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SPDES IN DIVERGENCE FORM WITH VMO

COEFFICIENTS AND FILTERING THEORY OF

PARTIALLY OBSERVABLE DIFFUSION PROCESSES

WITH LIPSCHITZ COEFFICIENTS

N.V. KRYLOV

Abstract. We present several results on the smoothness in Lp

sense of filtering densities under the Lipschitz continuity assump-
tion on the coefficients of a partially observable diffusion processes.
We obtain them by rewriting in divergence form filtering equation
which are usually considered in terms of formally adjoint to oper-
ators in nondivergence form.

1. Introduction

Let (Ω,F , P ) be a complete probability space with an increasing
filtration {Ft, t ≥ 0} of complete with respect to (F , P ) σ-fields Ft ⊂
F . Denote by P the predictable σ-field in Ω × (0,∞) associated with
{Ft}. Let wk

t , k = 1, 2, ..., be independent one-dimensional Wiener
processes with respect to {Ft}.
We fix a stopping time τ and for t ≤ τ in the Euclidean d-dimensional

space R
d of points x = (x1, ..., xd) we are considering the following

equation

dut = (Ltut +Dif
i
t + f 0

t ) dt+ (Λk
tut + gkt ) dw

k
t , (1.1)

where ut = ut(x) = ut(ω, x) is an unknown function,

Ltψ(x) = Dj

(

aijt (x)Diψ(x) + ajt (x)ψ(x)
)

+ bit(x)Diψ(x) + ct(x)ψ(x),

Λk
tψ(x) = σik

t (x)Diψ(x) + νkt (x)ψ(x),

the summation convention with respect to i, j = 1, ..., d and k = 1, 2, ...
is enforced and detailed assumptions on the coefficients and the free
terms will be given later.
One can rewrite (1.1) in the nondivergence form assuming that the

coefficients aijt and ajt are differentiable in x and then one could apply
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the results from [5]. It turns out that the differentiability of aijt and ajt
is not needed for the corresponding counterparts of the results in [5] to
be true and showing this and generalizing the corresponding results of
[3] is one of the main purposes of Section 2 of the present article. We
assume, roughly speaking, that aijt (x) are measurable in t and of class
VMO with respect to x.
One of the main motivations for developing the theory of SPDEs

comes from filtering theory of partially observable diffusion processes.This
problem is stated as follows. Let d ≥ 1, d1 > d be integers .
Consider a d1-dimensional two component process zt = (xt, yt) with

xt being d-dimensional and yt (d1 − d)-dimensional. We assume that
zt is a diffusion process defined as a solution of the system

dxt = b(t, zt)dt+ θ(t, zt)dwt,

dyt = B(t, zt)dt+Θ(t, yt)dwt

(1.2)

with some initial data.
The coefficients of (1.2) are assumed to be vector- or matrix-valued

functions of appropriate dimensions defined on [0, T ] × R
d1 . Actually

Θ(t, y) is assumed to be independent of x, so that it is a function on
[0, T ]× R

d1−d rather than [0, T ]× R
d1 but as always we may think of

Θ(t, y) as a function of (t, z) as well.
The component xt is treated as unobservable and yt as the only ob-

servations available. The problem is to find a way to compute the
density πt(x) of the conditional distribution of xt given ys, s ≤ t. Find-
ing an equation satisfied by πt (filtering equation) is considered to be
a solution of the (filtering) problem. The filtering equations turn out
to be particular cases of SPDEs.
In 1964 in [14] the filtering equations were proposed in a somewhat

nonrigorous way and most likely some terms in these equations ap-
peared from stochastic integrals written in the Stratonovich form and
the others appeared from the Itô integrals. Perhaps, the author of [14]
realized this too and published an attempt to rescue some results of [14]
in 1967 in [15]. This attempt turned successful for simplified models
without the so-called cross terms.
Meanwhile, in 1966 in [20] the correct filtering equations in full gen-

erality, yet assuming some regularity of the filtering density, were pre-
sented. This is the reason we propose to call the filtering equations in
the case of partially observable diffusion processes Shiryaev’s equations
and their particular case without cross terms Kushner’s equations .
In case d = 1 the result of [20] is presented in [17] on the basis

of the famous Fujisaki-Kallianpur-Kunita theorem (see [2]) about the
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filtering equations in a very general setting. Some authors even call the
filtering equation for diffusion processes the Fujisaki-Kallianpur-Kunita
equation.
By adding to the Fujisaki-Kallianpur-Kunita theorem some simple

facts from the theory of SPDEs, the a priori regularity assumption was
removed in [9] and under the Lipschitz and uniform nondegeneracy
assumption the L2-version of Theorem 3.2 was proved. The basic result
of [9] is that πt ∈ W 1

