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Abstract

Let G be a discrete group which acts properly and isometrically on a
complete CAT(0)-space X. Consider an integer d with d = 1 or d > 3
such that the topological dimension of X is bounded by d. We show the
existence of a G-CW-model EG for the classifying space for proper G-
actions with dim(EG) < d. Provided that the action is also cocompact,
we prove the existence of a G-CW-model EG for the classifying space of
the family of virtually cyclic subgroups satisfying dim(EG) < d + 1.
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0 Introduction
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Given a group G, denote by EG a G-CW-model for the classifying space for
proper G-actions and by EG = FEycy(G) a G-CW-model for the classifying
space of the family of virtually cyclic subgroups. Our main theorem which will
be proven in Section [l is

Theorem 0.1. Let G be a discrete group which acts properly and isometri-
cally on a complete proper CAT(0)-space X . Let top-dim(X) be the topological
dimension of X. Let d be an integer satisfying d = 1 or d > 3 such that
top-dim(X) < d.
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(i) Then there is G-CW -model EG with dim(EG) < d;

(i) Suppose that G acts by semisimple isometries. (This is the case if we
additionally assume that the G-action is cocompact.)

Then there is G-CW -model EG with dim(EG) < d+ 1.
There is the question whether for any group G the inequality
hdim(EG) - 1 < hdim“(EG) < hdim“(EG) + 1 (0.2)

holds, where hdim®(EG) is the minimum of the dimensions of all possible G-
CW-models for EG and hdim“(EG) is defined analogously (see [II, Intro-
duction]). Since hdim(EG) < 1 + hdim(EG) holds for all groups G (see [L]
Corollary 5.4]), Theorem implies -

Corollary 0.3. Let G be a discrete group and let X be complete CAT(0)-space
X with finite topological dimension top-dim(X). Suppose that G acts properly
and isometrically on X. Assume that the G-action is by semisimple isometries.
(The last condition is automatically satisfied if we additionally assume that the
G-action is cocompact.) Suppose that top-dim(X) = hdim®(EG) # 2.

Then inequality (02) is true.

We will prove at the end of Section [3]

Corollary 0.4. Suppose that G is virtually torsionfree. Let M be a simply
connected complete Riemannian manifold of dimension n with non-negative sec-
tional curvature. Suppose that G acts on M properly, isometrically and cocom-
pactly. Then

hdim(EG) =
n—1 < hdim(EG) <

In particular [@2) holds.

5
n

+ 1.

If G is the fundamental group of an n-dimensional closed hyperbolic mani-
fold, then hdim(EG) = hdim(EG) = n by [11, Example 5.12]. If G is virtually
Z" for n > 2, then hdim(EG) = n and hdim(EG) = n+1 by [I1, Example 5.21].
Hence the cases hdim(EG) = hdim(EG) and hdim(EG) = hdim(EG)+1 do oc-
cur in the situation of Corollary L4l There exists groups G with hdim(EG) =
hdim(EG) — 1 (see [II, Example 5.29]). But we do not believe that this is
possible in the situation of Corollary or Corollary [0.4
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Strukturen in der Mathematik — and the Max-Planck-Forschungspreis and the
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1 Classifying Spaces for Families
We briefly recall the notions of a family of subgroups and the associated classify-

ing space. For more information, we refer for instance to the original source [13]
or to the survey article [10].



A family F of subgroups of G is a set of subgroups of G which is closed under
conjugation and taking subgroups. Examples for F are

{1} = {trivial subgroup};
FIN = {finite subgroups};
VCY = {virtually cyclic subgroups};
ALL = {all subgroups}.

Let F be a family of subgroups of G. A model for the classifying space
Ex(G) of the family F is a G-CW-complex X all of whose isotropy groups
belong to F such that for any G-CW-complex Y with isotropy groups in F
there exists a G-map ¥ — X and any two G-maps ¥ — X are G-homotopic.
In other words, X is a terminal object in the G-homotopy category of G-C'W-
complexes whose isotropy groups belong to F. In particular, two models for
Ex(G) are G-homotopy equivalent.

