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ON LENGTH SPECTRUM METRICS AND WEAK METRICS ON

TEICHMÜLLER SPACES OF SURFACES WITH BOUNDARY

LIXIN LIU, ATHANASE PAPADOPOULOS, WEIXU SU, AND GUILLAUME THÉRET

Abstract. We define and study metrics and weak metrics on the Teichmüller
space of a surface of topologically finite type with boundary. These metrics and
weak metrics are associated to the hyperbolic length spectrum of simple closed
curves and of properly embedded arcs in the surface. We give a comparison
between the defined metrics on regions of Teichmüller space which we call
ε0-relative ǫ-thick parts, for ǫ > 0 and ε0 ≥ ǫ > 0.
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1. Introduction

In this paper, S is a connected oriented surface of finite topological type whose
boundary is nonempty unless specifically specified. More precisely, S is obtained
from a closed surface of genus g ≥ 0 by removing a finite number p ≥ 0 of punctures
and a finite number b ≥ 1 of disjoint open disks. We shall say that S has p
punctures and b boundary components. The Euler characteristic of S is equal to
χ(S) = 2 − 2g − p − b, and we assume throughout the paper that χ(S) < 0. The
boundary of S is denoted by ∂S and by assumption we have ∂S 6= ∅.

We shall equip S with complete hyperbolic structures of finite area with totally
geodesic boundary, and by this we mean that the following two properties are
satisfied:

(1) each puncture has a neighborhood which is isometric to a cusp, i.e., the
quotient of {z = x + iy ∈ H

2 | a < y}, for some a > 0, by the group
generated by the translation z 7→ z + 1 ;
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(2) each boundary component is a smooth simple closed geodesic.

Let Sd = S ∪ S̄ denotes the double of S, obtained by taking a copy, S̄, of
S and by identifying the corresponding boundary components by an orientation-
reversing homeomorphism. The surface Sd carries a canonical orientation-reversing
involution, whose fixed point set is the boundary ∂S of S, considered as embedded
in Sd. The oriented closed surface Sd has genus 2g + b− 1 and 2p punctures.

If S is equipped with a hyperbolic structure, we shall often equip Sd with the
doubled hyperbolic structure, that is, with the unique hyperbolic structure on Sd

that restricts to the structure on S ⊂ Sd we started with, and that makes the
canonical involution of Sd an isometry.

We denote by T(S) the reduced Teichmüller space of marked hyperbolic struc-
tures on S. Recall that T(S) is the set of equivalence classes of pairs (X, f), where
X is a hyperbolic surface (of the type we consider here) and f : S → X is a home-
omorphism (called the marking), and where (X1, f1) is said to be equivalent to
(X2, f2) if there is an isometry h : X1 → X2 which is homotopic to f2 ◦ f

−1
1 . We

recall that in this reduced theory, homotopies need not fix the boundary of S point-
wise. Since all Teichmüller spaces that we consider are reduced, we shall omit the
word “reduced” in our exposition. Furthermore, we shall denote an element (X, f)
of T(S) by X , without explicit reference to the marking. We shall also denote any
representative of an element X of T(S) by the same letter, if no confusion arises.
If X is a hyperbolic structure on S, we shall denote by Xd the doubled structure
on Sd.

A simple closed curve on S is said to be peripheral if it is homotopic to a puncture.
It is said to be essential if it is not peripheral, and if it is not homotopic to a point
(but it can be homotopic to a boundary component).

We let C = C(S) be the set of homotopy classes of essential simple closed curves
on S.

An arc in S is the homeomorphic image of a closed interval which is properly
embedded in S (that is, the interior of the arc is in the interior of S and endpoints
of the arc are on the boundary of S). All homotopies of arcs that we consider are
relative to ∂S, that is, they leave the endpoints of arcs on the set ∂S (but they
do not necessarily fix pointwise the points on the boundary). An arc is said to be
essential if it is not homotopic (relative to ∂S) to a subset of ∂S.

We let B = B(S) be the set of homotopy classes of essential arcs on S union the
set of homotopy classes of simple closed curves which are homotopic to boundary
components. Note that B ∩ C consists in all components of the boundary of S.

For any γ ∈ B∪C and for any hyperbolic structure X , we let γX be the geodesic
representative of γ (that is, the curve of shortest length in the homotopy class
relative to ∂S). The geodesic γX is unique, and it is orthogonal to ∂S at each
intersection point, in the case where γ is an equivalence class of an arc. We denote
by lX(γ) the length of γX with respect to the hyperbolic metric considered. This
length only depends upon the class of X in T(S).

We denote byML(S) the space of measured geodesic laminations on S, whenever
S is equipped with a hyperbolic metric. This space is equipped with the topology
defined by Thurston (cf. [11]). We also recall that there are natural homeomor-
phisms between the various spaces ML(S) when the hyperbolic structure on S
varies, so that it is possible to talk about a measured geodesic lamination on S
without referring to a specific hyperbolic structure on the surface.

A measured lamination (respectively, hyperbolic structure, simple closed curve,
etc.) on Sd is said to be symmetric if it is invariant by the canonical involution.
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We conclude these preliminaries by recalling two trigonometric formulae from
hyperbolic geometry that will be useful in the sequel.

The first useful formula concerns hyperbolic right-angled hexagons (that is,
hexagons in the hyperbolic plane whose angles are right angles). Let a, c′, b, a′, c, b′

be the lengths of the consecutive edges of such a hexagon, cf. Figure 1. Then, we
have

(1) cosh a = − cosh b cosh c+ sinh b sinh c cosha′.

This formula allows to express a′ in terms of a, b, c, and it implies in particular that
the isometry type of a right-angled hexagon is determined by the length of any
three non-consecutive edges.

PSfrag replacements

a

b

c

a′

b′

c′

Figure 1. A right-angled hexagon in hyperbolic space.