2 . It is also proved that if the coefficients are
smoother, πt(x) is smoother too. The nondegeneracy assumption was
later removed (see [19]) on the account of assuming that θθ∗ is three
times continuously differentiable in x. It is again proved that πt ∈ W 1

2

and πt is even smoother if the coefficients are smoother.
In [5] the results of [9] were improved, θθ∗ is assumed to be twice

continuously differentiable in x and it is shown that πt ∈ W 2
p with any

p ≥ 2.
The above mentioned results of [9], [19], and [5] use filtering theory

in combination with the theory of SPDEs, the latter being stimulated
by certain needs of filtering theory. It turns out that the theory of
SPDEs alone can be used to obtain the above mentioned regularity
results about πt without knowing anything from filtering theory itself.
It also can be used to solve other problems from filtering theory.
The first “direct” (only using the theory of SPDEs) proof of reg-

ularity of πt is given in [11] in the case that system (1.2) defines a
nondegenerate diffusion process and θθ∗ is twice continuously differ-
entiable in x. It is proved that πt ∈ W 2

p with any p ≥ 2 as in [5].
Advantages of having arbitrary p are seen from results like our Theo-
rem 3.3. Of course, on the way of investigating πt in [11] the filtering
equations are derived “directly” in an absolutely different manner than
before (on the basis of an idea from [10]).
In Section 3 of this article we relax the smoothness assumption in

[11] to the assumption that the coefficients of (1.2) are merely Lipschitz
continuous, the assumption which is almost always supposed to hold
when one deals with systems like (1.2). We find that πt ∈ W 1

p . Thus,
under the weakest smoothness assumptions we obtain the best (in the
author’s opinion) regularity result on πt. In particular, we prove that if
the initial data is sufficiently regular, then the filtering density is almost
Lipschitz continuous in x and 1/2 Hölder continuous in t. However, we
still assume zt to be nondegenerate. Our approach is heavily based
on analytic results. There is also a probabilistic approach developed
in [13] and based on explicit formulas for solutions introduced in [16]
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and later developed in [10] and [12] (also see references therein). This
approach cannot give as sharp results as ours in our situation.
It seems to the author that under the same assumptions of Lipschitz

continuity, by following an idea from [4] one can solve another problem
from filtering theory, the so-called innovation problem, and obtain the
equality

σ{ys, s ≤ t} = σ{w̌s, s ≤ t},

where w̌t is the innovation Wiener process of the problem (its definition
is reminded in Section 3). Recall that for degenerate diffusion processes
the positive solution of the innovation problem is obtained in [18] again
on the basis of the theory of SPDEs under the assumption that the
coefficients are more regular.
By the way, in our situation, if the coefficients are more regular, the

filtering equation can be rewritten in a nondivergence form and then
additional smoothness of the filtering density, existence of which is
already established in this article, is obtained on the basis of regularity
results from [5].
Although for the proof of the above mentioned results concerning

the filtering equations it suffices to use article [3] about SPDEs in
divergence form with continuous coefficients, we prefer to give more
general results borrowed from [7] in Section 2. In Section 3 we present
some results about the filtering equations from [8].
We finish this section by introducing some notation. Let K, δ > 0 be

fixed finite constants, p ∈ [2,∞). Denote Lp = Lp(R
d), C∞

0 = C∞
0 (Rd).

Introduce

Di =
∂

∂xi
, i = 1, ..., d.

By Du we mean the gradient with respect to x of a function u on R
d.

As usual,

W 1
p = {u ∈ Lp : Du ∈ Lp}, ‖u‖W 1

p
= ‖u‖Lp + ‖Du‖Lp.

We use the same notation Lp for vector- and matrix-valued or else
ℓ2-valued functions such as gt = (gkt ) in (1.1). For instance, if u(x) =
(u1(x), u2(x), ...) is an ℓ2-valued measurable function on R

d, then

‖u‖pLp
=

∫

Rd

|u(x)|pℓ2 dx =

∫

Rd

(

∞
∑

k=1

|uk(x)|2
)p/2

dx.