There exists a model for Ex(G) for any group G and any family F of sub-
groups. There is even a functorial construction (see [5, page 223 and Lemma 7.6
(i),

A G-CW-complex X is a model for Ex(G) if and only if the H-fixed point
set X*H is contractible for H € F and is empty for H ¢ F.

We abbreviate EG := Erzn(G) and call it the universal G-CW -complex
for proper G-actions. We also abbreviate EG := Eycy(G).

A model for Eaz2(G) is G/G. A model for Egy(G) is the same as a model for
EG, which denotes the total space of the universal G-principal bundle EG —
BG.

One can also define a numerable version of the space for proper G-actions
to G which is denoted by JG. It is not necessarily a G-CW-complex. A metric
space X on which G acts isometrically and properly is a model for JG if and
only if the two projections X x X — X onto the first and second factor are
G-homotopic to one another. If X is a complete CAT(0)-space on which G-acts
properly and isometrically, then X is a model for JG, the desired G-homotopy is
constructed using the geodesics joining two points in X (see [3] Proposition 1.4
in II.1 on page 160]).

One motivation for studying the spaces EG and EG comes from the Baum-
Connes Conjecture and the Farrell-Jones Conjecture.

2 Topological and C'TV-dimension

Let X be a topological space. Let U be an open covering. Its dimension
dim(U) € {0,1,2,...} IT{oo} is the infimum over all integers d > 0 such that for
any collection Uy, Uy, ..., Uy of pairwise distinct elements in U the intersection
(Ni_o Ui is empty. An open covering V is a refinement of U/ if for every V € V
thereis U e Y with V C U.



Definition 2.1 (Topological dimension). The topological dimension of a topo-
logical space X
top-dim(X) € {0,1,2,...} IT {0}

is the infimum over all integers d > 0 such that any open covering U possesses
a refinement V with dim(V) < d.

Let Z be a metric space. We will denote for z € Z and r > 0 by B,(z)
and B, (z) respectively the open ball and closed ball respectively around z with
radius r. We call Z proper if for each z € Z and r > 0 the closed ball B,.(z) is
compact. A group G acts properly on the topological space Z if for any z € Z
there is an open neighborhood U such that the set {g € G | g-UNU # 0} is
finite. In particular every isotropy group is finite. If Z is a G-C'W-complex,
then Z is a proper G-space if and only if the isotropy group of any point in Z
is finite (see [0, Theorem 1.23]).

Lemma 2.2. Let Z be a proper metric space. Suppose that G acts on Z iso-
metrically and properly. Then we get for the topological dimensions of X and
G\X

top-dim(G\X) < top-dim(X).

Proof. Since G acts properly and isometrically, we can find for every z € Z a
real number €(z) > 0 such that we have for all g € G

qg- B7€(z)(z) n B7E(Z) 75 ) = qg- B76(Z)(Z) e B7€(Z)(z) <~ geqG,.

We can arrange that e(gz) = €(z) holds for z € Z and ¢ € G. Consider
G - B.(z). We claim that this set is closed in Z. We have to show for a
sequence (2, )n>0 of elements in B.(z) and (g, )n>0 of elements in G and z € Z
with lim, o0 gnzn = = that x belongs to G - B.(z). Since X is proper, we
can find y € B.(z) such that lim, , 2, = y. Choose N = N(e) such that
dx(gnzn,x) < € and dx(zn,y) < € holds for n > N. We conclude for n > N

do(gny,2) < dx(9nY, gnzn) + dx(gnzn, )
= dx(y,zn) + dx(gnzn, )

€+ €

2e.

IN

This implies for n > N

dx (g9, gn 7, 2) dx (gn 2, gn?)

< dx(9nz,9nY) + dx (gny, ©) + dx (T, gnY) + dx (9nY, gn?)
= dx(z,y) +dx(gny, ) + dx(gny, ) + dx (y, 2)

< €+2+2+c¢

= 6be.