The second useful formula gives a relation between the lengths of edges of a
right-angled pentagon in the hyperbolic plane.

We consider a pentagon with five right angles, with consecutive edges of lengths
a, c′, b, c, b′, as in Figure 2. Then, we have

(2) cosha = sinh b sinh c.

PSfrag replacements

a

bc

b′ c′

Figure 2. A right-angled pentagon in hyperbolic space.

For the proofs of these formulae, we refer to [4] pp. 85 and 86.
The goal of this paper is to introduce and study some metrics and weak metrics

on the Teichmüller space T(S). These metrics and weak metrics are defined using
the hyperbolic length spectrum of simple closed curves and of properly embedded
arcs in S.
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Considering surfaces with boundary is important for several reasons, one of them
being that there are inclusion maps between surfaces with boundary that induce
maps between various associated spaces of geometric strutures on these surfaces
(Teichmüller spaces, measured laminations spaces, etc.), and of course this phe-
nomenon does not occur if we restrict the theory to surfaces without boundary.

One can introduce on surfaces with boundary objects that are analogous to ob-
jects on surfaces without boundary, for instance, analogs of Thurston’s asymmetric
weak metrics, studied in [12], but it turns out that there are interesting differences
that we think are worth studying carefully, and in some sense this is what we do in
this paper.

2. Weak metrics on T(S)

Definition 2.1 (Weak metric). A weak metric is a structure satisfying the axioms
of a metric space except possibly the symmetry axiom. In other words, a weak
metric on a set M is a function δ : M ×M → [0,∞) satisfying

(a) δ(x, y) = 0 ⇐⇒ x = y for all x an y in M ;
(b) δ(x, y) + δ(y, z) ≥ δ(x, z) for all x, y and z in M .

We shall say that the weak metric δ is asymmetric if the following holds:

(c) there exist x and y in M satisfying δ(x, y) 6= δ(y, x).

We consider the following two functions on T(S)× T(S):

(3) d(X,Y ) = log sup
α∈B∪C

lY (α)

lX(α)

(4) d(X,Y ) = log sup
α∈B∪C

lX(α)

lY (α)
.

(Note that d(X,Y ) = d(Y,X), for all X,Y ∈ T(S).)
These two functions are analogues, for surfaces with boundary, of asymmetric

weak metrics introduced by Thurston in [12] for surfaces of finite type without
boundary. The introduction of the set B in the definitions of d and d is natural
when dealing with surfaces with nonempty boundary, and it turns out to be essential
in what follows.

2.1. The functions d and d are asymmetric weak metrics. We consider a
hyperbolic structure X on S. We use the same letter X to denote the corresponding
element in T(S). Likewise, we take an element α ∈ B(S), and we use the same letter
α to denote its geodesic representative.

Let ᾱ be the image of α by the canonical involution of Sd and let αd = α ∪ ᾱ.

Lemma 2.2. The curve αd is a symmetric simple closed geodesic in Sd, and we
have lXd(αd) = 2lX(α).

Proof. This simply follows from the fact that αd intersects the boundary of S
perpendicularly, and that it is invariant under the canonical involution of Sd. �

Corollary 2.3. Given two hyperbolic structures X and Y on S, we have

sup
γ∈C(S)∪B(S)

lX(γ)

lY (γ)
≤ sup

γ∈C(Sd)

lXd(γ)

lY d(γ)
.
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Proof. For any γ ∈ C(S) ∪B(S), we have, from Lemma 2.2,

lX(γ)

lY (γ)
=

lXd(γd)

lY d(γd)
≤ sup

γ∈C(Sd)

lXd(γ)

lY d(γ)
.

Taking the supremum in the left hand side, we obtain the desired inequality. �

We now proceed to show the inverse inequality.
We recall that the set of weighted simple closed curves on Sd is dense in the space

ML(Sd), and that the hyperbolic length function, defined on weighted simple closed
geodesics, extends to a continuous function defined on the spaceML(Sd). With this
in mind, and by compactness of the space PML(Sd), there is a measured geodesic
lamination λ on Sd which realizes the supremum

log sup
γ∈C(Sd)

lXd(γ)

lY d(γ)
.

We shall use the following result of Thurston, for surfaces without boundary, in
which i(λ1, λ2) denotes the geometric intersection number between the measured
laminations λ1 and λ2 (see [11] and [12]).

Theorem 2.4 ([12], Theorem 8.2). Let S be a surface of finite type without bound-
ary and let X and Y be two hyperbolic structures on S. If two measured geodesic
laminations λ1 and λ2 attain the supremum

sup
γ∈MF(S)

lX(γ)

lY (γ)
,

then i(λ1, λ2) = 0.

Consider again two hyperbolic structures X and Y on our surface with boundary
S, and the associated doubled hyperbolic structures, Xd and Y d on the double Sd

of S.

Lemma 2.5. There is a symmetric measured geodesic lamination on Sd which
realizes the supremum

log sup
γ∈ML(Sd)

lXd(γ)

lY d(γ)
.

Proof. Let λ ∈ ML(Sd) be a measured geodesic lamination realizing the supremum.
Let λ′ be the image of λ by the canonical involution on Sd. Since this involution
is an isometry for Xd and Y d, λ′ is a measured geodesic lamination on Sd which
realizes the supremum as well. By Thurston’s theorem (Theorem 2.4), it follows
that i(λ, λ′) = 0. The union λ ∪ λ′ is therefore a measured geodesic lamination. It
realizes the supremum and it is invariant under the canonical involution, that is, it
is symmetric. �

Remark 2.6. Every component of a symmetric measured geodesic lamination
which meets the fixed point locus of the involution is, if it exists, a simple closed
geodesic. Indeed, such a component must intersect the fixed point locus perpen-
dicularly, and no component which is not a simple closed geodesic can intersect the
fixed locus in this way, because of the recurrence of leaves.