Recall that τ is a stopping time and introduce

Lp(τ) := Lp(|(0, τ ]],P, Lp), W
1
p(τ) := Lp(|(0, τ ]],P,W

1
p ).
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We also need the space W1
p (τ), which is the space of functions ut =

ut(ω, ·) on {(ω, t) : 0 ≤ t ≤ τ, t < ∞} with values in the space of
generalized functions on R

d and having the following properties:
(i) u0 ∈ Lp(Ω,F0, Lp);
(ii) u ∈ W

1
p(τ);

(iii) There exist f i ∈ Lp(τ), i = 0, ..., d, and g = (g1, g2, ...) ∈ Lp(τ)
such that for any ϕ ∈ C∞

0 with probability 1 for all t ∈ [0,∞) we have

(ut∧τ , ϕ) = (u0, ϕ) +

∞
∑

k=1

∫ t

0

Is≤τ (g
k
s , ϕ) dw

k
s

+

∫ t

0

Is≤τ

(

(f 0
s , ϕ)− (f i

s, Diϕ)
)

ds, (1.3)

where by (f, ϕ) we mean the action of a generalized function f on ϕ,
in particular, if f is a locally summable,

(f, ϕ) =

∫

Rd

f(x)ϕ(x) dx.

Observe that, for any φ ∈ C∞
0 , the process (ut∧τ , φ) is Ft-adapted and

(a.s.) continuous.
The reader can find in [5] a discussion of (ii) and (iii), in particular,

the fact that the series in (1.3) converges uniformly in probability on
every finite subinterval of [0, τ ]. In case that property (iii) holds, we
write

dut = (Dif
i
t + f 0

t ) dt+ gkt dw
k
t (1.4)

for t ≤ τ and this explains the sense in which equation (1.1) is under-
stood. Of course, we still need to specify appropriate assumptions on
the coefficients and the free terms in (1.1).
The work was partially supported by NSF Grant DMS-0653121.

2. SPDEs in divergence form with VMO coefficients

We are considering (1.1) under the following assumptions.

Assumption 2.1. (i) The coefficients aijt , a
i
t, b

i
t, σ

ik
t , ct, and νkt are

measurable with respect to P × B(Rd), where B(Rd) is the Borel σ-
field on R

d.
(ii) For all values of indices and arguments

|ait|+ |bit|+ |ct|+ |ν|ℓ2 ≤ K, ct ≤ 0.

(iii) For all values of the arguments and ξ ∈ R
d

aijt ξ
iξj ≤ δ−1|ξ|2, (aijt − αij

t )ξ
iξj ≥ δ|ξ|2, (2.1)

where αij
t = (1/2)(σi·, σj·)ℓ2.
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It is worth emphasizing that we do not require the matrix (aij) to be
symmetric. Assumption 2.1 (i) guarantees that equation (1.1) makes
perfect sense if u ∈ W1

p (τ).

For functions ht(x) on [0,∞)× R
d and balls B in R

d introduce

ht(B) =
1

|B|

∫

B

ht(x) dx,

where |B| is the volume of B. If ρ ≥ 0, set Bρ = {x : |x| < ρ} and for
locally integrable ht(x) and continuous R

d-valued function xr, r ≥ 0,
introduce

oscρ (h, x·) = sup
s≥0

1

ρ2

∫ s+ρ2

s

(|hr − hr(B+xr)|)(B+xr) dr,

where B = Bρ. Also for y ∈ R
d set

Oscρ (h, y) = sup
|x·|C≤ρ

sup
r≤ρ

oscr (h, y + x·),

where |x·|C is the sup norm of |x·|. Observe that ocsεh = 0 if ht(x) is
independent of x.
Denote by β0 one third of the constant β0(d, p, δ) > 0 from Lemma

5.1 of [7].

Assumption 2.2. There exist a constant ε ∈ (0, 1] such that for any
y ∈ R

d
+ (and ω) we have

Oscε (a
ij , y) ≤ β0, ∀i, j. (2.2)

Furthermore,
(ajkt (x)− αjk

t (y))ξjξk ≥ δ|ξ|2

for all t, ξ, and x satisfying |x− y| ≤ ε.

Let β1 = β1(d, p, δ, ε) > 0 be the constant from Lemma 5.2 of [7].

Assumption 2.3. There exists a constant ε1 > 0 such that for any
t ≥ 0 we have

|σi·
t (x)− σi·

t (y)|ℓ2 ≤ β1,

whenever x, y ∈ R
d
+, |x− y| ≤ ε1, i = 1, ..., d .

Finally, we describe the space of initial data. Recall that for p ≥ 2

the Slobodetskii space W
1−2/p
p =W

1−2/p
p (Rd) of functions u0(x) can be

introduced as the space of traces on t = 0 of (deterministic) functions
u such that

u ∈ Lp(R+,W
1
p ), ∂u/∂t ∈ Lp(R+, H

−1
p ),

where R+ = (0,∞) and H−1
p = (1−∆)−1/2Lp. For such functions there

is a (unique) modification denoted again u such that ut is a continuous
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Lp-valued function on [0,∞) so that u0 is well defined. Any such ut is
called an extension of u0.
The norm in W

1−2/p
p can be defined as the infimum of

‖u‖Lp(R+,W 1
p )
+ ‖∂u/∂t‖Lp(R+,H−1

p )

over all extensions ut of elements u0.