Hence g, 'gn € G, for n > N. Since G, is finite, we can arrange by passing to
subsequences that go = g, holds for n > 0. Hence

r= lim gnz, = lim gozp, =go- lim 2, =¢go-y € G- Fe(z).
n—oo n—o0 n— oo

Choose a set-theoretic section s: G/G, — G of the projection G — G/G,. The
map

G/GZ X B?e(z) (Z) i G- B?e(z)(z)v (ng,.I) = S(ng) - T

is bijective, continuous and open and hence a homeomorphism. It induces a
homeomorphism

G/Gz X Ee(z)(z) i G- Ee(z) (Z)
This implies
top-dim (Be(»)(z)) = top-dim(G - B(;)(2)). (2.3)
Let pr: Z — G\Z be the projection. It induces a bijective continuous map

G:\B(2)(2) = pr(Be(;)(z)) which is a homeomorphism since B,(,)(z) and
hence G\ Be(.)(2) is compact. Hence we get

top-dim (pr(Be(;)(2))) = top-dim(G.\Be()(2)). (2.4)

Since the metric space FE(Z) (z) is compact and hence contains a countable dense
set and G, is finite, we conclude from [2] Exercise in Chapter II on page 112]

top-dim(G2\Be(»)(2)) < top-dim(B.,)(z)). (2.5)

From (23), Z4) and Z3) we conclude that G- B,(,)(z) € Z and pr(B..)(z)) C
G\Z are closed and satisfy

top-dim (pr(B.(»)(2))) < top-dim(G - B.(;)(2)). (2.6)

Since Z is proper, it is the countable union of compact subspaces and hence
contains a countable dense subset. This is equivalent to the condition that Z
has a countable basis for its topology. Obviously the same is true for G\Z. We
conclude from [12] Theorem 9.1 in in Chapter 7.9 on page 302 and Exercise 9
in Chapter 7.9 on page 315]

top-dim(Z) = sup{top—dim(G . Fe(z) (z)) };
top-dim(G\Z) = sup{top-dim(pr(B..)(2)))}.
Now Lemma 2.2 follows from 2.4, (27) and (238)). O

In the sequel we will equip a simplicial complex with the weak topology,
i.e., a subset is closed if and only if its intersection with any simplex o is a
closed subset of 0. With this topology a simplicial complex carries a canonical
CW -structure.



Let X be a G-space. We call a subset U C X a FZIN -set if we have
gUNU #0) = gU =U forevery g € Gand Gy :={g€ G |g-U =U}
is finite. Let U be a covering of X by open FZN-subset. Suppose that U
is G-invariant, i.e., we have g -U € U for ¢ € G and U € U. Define its
nerve N'(U) to be the simplicial complex whose vertices are the elements in I
and for which the pairwise distinct vertices Uy, Ui, ..., Uy span a d-simplex
if and only if ﬂfzo U; # (. The action of G on X induces an action on U
and hence a simplicial action on N (). The isotropy group of any vertex is
finite and hence the isotropy group of any simplex is finite. Let N ()’ be the
barycentric subdivision. It inherits a simplicial G-action from N (I/) such that
for any g € G and any simplex o whose interior is denoted by ¢° and which
satisfies g - 0° N o° # ) we have gz = x for all z € ¢°. In particular N'(U)’ is a
G-CW-complex and agrees as a G-space with N (U).

Lemma 2.9. Let n be an integer with n > 0. Let X be a proper metric space
whose topological dimension satisfies top-dim(X) < n. Suppose that G acts
properly and isometrically on X.

Then there exists a proper n-dimensional G-CW -complex Y together with a
G-map f: X =Y.

Proof. Since the G-action is proper we can find for every x € X an e(z) > 0
such that for every g € G we have

g- F26(;E) (.I) N §2e(m) (.I) # )< g E26(;E) (I) = §2e(m) (.I)
= 4g- BQE(I) (ac) = BQE(I) (CL‘) =4g- BE(I) (CL‘) = Be(z)(,@) SRS G-

We can arrange that e(gz) = e(z) for ¢ € G and = € X holds. We obtain a
covering of X by open FZN -subsets { B.(;)(z) | # € X }. Let pr: X — G\X be
the canonical projection. We obtain an open covering of G\ X by {pr(BE(w) (a:)) |
T € X}. Since top-dim(X) < n by assumption and G acts properly on X, we get
top-dim(G\X) < n from Lemma 221 Since G acts properly and isometrically
on X, the quotient G\ X inherits a metric from X. Hence G\ X is paracompact
by Stone’s theorem (see [12, Theorem 4.3 in Chap. 6.3 on page 256]) and in
particular normal. By [6l Theorem 3.5 on page 211] we can find a locally
finite open covering U of G\X such that dim(U) < n and U is a refinement
of {pr(B.)(z)) | @ € X}. For each U € U choose z(U) € X with U C
pr (B (z(U)). Define the index set

For (U,g) € J define an open FZN -subset of X by
VU,E = pril(U) ng- B2e(z(U)) (LL'(U)) .