Proposition 2.7. With the above notations, we have

log sup
γ∈C(S)∪B(S)

lX(γ)

lY (γ)
= log sup

γ∈C(Sd)

lXd(γ)

lY d(γ)
.
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Proof. By Lemma 2.5, there exists a symmetric measured lamination λ on Sd such
that

log sup
γ∈C(Sd)

lXd(γ)

lY d(γ)
= log

lXd(λ)

lY d(λ)
.

Let α be any component of λ ∩ S (for the natural inclusion S ⊂ Sd). Then α is
either an arc joining two (possibly equal) boundary components of S, or a measured
geodesic sub-lamination of λ contained in the interior of S. By symmetry (or by

Lemma 2.2) and since α ⊂ λ, the ratio of lengths
lX(α)

lY (α)
is equal to the supremum

over γ ∈ C(Sd) of the ratios of lengths
lXd(γ)

lY d(γ)
. This shows that

sup
γ∈C(S)∪B(S)

lX(γ)

lY (γ)
≥ sup

γ∈C(Sd)

lXd(γ)

lY d(γ)
.

The reverse inequality is given in Corollary 2.3. �

Corollary 2.8. Let S be a surface of topologically finite type. For X,Y in T(S),

d(X,Y ) = d(Xd, Y d), d(X,Y ) = d(Xd, Y d).

Proposition 2.9. Let S be a surface of topologically finite type. Then d and d are
asymmetric weak metrics on T(S).

Proof. The triangle inequality is easily satisfied, and the separation property follows
from the separation property of the metrics d and d for surfaces without boundary
(which is Theorem 3.1 of Thurston [12]). This proves that d and d are weak metrics.
Thurston’s example ([12], §2, p.5) that shows the asymmetry of the weak metrics d

and d on Sd can clearly be made symmetric with respect to the canonical involution
on Sd and therefore shows the asymmetry of the weak metrics d and d. �

We reformulate Corollary 2.8 as follows:

Corollary 2.10. The natural inclusion T(S) → T(Sd) given by doubling the hy-
perbolic structures is an isometry for the weak metric d on T(S) and d on T(Sd)

(respectively for d on T(S) and d on T(Sd)).

Remark 2.11. There is a natural projection T(Sd) → T(S) which is the left inverse
of the above natural inclusion.

2.2. Another expression for the weak metrics d and d. We shall show that
the weak metrics d and d considered before can be expressed using suprema over
the set B only.

Proposition 2.12. For all X,Y ∈ T(S), one has

d(X,Y ) = log sup
γ∈B

lY (γ)

lX(γ)
,

d(X,Y ) = log sup
γ∈B

lX(γ)

lY (γ)
.

We shall use the following technical lemma:

Lemma 2.13. Let β be a component of ∂S and let α be a measured geodesic
lamination on S, with αd being its double (that is, αd is the union of α and its
image by the canonical involution). Then, there is a sequence of symmetric simple
closed curves on Sd converging to αd in the topology of PML(Sd) such that each of
these simple closed curves intersects essentially and in exactly two points the image
of β in Sd, and intersects no other component of the image of ∂S in Sd than β
itself.
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Proof. By the density of the set of weighted simple closed geodesics in ML(S), we
assume without loss of generality that α is a simple closed geodesic. Thus, αd is a
symmetric measured geodesic lamination with two components, each of them being
a simple closed curve (αd is a multicurve).

We construct a train track τ on Sd carrying αd as follows. Consider the sym-
metric multicurve αd. Take two points on each component of αd so as to get two
pairs of symmetric points. Connect these two pairs of points with a graph of the
form “>–<” so that the central branch, e, intersects the curve β in one point in
its interior and so that the result is a symmetric train track containing αd, as in
Figure 3. Add two other branches, each connecting a component of αd to itself, in
a symmetric fashion, so as to obtain a symmetric recurrent train track τ , as shown
in Figure 3.

Consider the following weights on the branches of τ . Put a weight 2 on the central
branch e, and split this weight into unit weights on the four adjacent branches. Put
an integral weight n ≥ 1 on the two large branches of τ contained in αd, as shown
in Figure 3. These weights determine all the weights on the other branches of τ .

It is easily seen that, for each n, the multicurve αd
n obtained from these integral

weights is connected and intersects essentially the image of β in S in exactly two
points and that it intersects no other components of ∂S. Furthermore, it is sym-
metric since αd

n and its image by the involution determine the same weights on the
symmetric train track τ .

Clearly, the sequence of weighted simple closed curves ( 1
n
αd
n) converges to αd in

ML(Sd) as desired.
This concludes the proof. �

PSfrag replacements

n n

11

11 2

β

Figure 3. An example of a train track τ needed in the proof of Lemma
2.13. The symmetric multicurve αd is represented in thick lines. The
weights for αd

n on the various branches are indicated.

Proof of Proposition 2.12. We only prove the proposition for the metric d since the
proof for the other metric will obviously be the same. Let α be a simple closed curve
on S. Consider its double αd in Sd. We take the sequence of symmetric weighted
simple closed curves (γd

n) provided by Lemma 2.13 such that limn→∞ γd
n = αd

in ML(S). Then, for any two hyperbolic structures Xd, Y d on Sd (which, for our
needs, we can assume to be doubles of hyperbolic structuresX and Y on S), we have
a sequence of symmetric simple closed curves (γd

n) which, as elements of ML(S),
such that

∣

∣

∣

lY d(γd
n)

lXd(γd
n)

−
lY d(αd)

lXd(αd)

∣

∣

∣
→ 0.

