C.
$$

We conclude (3.5) from [11, Lemma 4.2 and Theorem 4.3] since every element $H \in \mathcal{G}_G(C)$ is finitely generated and hence lies already in $N_G k!C$ for some $k > 0$, by assumption there exists a $W_Gk!C\text{-}CW\text{-}model$ for $\underline{E}W_Gk!C$ with $\dim(\underline{E}W_Gk!C) \leq n$, and $\text{res}_{N_Gk!C \to W_Gk!C} \underline{E}W_Gk!C$ is $E_{\mathcal{G}_G(C)|_{N_Gk!C}}(N_Gk!C)$.

Now we are ready to prove Theorem [0.1.](#page-0-0)

Proof of Theorem [0.1.](#page-0-0) [\(i\)](#page-1-3) Consider an integer $d \in \mathbb{Z}$ with $d = 1$ or $d \geq 3$ such that $d \geq$ top-dim(X). The space X is a model for $\overline{J}G$ by [3, Corollary 2.8 in II.2. on page 178]. We conclude from Theorem [2.11](#page-8-3) [\(ii\)](#page-8-1) that there is a d -dimensional model for $\underline{E}G$.

[\(ii\)](#page-1-4) We will use in the proof some basic facts and notions about isometries of proper complete CAT(0)-spaces which can be found in [3, Chapter II.6].

The group G satisfies condition (C) by the following argument. Suppose that $gh^kg^{-1} = h^l$ for $g, h \in G$ with $|h| = \infty$ and $k, l \in \mathbb{Z}$. The isometry $l_h: X \to X$ given by multiplication with h is a hyperbolic isometry since it has no fixed point and is by assumption semisimple. We obtain for the translation length $L(h)$ which is a real number satisfying $L(h) > 0$

$$
k \cdot L(h) = L(h^k) = L(gh^k g^{-1}) = L(h^l) = l \cdot L(h).
$$

This implies $k = l$.

Let $C \subseteq G$ be any infinite cyclic subgroup. Choose a generator $g \in C$. The isometry $l_q: X \to X$ given by multiplication with g is a hyperbolic isometry. Let $\text{Min}(g) \subset X$ be the the union of all axes of g. Then $\text{Min}(g)$ is a closed convex subset of X. There exists a closed convex subset $Y(g) \subseteq X$ and an isometry

$$
\alpha\colon \operatorname{Min}(g) \xrightarrow{\cong} Y(g) \times \mathbb{R}.
$$

The space Min(G) is N_GC -invariant since for each $h \in N_GC$ we have $hgh^{-1} = g$ or $hgh^{-1} = g^{-1}$ and hence multiplication with h sends an axis of g to an axis of g. The N_GC -action induces a proper isometric W_GC -action on $Y(g)$. These claims follow from [3, Theorem 6.8 in II.6 on page 231 and Proposition 6.10 in II.6 on page 233. The space $Y(g)$ inherits from X the structure of a CAT(0)-space and satisfies top-dim $(Y(g)) \leq$ top-dim (X) . Hence $Y(g)$ is a model for JW_GC with top-dim $(Y(g)) \leq$ top-dim (X) by [3, Corollary 2.8 in II.2. on page 178]. We conclude from Theorem [2.11](#page-8-3) [\(ii\)](#page-8-1) that there is a d -dimensional model for $\underline{E}W_GC$ for every infinite cyclic subgroup $C \subseteq G$. Now Theorem [0.1](#page-0-0) follows from Lemma [3.4.](#page-10-1) 口

Finally we prove Corollary [0.4.](#page-1-1)