Obviously this is well-defined, i.e., the choice of g € § does not matter, and we
have pr(Vyz) C U and Vug C g - Bae(w(uy) (z(U)).



Consider the collection of subsets of X
V={Vuz| (U.9) € J}.
This is a G-invariant covering of X by open FZN -subsets. Its dimension satisfies
dim(V) < dimU) <n
since for U € U, g1, 52 € G/G ) we have

Vogr "Vugs # 0 = 91 Baeeiy) (2(U) N 92 - Baey (2(V)) = 71 = %2

Since U is locally finite and G\ X is paracompact, we can find a locally finite
partition of unity {ey: G\X — [0,1] | U € U} which is subordinate to U, i.e.,
Y veu ¢v = 1 and supp(ey) C U for every U € U. Fix a map x: [0,00) — [0, 1]
satisfying x~1(0) = [1, 00). Define for (U,g) € J a function

dvg: X = [0,1], yrev(pr(y) - x(dx(y, gz(U))/e(2(U))).

Consider y € X. Since U is locally finite and G\ X is locally compact, we
can find an open neighborhood T of pr(y) such that 7 meets only finitely many
elements of 2. Choose an open neighborhood W of y such that Wy is compact.
Define an open neighborhood of y by

W= Wynpr (7).
Since Wy is compact, W is compact. Since G acts properly, there exists for a

given U € U only finitely many elements g € G with W N g By (z(U)) # 0.
Since T meets only finitely elements of U, the set

JW = {(ng) eJ | Wﬁg . BE(m(U))(:E(U)) N pril(U) 7& (Z)}
is finite. Suppose ¢y g(z) > 0 for (U,g) € J and z € W. We conclude z €
pr-'(U) N g - By (z(U)) and hence (U,7) € Jw. Thus we have shown that

the collection {¢uz | (U,g) € J} is locally finite.
We conclude that the map

Yo bug: X=0,1], y= > eupr(y) - x(dx(y, g2 (U))/e(z(V)))
(U,g)eJ (U,9)eJ

is well-defined and continuous. It has always a value greater than zero since for
every y € X there exists U € U with ey (pr(y)) > 0, the set pr=1(U) is contained
in Uyeq 9 Bey(2(U)) and X 1(0) = [1, 00). Define for (U,g) € J a map

Puz(y)
Yugz: X = [0,1], y— d .
! Z(U,a)e} Pug(y)
We conclude that
Z(U,g)ej Yugly) = 1 fory € X;
Yug(hy) = Uinlg(y) for h € G,y € Y and (U,39) € J;
Supp(?/)U@) g VU,@ for (U7 g) € J7



and the collection {¢U,§ | (U,g) e J } is locally finite. Define the desired proper
n-dimensional G-CW-complex to be the nerve Y := A (V). Define a map by

[ X =NV ,yHZng U5

(Ug)ed

It is well-defined since for y € X the simplices Vi3 for which ¢y 5(y) # 0 holds
span a simplex because y € X with ¥y 5(y) # 0 belongs to V5 and hence the
intersection of the sets V5 for which ¢y g(y) # 0 holds contains y and hence is
non-empty. The map f is continuous since {¢U,§ | (U,g) € J } is locally finite.
It is G-equivariant by the following calculation for h € G and y € Y:

fhy) = > dughy)-

(U,g)ed

Z thq hy Uhq

(U,g)ed

= Z VU Thg lhq Ving

(Ug)ed

= Y tugly)-h-Vug

(Ug)es

= he Y Yug(y) Vug

(Ug)es

h- f(y).