Note that we can assume that the curves (γd
n) of ML(S) are equipped with the

counting measures, since their lengths in the above formula appear in quotients.
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From the properties of the intersection with ∂S of the curves γd
n obtained from

Lemma 2.13, and taking now, for each n, the intersection γn of this curve with
S, we conclude that for any simple closed curve α in S there exists a sequence of
connected arcs (γn) in B such that

∣

∣

∣

lY (γn)

lX(γn)
−

lY (α)

lX(α)

∣

∣

∣
→ 0.

This gives

sup
α∈B∪C

lY (α)

lX(α)
= sup

γ∈B

lY (γ)

lX(γ)
,

which concludes the proof. �

3. Length spectrum metrics on T(S)

In this section, S is as before a surface of topologically finite type. We consider
the following symmetrization of the weak asymmetric metrics that we studied in
the previous section.

δL(X,Y ) = logmax
{

sup
γ∈B∪C

lX(γ)

lY (γ)
, sup
γ∈B∪C

lY (γ)

lX(γ)

}

.

By Proposition 2.12, we can also express this metric by

δL(X,Y ) = logmax
{

sup
γ∈B

lY (γ)

lX(γ)
, sup
γ∈B

lX(γ)

lY (γ)

}

.

We also consider the following symmetric function on the product T(S)× T(S):

dL(X,Y ) = logmax
{

sup
γ∈C

lX(γ)

lY (γ)
, sup
γ∈C

lY (α)

lX(α)

}

.

For surfaces of topologically finite type without bundary, δL and dL coincide, and
they define the so-called length spectrum metric on Teichmüller space, which was
originally defined by Sorvali [10], and which has been studied by several authors,
see e.g. [6] and [2]. From Corollary 2.8, we immediately deduce the following

Corollary 3.1. For X,Y in T(S),

δL(X,Y ) = δL(X
d, Y d).

We shall prove that that dL is a metric. This metric dL has been studied by
several authors for surfaces without boundary, and in that context it is usually
called the length-spectrum metric on T(S) (see e.g. [5] and [6]). Before proving
that dL is a metric, we shall explain why we did not consider the asymmetric
version of the length-spectrum metric.

We then shall compare δL with dL in the “relative-thick part” (to be defined
below) of Teichmüller space.

3.1. Necessity of symmetrization. We consider the following non-symmetric
version of dL:

K(X,Y ) = sup
γ∈C(S)

lX(γ)

lY (γ)
.

The function K is not a weak metric on T(S) in general. It can take negative
values, as can easily be seen by considering a pair of pants (a sphere with three
boundary components), equipped with hyperbolic metrics X and Y such that the
lengths of the three boundary components for the metric X are all strictly smaller
than the corresponding lengths for the metric Y . In this case K(X,Y ) < 0.

Actually, one can ask whether this example of the pair of pants can be general-
ized. In other words, given a hyperbolic surface with boundary, one can ask whether
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there exists another hyperbolic metric on that surface for which the lengths of all
simple closed geodesics is strictly decreased by a uniformly bounded amount. The
following result gives a partial answer to that question.

Theorem 3.2 (Parlier [9]). Let S be a surface of topologically finite type with
non-empty boundary. Let X be a hyperbolic structure on S. Then there exists a
hyperbolic structure Y on S such that K(X,Y ) ≤ 0.

Indeed, Parlier shows that for any hyperbolic structureX on any surface of topo-
logically finite type with non-empty boundary, we can find a hyperbolic structure

Y on the same surface such that for any element γ in C(S), we have
lX(γ)

lY (γ)
< 1

(which only gives K(X,Y ) ≤ 0).

3.2. Length spectrum metrics.

Proposition 3.3. The functions dL and δL are metrics on the Teichmüller space
T(S).

Proof. The fact that these functions satisfy the triangle inequality is immediate.
The point to prove is that they are nonnegative and separate points.

The function δL is a symmetrization of the weak metric d (or d) which we
considered in §2, therefore it separates points, and it is a metric. This fact will
also follow from the property dL(X,Y ) ≤ δL(X,Y ), and therefore it suffices to
show that the function dL is nonnegative and separates points.

Assume that dL(X,Y ) = 0. This means that K(X,Y ) = K(Y,X) = 1. Equiv-
alently, this means that the length of any simple closed curve with respect to the
hyperbolic structure X is equal to the length of that curve with respect to the
hyperbolic structure Y . (Recall that boundary curves are included in C(S).) By a
well-known result (see e.g. [3]), this implies that X coincides with Y , as elements
of Teichmüller space.

Now let us show that the dL-distance between X and Y is nonnegative.
If K(X,Y ) > 1 or K(Y,X) > 1 then the distance between X and Y is positive.
If K(X,Y ) ≤ 1 and K(Y,X) ≤ 1, then K(X,Y ) = K(Y,X) = 1. This follows

from the fact that ifK(X,Y ) < 1, that is, if all simple closed curves are strictly con-
tracted from X to Y , then K(Y,X) > 1. But we already noted that the equalities
K(X,Y ) = K(Y,X) = 1 imply that X = Y . �

3.3. Comparison between length spectrum metrics in the relative thick
part of T(S). In this section, S is as before a surface of finite type with negative
Euler-Poincaré characteristic and non-empty boundary.

The following is a well-established definition (see e.g. [2]).
Given ǫ > 0, the ǫ-thick part of Teichmüller space is the set of X ∈ T(S) such

that for any α ∈ C(S) the hyperbolic length lX(α) is not less than ǫ.
We now introduce the following terminology.
For ǫ > 0 and ε0 ≥ ǫ, the ε0-relative ǫ-thick part of Teichmüller space is the

subset of the ǫ-thick part of Teichmüller space in which the length of each boundary
component of S is bounded from above by the constant ε0.