Proof of Corollary [0.4.](#page-1-1) A complete Riemannian manifold M with non-negative sectional curvature is a CAT(0)-space (see [3, Theorem IA.6 on page 173 and Theorem II.4.1 on page 193.) Since G is virtually torsion free, we can find a subgroup G_0 of finite index in G such that G_0 is torsionfree and acts orientation preserving on M. Hence $G_0\backslash M$ is a closed orientable manifold of dimension n. Hence $H_n(M;\mathbb{Z}) = H_n(BG;\mathbb{Z}) \neq 0$. This implies that every CW-model BG_0 has at least dimension n. Since the restriction of $\underline{E}G$ to G_0 is a G_0 -CW-model for EG_0 , we conclude hdim(EG) $\geq n$. Since M with the given G_0 -action is a $G-CW$ -model for EG (see [1, Theorem 4.15]), we conclude

$$
hdim(\underline{EG}) = n = \text{top-dim}(M).
$$

If $n \neq 2$, we conclude hdim(\underline{EG}) $\leq n+1$ from Theorem [0.1.](#page-0-0) Since hdim(\underline{EG}) \leq $1 + \text{hdim}(\underline{EG})$ holds for all groups G (see [11, Corollary 5.4]), we get

$$
n - 1 \leq \text{hdim}(\underline{EG}) \leq n + 1
$$

provided that $n \neq 2$.

Suppose $n = 2$. If G_0 is a torsionfree subgroup of finite index in G, then $G_0 \backslash X$ is a closed 2-dimensional manifold with non-negative sectional curvature. Hence G_0 is \mathbb{Z}^2 or hyperbolic. This implies that G is virtually \mathbb{Z}^2 or hyperbolic. Hence hdim(\underline{EG}) ∈ {2,3} by [11, Example 5.21] in the first case and by [11, Theorem 3.1, Example 3.6, Theorem 5.8 (ii)] or [8, Proposition 6, Remark 7 and Proposition 8] in the second case.

\Box

References

- [1] H. Abels. A universal proper G-space. *Math. Z.*, 159(2):143–158, 1978.
- [2] G. E. Bredon. *Introduction to compact transformation groups*. Academic Press, New York, 1972. Pure and Applied Mathematics, Vol. 46.
- [3] M. R. Bridson and A. Haefliger. *Metric spaces of non-positive curvature*. Springer-Verlag, Berlin, 1999. Die Grundlehren der mathematischen Wissenschaften, Band 319.
- [4] K. S. Brown. *Cohomology of groups*, volume 87 of *Graduate Texts in Mathematics*. Springer-Verlag, New York, 1982.
- [5] J. F. Davis and W. Lück. Spaces over a category and assembly maps in isomorphism conjectures in K- and L-theory. K*-Theory*, 15(3):201–252, 1998.
- [6] C. H. Dowker. Mapping theorems for non-compact spaces. *Amer. J. Math.*, 69:200–242, 1947.
- [7] M. J. Dunwoody. Accessibility and groups of cohomological dimension one. *Proc. London Math. Soc. (3)*, 38(2):193–215, 1979.
- [8] D. Juan-Pineda and I. J. Leary. On classifying spaces for the family of virtually cyclic subgroups. In *Recent developments in algebraic topology*, volume 407 of *Contemp. Math.*, pages 135–145. Amer. Math. Soc., Providence, RI, 2006.
- [9] W. L¨uck. *Transformation groups and algebraic* K*-theory*, volume 1408 of *Lecture Notes in Mathematics*. Springer-Verlag, Berlin, 1989.
- [10] W. L¨uck. Survey on classifying spaces for families of subgroups. In *Infinite groups: geometric, combinatorial and dynamical aspects*, volume 248 of *Progr. Math.*, pages 269–322. Birkhäuser, Basel, 2005.
- [11] W. Lück and M. Weiermann. On the classifying space of the family of virtually cyclic subgroups. Preprintreihe SFB 478 — Geometrische Strukturen in der Mathematik, Heft 453, Münster, arXiv:math.AT/0702646v2, to appear in the Proceedings in honour of Farrell and Jones in Pure and Applied Mathematic Quarterly, 2007.
- [12] J. R. Munkres. *Topology: a first course*. Prentice-Hall Inc., Englewood Cliffs, N.J., 1975.
- [13] T. tom Dieck. Orbittypen und äquivariante Homologie. I. Arch. Math. *(Basel)*, 23:307–317, 1972.
- [14] T. tom Dieck. *Transformation groups*. Walter de Gruyter & Co., Berlin, 1987.