O

Lemma 2.10. Let X andY be G-CW -complexes. Leti: X —Y andr: Y — X
be G-maps such that r o1 is G-homotopic to the identity. Consider an integer
d > 3. Suppose that' Y has dimension < d.

Then X is G-homotopy equivalent to a G-CW -complex Z of dimension < d.

Proof. By the Equivariant Cellular Approximation Theorem (see [14] Theo-
rem 11.2.1 on page 104]) we can assume without loss of generality that ¢ and
r are cellular. Let cyl(r) be the mapping cylinder. Let k: Y — cyl(r) be the
canonical inclusion and p: cyl(r) — X be the canonical projection. Then p is a
G-homotopy equivalence and po k = r. Let Z be the union of the 2-skeleton of
cyl(r) and Y. This is a G-CW-subcomplex of cyl(r) and cyl(r) is obtained from
Z by attaching equivariant cells of dimension > 3. Hence the map p|z: Z — X
has the property that it induces on every fixed point set a 2-connected map. Let
j: X — Z be the composite of ¢: X — Y with the obvious inclusion ¥ — Z.
Then p|z 0j = pokoi = roiis G-homotopy equivalent to the identity and
the dimension of Z is still bounded by d since we assume d > 3. Hence we
can assume in the sequel that rf.YH 5 XH is 2-connected for all H C G,
otherwise replace Y by Z, i by j and r by p|z.

We want to apply [, Proposition 14.9 on page 282]. Here the assumption
d > 3 enters. Hence it suffices to show that the cellular ZII(G, X )-chain complex



C¢(X) is ZI(G, X)-chain homotopy equivalent to a d-dimensional ZII(G, X)-
chain complex. By [9, Proposition 11.10 on page 221] it suffices to show that
the cellular ZII(G, X )-chain complex C¢(X) is dominated by a d-dimensional
ZII(G, X)-chain complex. This follows from the geometric domination (Y14, 7)
by passing to the cellular chain complexes over the fundamental categories since
r and hence also ¢ induce equivalences between the fundamental categories be-
cause r1: YH — XH ig 2-connected for all H C G and 7 0i ~¢ idx.

O

The condition d > 3 is needed since we want to argue first with the cellular
ZOr(G)-chain complex and then transfer the statement that it is d-dimensional
to the statement that the underlying G-C'W-complex is d-dimensional. The
condition d > 3 enters for analogous reasons in the classical proof of the theorem
that the existence of a d-dimensional ZG-projective resolution for the trivial
ZG-module Z implies the existence of a d-dimensional model for BG (see [4]
Theorem 7.1 in Chapter VIIL.7 on page 205]).

Theorem 2.11. Let G be a discrete group. Then

(i) There is a G-homotopy equivalence JG — EG;

(i) Suppose that there is a model for JG which is a metric space such that
the action of G on JG is isometric. Consider an integer d with d =1 or
d > 3. Suppose that the topological dimension top-dim(JG) < d.

Then there is a G-CW -model for EG of dimension < d;

(i11) Let d be an integer d > 0. Suppose that there is a G-CW -model for EG
with Aim(EG) < d such that EG after forgetting the group action has
countably many cells.

Then there exists a model for JG with top-dim(JG) < d.

Proof. This is proved in [I0, Lemma 3.3 on page 278].

Choose a G-homotopy equivalence i: EG — JG. From Lemma we
obtain a G-map f: JG — Y to a proper G-CW-complex of dimension < d.
By the universal properly of EG we can find a G-map h: Y — EG and the
composite h o f o is G-homotopic to the identity on EG.

Suppose d > 3. We conclude from Lemma .10 that EG is G-homotopy
equivalent to a G-CW-complex of dimension < d.

Suppose d = 1. By Dunwoody [7, Theorem 1.1] it suffices to show that the
rational cohomological dimension of G satisfies cdg(G) < 1. Hence we have
to show for any QG-module M that Ext&G(Q,M) = 0 for n > 2, where Q
is the trivial QG-module. Since all isotropy groups of EG and Y are finite,
their cellular QG-chain complexes are projective. Since EG is contractible,
C.(EG;Q) is a projective QG-resolution and hence

Extgg(Q, M) = H" (homge(Cy(EG; Q), M)).