Our first goal is to give a comparison between dL and δL on the ε0-relative ǫ-
thick part of Teichmüller space. This will be based on the following lemma, which,
together with its proof, is analogous to Lemma 3.6 of Choi and Rafi [2] and its
proof. The main tool used in this lemma is the technique of “replacing an arc by
a loop”, which is also the main tool in Choi and Rafi’s lemma, and this technique
was initiated by Minsky [7]. We prefer to give complete proofs rather than ideas of
proofs, at the expense of repeating some of Choi and Rafi’s arguments.
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Given two functions f and g of a variable t, we shall use the notation “ f ≍ g ”

to express the fact that the ratio
f(t)

g(t)
is bounded above and below by some positive

constants, with t being in some domain which will be specified. Note that although
we are following closely the arguments of Choi and Rafi in [2], we are using the sign
≍ differently.

Lemma 3.4. To any arc β on S, we can associate a simple closed curve α on S
in such a way that the following holds

(5) lX(β) ≍ lX(α),

in which the variable is X, and where X varies in the ε0-relative ǫ-thick part of
Teichmüller space. (Thus, the multiplicative constants for ≍ depend on ǫ and ε0.)

Proof. In all this proof, we consider a fixed arc β representing an element of B.
We first assume that S is homeomorphic to a pair of pants, that is, to a surface

with three holes, a hole being either a boundary component or a puncture of S.
From the hypothesis, the lengths of the boundary components of this pair of

pants are bounded from below and from above.
There are several cases to consider, depending on whether the pair of pants S

has 1, 2 or 3 boundary components (the other holes being punctures). In each case,
there are only finitely many homotopy classes of arcs β, and there are distinctions
between the cases where β joins one or two distinct boundary components. We
show by trigonometric formulas that the lengths of these arcs are bounded from
below and from above, in terms of ǫ and ε0. As we shall see, the estimates are
simple, and they give an idea of what happens in the general case.

We will have, in each case, lX(β) ≍ 1 and lX(α) ≍ 1, which will show that (5)
holds. The cases are represented in Figure 4 (i) to (v). We analyze separately each
of these cases.

Case (i) The pair of pants S has 3 boundary components, and β joins two distinct
bounday components, γ and γ′.

Let γ′′′ be the third component. We set b = lX(β), a = lX(γ)/2, a′ = lX(γ′)/2
and a′′ = lX(γ′′)/2. From Formula (1) for right-angled hexagons, we have

cosh b =
cosh a′′ + cosh a cosha′

sinh a sinh a′
.

From the hypothesis, we have a ≍ 1, a′ ≍ 1 and a′′ ≍ 1. Therefore, b ≍ 1, as
required.

Case (ii) The pair of pants S has 3 boundary components, and the two endpoints
of β are on one boundary component, which we call γ.

Let γ′ and γ′′ be the other two boundary components of S. We consider the
three arcs δ, δ′ and δ′′ joining pairwise the three boundary components of S per-
pendicularly. The arc β intersects perpendicularly one of these arcs, and it divides
S into two (in general non-isometric) right-angled hexagons. We consider one of
these hexagons, say, the one containing the boundary component γ′ (and the arc
δ′′). This hexagon is divided by the are δ′′ and by (part of) δ into two isometric
right-angled pentagons. Let b = lX(β)/2, a′ = lX(γ′)/2 and d′′ = lX(δ′′). Then,
Formula (2) for right-angled pentagons gives:

cosh b = sinh a′ sinh d′′.

Again, from the hypothesis, we have a′ ≍ 1, and from Case (i) above, we have
d′′ ≍ 1. This gives b ≍ 1.

Case (iii) The pair of pants S has a unique boundary component γ.
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In that case, the isometry type of this surface is completely determined by the
length of γ. There is only one arc β to consider, and it joins γ to itself. We
consider the bi-infinite geodesic line joining the two punctures of S, and a geodesic
ray starting perpendicularly on the boundary curve γ and converging to one of these
punctures. These lines are represented in the middle figure of the case labelled (iii)
in Figure 4. We set a = lX(γ)/4 and b = lX(β)/2. In the quadrilateral with three
right angles and one zero angle (at infinity) represented to the right of this figure,
we have (see [4] p. 89)

(6) sinh a sinh b = 1.

Again, since a ≍ 1, we deduce b ≍ 1.

Case (iv) The pair of pants S has one puncture and 2 boundary components, and
the arc β has its endpoints on distinct boundary components, γ and γ′.

In that case, we consider the two geodesic rays starting perpendicularly at the
two boundary components of S and converging to the puncture. Cutting the surface
along these two rays and the arc β, we obtain two isometric pentagons with four
right angles and one zero angle (at infinity). We consider one of these pentagons
and we set a′ = lX(γ′)/2, a = lX(γ)/2 and b = lX(β). We now consider the
infinite ray in that pentagon that starts perpendicularly at the edge labelled b and
converges to the cusp, as shown Figure 4 (iv). The edge of length b of the pentagon
is divided into two segments, of lengths b1 and b2 satisfying b1+b2 = b. By Formula
(6) used above in Case (iii), and since a ≍ 1 and a′ ≍ 1, we deduce that b1 ≍ 1 and
b2 ≍ 1, therefore b ≍ 1.

Case (v) The pair of pants S has one puncture and 2 boundary components, and
the arc β has its endpoints on the boundary component, which we call γ.

In that case, β divides S into two components, one of which contains the other
boundary curve of S, which we call γ′. The arc of minimal length, β′, joining γ
to γ′, together with an arc contained in the geodesic ray starting perpendicularly
at γ′ and ending at the puncture, cut this component into two isometric right-
angled pentagons. Let a′ = lX(γ′)/2, b′ = lX(β′) and b = lX(β)/2. From Case
(iv) considered above, we have b′ ≍ 1. Since a′ ≍ 1, Formula (2) for right-angled
pentagons gives again b ≍ 1.

This concludes the proof of the lemma in the case where S is a pair of pants.
Thus, in the case where S is a pair of pants, we have an inequality

(7) sup
γ∈B∪C

lX(γ)

lY (γ)
≤ C sup

α∈C

lX(α)

lY (α)

where C is a constant depending on ǫ and ε0.