Since ho foi ~¢ idge, the Q-module H" (homqe (Cy(EG;Q), M)) is a direct
summand in the Q-module H" (homge (Cy (Y;Q), M)). Since Y is 1-dimensional
by assumption, H" (homgg (Cs(Y; Q), M)) vanishes for n > 2. This implies that
Extg(Q, M) vanishes for n > 2.

Using the equivariant version of the simplicial approximation theorem and
the fact that changing the G-homotopy class of attaching maps does not change
the G-homotopy type, one can find a simplicial complex X with simplicial G-
action which is G-homotopy equivalent to EG, satisfies dim(X) = dim(EG) and
has only countably many simplices. Hence the barycentric subdivision X’ is a
simplicial complex of dimension < d with countably many simplices and carries
a G-CW-structure. The latter implies that X' is a G-CW-model for EG and
hence also a model for JG. Since the dimension of a simplicial complex with

countably many simplices is equal to its topological dimension, we conclude
top-dim(X’) = dim(X) = dim(EG) < d. O

3 The passage from finite to virtually cyclic groups

In [T1] it is described how one can construct EG from EG. In this section we
want to make this description more explicit under the following condition

Condition 3.1. We say that G satisfies condition (C) if for every g, h € G with
|h| = 0o and k,1 € Z we have

ghtg™t =h' = |k =i

Let ZCY be the set of infinite cyclic subgroup C of G. This is not a family
since it does not contain the trivial subgroup. We call C, D € ZCY equivalent
if |C' N D| = oo. One easily checks that this is an equivalence relation on ZCY.
Denote by [ZCY)] the set of equivalence classes and for C' € ZCY by [C] its
equivalence class. Denote by

NegC:={geG|gCg ' =C}
the normalizer of C' in G. Define for [C] € [ZC))] a subgroup of G by
NelCl:={g€G||gCg ' NC| = o0}

One easily checks that this is independent of the choice of C' € [C]. Actually
N¢[C] is the isotropy of [C] under the action of G induced on [ZC))] by the
conjugation action of G on ZCY.

Lemma 3.2. Suppose that G satisfies Condition (C) (see[31). Consider C' €
Icy.

Then obtain a nested sequence of subgroups

NgC C Ng2!C C Ng3!C C Ngd!C C - - -

10



where k!C is the subgroup of C given by {h* | h € C}, and we have

N¢[C) = U Ngk!C.
k>1

Proof. Since every subgroup of a cyclic group is characteristic, we obtain the
nested sequence of normalizers NoC C Ng2!C' C Ng3!C C Ng4!C C ---.
Consider g € Ng[C]. Let h be a generator of C. Then there are k,! € Z with
gh¥g=1 = h! and k,l # 0. Condition (C) implies k = +I. Hence g € Ng(h*) C
Ngk!C. This implies Ng[C] C |J,~; Nak!C. The other inclusion follows from
the fact that for g € Ngk!C we have k!IC C gCg~' N C. O

Fix C € ZCY. Define a family of subgroups of N¢|[C] by

Ga(C) :=={H C Ng[C] | [H : (HNC)] < 0}
U{H C N¢[C] | |H| < o0}. (3.3)

Notice that Gz (C) consists of all finite subgroups of N¢g[C] and of all virtually
cyclic subgroups of Ng[C] which have an infinite intersection with C. Define a
quotient group of NgC by

WeC = NeC/C.

Lemma 3.4. Let n be an integer. Suppose that G satisfies Condition (C)
(see[31). Suppose that there exists a G-CW-model for EG with dim(EG) <
n and for every C € ZICY there exists a WgC-CW -model for EWaC with
dim(EWgC) < n.

Then there exists a G-CW -model for EG with dim(EG) < n + 1.

Proof. Because of [11, Theorem 2.3 and Remark 2.5] it suffices to show for every
C € ZICY that there is a Ng[C]-model for Eg, c)(Ng[C]) with

dim(Eg,cy(Ne[C])) < n+ 1. (3.5)
Because of Lemma we have
Ng[C] = COlimk_mo Ngk!C.