Now we consider the case where S is not a pair of pants.
As in the preceding case, we also show that we can associate to β a simple closed

curve α on S such that lX(β) ≍ lX(α).
Of course, in contrast to the preceding case, there are infinitely many homotopy

classes of arcs β to consider now. The idea of getting the closed curve α is similar
to the one in the case where S is a pair of pants, and instead of working in a pair
of pants S we work in a pair of pants that is the regular neighborhood of the union
of β with the boundary components of S that it intersects. The curve α associated
to the arc β will be one of the boundary curves of this pair of pants, and this curve
is no more necessarily a boundary curve of S; its geodesic length is bounded from
below, but not necessarily from above. We now give the details.

Without loss of generality, we assume that β is geodesic for the hyperbolic metric
X .
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If the two endpoints of β lie on distinct components γ, γ′ of ∂X , then the bound-
ary of a regular neighborhood of β ∪ γ ∪ γ′ in X consists of a single simple closed
curve α. Since S is not a pair of pants, α is not peripheral and therefore α ∈ C(S).
We take α to be the geodesic representative of its homotopy class with respect to
the hyperbolic structure X .

If both endpoints of β lie on the same component γ of ∂X , then the boundary
of a regular neighborhood of β ∪ γ consists of two disjoint simple closed curves.
Both curves cannot be peripheral since S is not a pair of pants. We take α to be
in the homotopy class of a non-peripheral curve. In the case where both curves

PSfrag replacements
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(ii)

(iii)
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(v)
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Figure 4. The various subases in Lemma 3.4, in the case where S is
a pair of pants (with boundary components or with punctures), and β

an arc joining boundary components.
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are non-peripheral, we take α to be in the homotopy class whose X-geodesic has
greater length (and if both lengths are equal, we choose any one of the two curves).
Again, we take α to be the geodesic representative in its homotopy class.

For this choice of the curve α, we claim that (5) holds.
We prove this claim by elementary hyperbolic trigonometry. In what follows, a

“geodesic pair of pants” means a pair of pants with geodesic boundary embedded
in a hyperbolic surface. We distinguish two cases.
Case 1. This is the case where γ 6= γ′. Let P be the geodesic pair of pants inX with
boundary components γ, γ′, α and consider one of the two canonical right-angled
geodesic hexagons that divide P . Let a = lX(γ)/2, a′ = lX(γ′)/2, c = lX(α)/2 and
b = lX(β). From the formula for right-angled hexagons (Formula (1) above), we
have

(8) cosh c+ cosh a cosha′ = sinh a sinh a′ cosh b.

Since a, a′ ≤ ε0
2 and from the fact that the continuous function x 7→

sinhx

x
has

a finite limit as x converges to zero, there is a constant C(ε0) > 0 depending on ε0
such that

sinh a ≤ C(ε0)a and sinh a′ ≤ C(ε0)a
′.

We shall also use the well-known inequalities

x < sinhx and
ex

2
< coshx < ex for all x > 0.

In particular, we have coshx ≍ ex for all x > 0.

By assumption, we have a, a′ ≥
ǫ

2
. Therefore,

sinh a sinh a′ cosh b ≥ a · a′ ·
eb

2
≥

ǫ2eb

8

and

sinh a sinha′ cosh b ≤ C(ε0)
2a · a′ · eb ≤

C(ε0)
2ε20e

b

4
.

Hence,

(9) sinh a sinha′ cosh b ≍ eb.

On the other hand, we have

cosha cosha′ ≤ cosh(a+ a′) ≤ cosh ε0,

cosh c ≥ cosh
ǫ

2
> 0.

We get

(10) cosh c ≤ cosh c+ cosha cosha′ ≤ (1 +
cosh ε0
cosh ǫ

2

) cosh c,

whence

(11) ec ≍ cosh c ≍ cosh c+ cosh a cosha′ for c ≥ 0.

Now considering c and b as functions of hyperbolic structures on S, it follows from
(9),(11) and (8) that

ec ≍ eb,

for hyperbolic structures varying in the ε0-relative ǫ-thick part of Teichmüller space
T(S).

Thus, there is a constant K > 0 depending on ǫ and ε0 such that

(12) |c− b| = |lX(α)/2 − lX(β)| ≤ K.
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Since lX(α) ≥ ǫ, we have

(13) lX(β) ≤ lX(α)/2 +K ≤ (
1

2
+

K

ǫ
)lX(α).

We now distinguish two sub-cases:
1) If lX(β) ≥ 1, then we have from (12):

lX(α) ≤ 2lX(β) + 2K ≤ 2(1 +K)lX(β).

Combined with (13), this gives, in this sub-case, lX(α) ≍ lX(β).
2) If lX(β) < 1, then from the definition of α, we have

lX(α) ≤ 2lX(β) + lX(γ) + lX(γ′) ≤ 2lX(β) + 2ε0 < 2 + 2ε0.

As a result, lX(α) is bounded below and above. Now we use Formula (1) again:
since a, a′ and c = lX(α)/2 are bounded below and above, b = lX(β) is bounded
below and above.

Thus, in both sub-cases, we have lX(α) ≍ lX(β).
Case 2. Next we consider the case where γ = γ′. Let P be the geodesic pair of
pants in X with boundary components γ, α and the geodesic representative of the
third simple closed curve, which we now call α′, which is in the homotopy class
of a regular neighborhood of β ∪ γ. The curve α′ may be peripheral, and in that
case we say that the geodesic is at the puncture and has length zero. We take the
canonical division of the geodesic pair of pants P into two isometric right-angled
hexagons, when α′ is not peripheral, or two isometric pentagons with four right-
angles and one zero angle, when α′ is peripheral. By symmetry, the arc β divides
these two geodesic regions into four geodesic pieces, two of them being isometric
right-angled pentagons with edges originally contained in α and the other two being
isometric right-angled pentagons if α′ is not peripheral, or isometric squares with
three right-angles and one zero angle otherwise.