We conclude B3] from [I1, Lemma 4.2 and Theorem 4.3] since every element
H € Gg(C) is finitely generated and hence lies already in Ngk!C' for some
k > 0, by assumption there exists a Wgk!C-CW-model for EWgk!C with
dlm(EWGk'O) < n, and IeSNgk!IC—Wgk!C EWGIC'O is EQ@(C) (Ngk'C)
O

INgrIO)

Now we are ready to prove Theorem [0.11

Proof of Theorem [0l Consider an integer d € Z with d =1 or d > 3 such
that d > top-dim(X). The space X is a model for JG by [3 Corollary 2.8 in II.2.
on page 178]. We conclude from Theorem ZTTI[(ii)| that there is a d-dimensional

11



model for EG.

We will use in the proof some basic facts and notions about isometries of
proper complete CAT(0)-spaces which can be found in [3] Chapter IL.6].

The group G satisfies condition (C) by the following argument. Suppose that
ghFg=' = h! for g,h € G with |h| = co and k,l € Z. The isometry l,: X — X
given by multiplication with h is a hyperbolic isometry since it has no fixed
point and is by assumption semisimple. We obtain for the translation length
L(h) which is a real number satisfying L(h) > 0

k- L(h) = L(h*) = L(gh*g™1) = L(h') = 1 - L(h).

This implies k = [.

Let C' C G be any infinite cyclic subgroup. Choose a generator g € C'. The
isometry [,: X — X given by multiplication with g is a hyperbolic isometry.
Let Min(g) € X be the the union of all axes of g. Then Min(g) is a closed
convex subset of X. There exists a closed convex subset Y(g) C X and an
isometry

a: Min(g) =N Y(g9) x R.

The space Min(G) is NgC-invariant since for each h € NgC we have hgh~! = ¢
or hgh™! = ¢g~! and hence multiplication with h sends an axis of g to an axis of g.
The NgC-action induces a proper isometric WgC-action on Y (g). These claims
follow from [3, Theorem 6.8 in I1.6 on page 231 and Proposition 6.10 in I1.6 on
page 233]. The space Y (g) inherits from X the structure of a CAT(0)-space
and satisfies top-dim(Y (g)) < top-dim(X). Hence Y (g) is a model for JWgC
with top-dim(Y (g)) < top-dim(X) by [3} Corollary 2.8 in I1.2. on page 178].
We conclude from Theorem ZITI[(ii)| that there is a d-dimensional model for
EWgC for every infinite cyclic subgroup C' C G. Now Theorem [0] follows
from Lemma 3.4 O

Finally we prove Corollary

Proof of Corollary[04] A complete Riemannian manifold M with non-negative
sectional curvature is a CAT(0)-space (see [3, Theorem IA.6 on page 173 and
Theorem I1.4.1 on page 193].) Since G is virtually torsionfree, we can find a
subgroup G of finite index in G such that Gy is torsionfree and acts orientation
preserving on M. Hence Go\M is a closed orientable manifold of dimension n.
Hence H,(M;Z) = H,(BG;Z) # 0. This implies that every CW-model BGy
has at least dimension n. Since the restriction of EG to Gg is a Go-CW-model
for EGy, we conclude hdim(EG) > n. Since M with the given Gy-action is a
G-CW-model for EG (see [I, Theorem 4.15]), we conclude

hdim(EG) = n = top-dim(M).

If n # 2, we conclude hdim(EG) < n+1 from Theorem @1l Since hdim(EG) <
1 + hdim(£G) holds for all groups G (see [I1, Corollary 5.4]), we get

n—1 < hdim(EG) <n+1
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provided that n # 2.

Suppose n = 2. If G is a torsionfree subgroup of finite index in G, then

Go\X is a closed 2-dimensional manifold with non-negative sectional curvature.
Hence Gy is Z? or hyperbolic. This implies that G is virtually Z? or hyperbolic.
Hence hdim(EG) € {2,3} by [1I, Example 5.21] in the first case and by [11]
Theorem 3.1, Example 3.6, Theorem 5.8 (ii)] or [8, Proposition 6, Remark 7
and Proposition 8] in the second case.

O
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