PSfrag replacements
α α′

β

γ

Q

Figure 5. Q is the pentagon referred to in the proof of Lemma 3.4.

Let Q be one of the two pentagons that have edges originally contained in α
(Figure 5, in the case where α′ is not peripheral). Let b = lX(β)/2, let c = lX(α)/2
and let a be the length of the edge of Q that arises from γ. From the formula for
right-angled pentagons (Equation (2) above), we have

(14) cosh c = sinh b sinha.

It is clear that a ≤ lX(γ)/2. By applying the pentagon formula (which is valid
in the limiting case where c has length zero) to the pentagon which together with
Q makes a hexagon of P , we see that our choice of α (of length not less than the
length of α′) implies that a ≥ lX(γ)/4.

Since ǫ ≤ lX(γ) ≤ ε0, we have ǫ/4 ≤ a ≤ ε0/2.
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Recall that there is a constant C(ε0) > 0 depending on ε0 such that a ≤ sinh a ≤
C(ε0)a. We get

(15) sinh b sinh a >
eb · a

2
>

eb · ǫ

8

and

(16) sinh b sinha < eb · C(ε0) · a <
C(ε0) · ε0 · eb

2
.

The two preceding inequalities give sinh b sinha ≍ eb and it follows from (14) that

ec ≍ eb.

Thus, there is a constant K > 0 depending on ǫ and ε0 such that

|c− b| = |lX(α)/2− lX(β)/2| ≤ K.

Note that lX(α) ≥ ǫ and lX(α) ≤ lX(β) + lX(γ) ≤ lX(β) + ε0, we can use the same
argument as in Case 1 to conclude that lX(β) ≍ lX(α).

The lemma is proved. �

From Lemma 3.4, we deduce the following

Proposition 3.5. Let 0 < ǫ ≤ ε0 be two positive numbers. Then there is a positive
constant C > 0, depending only on ǫ and ε0 and the type of S, such that, for any
X,Y in the ε0-relative ǫ-thick part of T(S), we have

sup
α∈C

lX(α)

lY (α)
≤ sup

α∈B∪C

lX(α)

lY (α)
≤ C sup

α∈C

lX(α)

lY (α)
.

Proof. The first inequality is trivial, and the second one follows from Lemma 3.4.
�

The following theorem follows then from the above proposition.

Theorem 3.6. Let S be a surface of topologically finite type. Fix two positive
constants ǫ ≤ ε0. Then there exists a constant K depending on ǫ, ε0 and the
topological type of S such that, for any X,Y in the ε0-relative ǫ-thick part of T(S),
one has

dL(X,Y ) ≤ δL(X,Y ) ≤ dL(X,Y ) +K.

Proof. The first inequality is trivial, and it holds without the assumptions on the
bounds on the geometry of the structures X and Y . We prove the second one.

From Proposition 3.5, there exists a constant C depending on ǫ and ε0 such that

sup
α∈C(S)∪B(S)

lX(α)

lY (α)
≤ C sup

α∈C(S)

lX(α)

lY (α)

and

sup
α∈C(S)∪B(S)

lY (α)

lX(α)
≤ C sup

α∈C(S)

lY (α)

lX(α)

By taking logarithms and summing the two equations, we get

δL(X,Y ) ≤ dL(X,Y ) +
logC

2
.

�

Let us also note the following:
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Theorem 3.7. Let S be a surface of topologically finite type. Fix two positive
constants ǫ ≤ ε0. Then there exists a constant K depending on ǫ, ε0 and the
topological type of S such that, for any X,Y in the ε0-relative ǫ-thick part of T(S),
we have

d(X,Y ) ≤ δL(X,Y ) ≤ d(X,Y ) +K

and

d(X,Y ) ≤ δL(X,Y ) ≤ d(X,Y ) +K.

Proof. We only prove the first statement, since the second one follows with the
same arguments. The inequality d(X,Y ) ≤ δL(X,Y ) follows from the definitions.
For the other inequality, we use the doubled surfaces. By Theorem B in Choi and
Rafi [2], there exists a constant K depending on ǫ, ε0 and the topological type of
S such that

δL(X
d, Y d) ≤ d(Xd, Y d) +K.

Using Corollary 2.8 and Corollary 3.1, this implies that δL(X,Y ) ≤ d(X,Y ) +K.
This proves the required result. �

A natural question which arises after this, is what happens if we omit the con-
dition on the metrics X and Y being in the ε0-relative ǫ-thick part of T(S). The
following simple example shows that the second inequality in the statement of The-
orem 3.7 cannot hold in general.

Example 3.8. For every t ≥ 1, let Xt be the hyperbolic structure on a pair of
pants with three geodesic boundary components of equal length t. Then, it clear
that for every t ≥ 1, we have dT (X1, Xt) = log t. Now as t → ∞, the common
length lt of the three seams joining pairwise the three boundary components of
the pair of pants is of the order of e−

t

2 . Indeed, by Formula (1) for right-angles

hexagons, we have cosh lt = (cosh2 t+ cosh t)/ sinh2 t, which gives

cosh lt − 1 =
1 + cosh t

sinh2 t
=

1 + cosh t

cosh2 t− 1
=

1

cosh t− 1

which implies l2t ∼ 4e−t, that is, lt ∼ 2e−
t

2 . This gives δL(X,Y ) ≍ log e
t

2 = t
2 .

4. The topology induced by the metrics on T(S)

We also have the following

Theorem 4.1. Let S be a surface of topologically finite type and let (Xn)n≥0 be a
sequence of elements in T(S). Then,

lim
n→∞

dL(Xn, X0) = ∞ if and only if lim
n→∞

δL(Xn, X0) = ∞.

Proof. Since dL(X,Y ) ≤ δL(X,Y ), it is clear that dL(Xn, X0) → ∞ implies
δL(Xn, X0) → ∞.

Now assume that δL(Xn, X0) → ∞. We show that dL(Xn, X0) → ∞. Suppose
not. Then there is a constant K and a subsequence (Xni

) such that dL(Xni
, X0) ≤

K. From the definition of the length-spectrum metric, all the Xni
, i ≥ 1, and X0

must lie in some ǫ-thick part of T(S) and satisfy the condition that all the boundary
components are bounded above by some constant ε0. By Theorem 3.6, δL(Xni

, X0)
is bounded, which is a contradiction. �

Let us also note the following

Theorem 4.2. Let S be a surface of topologically finite type and let (Xn)n≥0 be a
sequence of elements in T(S). Then,

limn→∞d(Xn, X0) = ∞ ⇐⇒ limn→∞δL(Xn, X0) = ∞ ⇐⇒ limn→∞d̄(Xn, X0) = ∞.
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Proof. We only prove the first equivalence, the proof of the second one being similar.
As d(Xn, X0) ≤ δL(Xn, X0), we have

lim
n→∞

d(Xn, X0) = ∞ ⇒ lim
n→∞

δL(Xn, X0) = ∞.

Now suppose that limn→∞ δL(Xn, X0) = ∞, Then by Corollary 3.1, we have
limn→∞ δL(X

d
n, X

d
0 ) = ∞. By a result proved in Liu [6] and Papadopoulos &

Théret in [8], we have limn→∞ d(Xd
n, X

d
0 ) = ∞. By Corollary 2.8, we obtain

limn→∞ d(Xn, X0) = ∞. �

We now give a relation between δL when dL in the small range.

Theorem 4.3. Let S be a surface of topologically finite type and let (Xn)n≥0 be a
sequence of elements in T(S). Then,

lim
n→∞

dL(Xn, X0) = 0 if and only if lim
n→∞

δL(Xn, X0) = 0.

Proof. That limn→∞ δL(Xn, X0) = 0 ⇒ limn→∞ dL(Xn, X0) = 0 follows from the
inequality dL ≤ δL. We prove the converse.

Assume that limn→∞ dL(Xn, X0) = 0. Equivalently, we have

sup
α∈C(S)

lX0
(α)

lXn
(α)

→ 1 and sup
α∈C(S)

lXn
(α)

lX0
(α)

→ 1 as n → ∞.

Using the fact that

inf
α∈C(S)

lXn
(α)

lX0
(α)

=

(

sup
α∈C(S)

lX0
(α)

lXn
(α)

)−1

,

we have

lim
n→∞

dL(Xn, X0) = 0 ⇐⇒ inf
α∈C(S)

lXn
(α)

lX0
(α)

→ 1, sup
α∈C(S)

lXn
(α)

lX0
(α)

→ 1 as n → ∞

⇒ lXn
(α) → lXn

(α) ∀α ∈ C(S)

⇒ Xn → X0 in the usual topology of T(S).

This implies that Xd
n → Xd

0 as n → ∞, using, for instance, Fenchel-Nielsen coordi-
nates in the Teichmüller space of the doubled surface.

Thus, we have

(17) dL(X
d
n, X

d
0 ) → 0 as n → ∞,

where dL denotes here the length-spectrum distance in the double. This last limit
follows because the doubled surface is a surface without boundary which implies,
by a result in [8] (Corollary 6 p. 495), that

Xd
n → Xd

0 ⇐⇒ sup
α∈C(Sd)

lXd

0

(α)

lXd
n
(α)

→ 1 ⇐⇒ sup
α∈C(Sd)

lXd
n
(α)

lXd

0

(α)
→ 1 as n → ∞.

We now deduce from (17) that

(18) inf
α∈C(Sd)

lXd
n
(α)

lXd

0

(α)
→ 1 and sup

α∈C(Sd)

lXd
n
(α)

lXd

0

(α)
→ 1 as n → ∞.

Now we note that

(19) inf
α∈C(Sd)

lXd
n
(α)

lXd

0

(α)
≤ inf

αd∈C(Sd)

lXd
n
(αd)

lXd

0

(αd)
≤ sup

αd∈C(Sd)

lXd
n
(αd)

lXd

0

(αd)
≤ sup

α∈C(Sd)

lXd
n
(α)

lXd

0

(α)

where the notation αd for a simple closed curve in Sd means, as before, that we
consider a symmetric curve with respect to the natural involution.
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From (18) and (19) we now deduce that

lim
n→∞

dL(Xn, X0) = 0 ⇒ inf
αd∈C(Sd)

lXd
n
(αd)

lXd

0

(αd)
→ 1, sup

αd∈C(Sd)

lXd
n
(αd)

lXd

0

(αd)
→ 1 as n → ∞

⇒ inf
α∈B(S)

lXn
(α)

lX0
(α)

→ 1, sup
α∈B(S)

lXn
(α)

lX0
(α)

→ 1 as n → ∞.

This shows that δL(Xn, X0) = 0 as n → ∞, which completes the proof.
�

We also have the following

Theorem 4.4. Let S be a surface of topologically finite type and let (Xn)n≥0 be a
sequence of elements in T(S). Then, we have

lim
n→∞

d(Xn, X0) = 0 ⇐⇒ lim
n→∞

d̄(Xn, X0) = 0 ⇐⇒ lim
n→∞

δL(Xn, X0) = 0.

Proof. The first equivalence follows by taking doubles, and using again the results
in [6] and [8]. The second equivalence is obvious. �

Corollary 4.5. Let S be a surface of topologically finite type. Then d, d, dL and
δL induce the same topology on T(S).
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