Theorem 2.1. Let f j, g ∈ Lp(τ) and let u0 ∈ Lp(Ω,F0,W
1−2/p
p ). Then

(i) Equation (1.1) for t ≤ T ∧τ has a unique solution u ∈ W1
p (T ∧τ)

with initial data u0 for any constant T ∈ (0,∞).
(ii) There exists a set Ω′ ⊂ Ω of full probability such that ut∧τIΩ′ is

a continuous Ft-adapted Lp-valued functions of t ∈ [0,∞).

Assertion (ii) of Theorem 2.1 follows from assertion (i) and Theorem
2.4.
Here is a result about continuous dependence of solutions on the

data.

Theorem 2.2. Assume that for each n = 1, 2, ... we are given functions
aijnt, a

i
nt, b

i
nt, cnt, σ

ik
nt, ν

k
nt, f

j
nt, g

k
nt, and un0 having the same meaning

and satisfying the same assumptions with the same δ,K, ε, ε1, β0, and
β1 as the original ones. Assume that for i, j = 1, ..., d and almost all
(ω, t, x) we have

(aijnt, a
i
nt, b

i
nt, cnt) → (aijt , a

i
t, b

i
t, ct),

|σi·
nt − σi·

t |ℓ2 + |νnt − νt|ℓ2 → 0,

as n→ ∞. Also assume that
d

∑

j=0

(‖f j
n − f j‖Lp(τ) + ‖gn − g‖Lp(τ) + ‖un0 − u0‖Lp(Ω,F0,W

1−2/p
p )

→ 0

as n → ∞. Let un be the unique solutions of equations (1.1) for t ≤ τ
constructed from aijnt, a

i
nt, b

i
nt, cnt, σ

ik
nt, ν

k
nt, f

j
nt, and gknt and having

initial values un0.
Then, for any T ∈ [0,∞) as n → ∞, we have ‖un − u‖W1

p(T∧τ) → 0
and

E sup
t≤τ∧T

‖unt − ut‖
p
Lp

→ 0.

In many situation the following maximum principle based on the
results of [6] is useful.

Theorem 2.3. Suppose that, for q ∈ [2, p], Assumptions 2.2 and 2.3
are satisfied with β0 ≤ β0(d, q, δ) and β1 ≤ β1(d, q, δ, ε). Also suppose

that u0 ∈ Lp(Ω,F0,W
1−2/q
q ), q ∈ [2, p], u0 ≥ 0, f i = 0, i = 1, ..., d,
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f 0 ≥ 0, g = 0. Then for the solution u almost surely we have ut ≥ 0
for all finite t ≤ τ .

Part of the proofs of the above results is based on the following Itô’s
formula.

Theorem 2.4. Let u ∈ W1
p (τ), f

j ∈ Lp(τ), g = (gk) ∈ Lp(τ) and
assume that (1.4) holds for t ≤ τ in the sense of generalized functions.
Then there is a set Ω′ ⊂ Ω of full probability such that
(i) ut∧τIΩ′ is a continuous Lp-valued Ft-adapted function on [0,∞);
(ii) for all t ∈ [0,∞) and ω ∈ Ω′ Itô’s formula holds:

∫

Rd

|ut∧τ |
p dx =

∫

Rd

|u0|
p dx+ p

∫ t∧τ

0

∫

Rd

|us|
p−2usg

k
s dx dw

k
s

+

∫ t∧τ

0

(

∫

Rd

[

p|ut|
p−2utf

0
t − p(p− 1)|ut|

p−2f i
tDiut

+ (1/2)p(p− 1)|ut|
p−2|gt|

2
ℓ2

]

dx
)

dt. (2.3)

Furthermore, for any T ∈ [0,∞)

E sup
t≤τ∧T

‖ut‖
p
Lp

≤ 2E‖u0‖
p
Lp

+NT p−1‖f 0‖p
Lp(τ)

+NT (p−2)/2(
d

∑

i=1

‖f i‖p
Lp(τ)

+ ‖g‖p
Lp(τ)

+ ‖Du‖p
Lp(τ)

), (2.4)

where N = N(d, p).

We have a direct proof of this result. However, (2.3) can also be
obtained by extending some arguments from [1].

3. Filtering equations

Fix a constant T ∈ (0,∞) and for simplicity assume that wt in (1.2)
is finite dimensional. First we state and discuss our assumptions.

Assumption 3.1. The functions b, θ, B, and Θ are Borel measurable
and bounded functions of their arguments. Each of them satisfies the
Lipschitz condition in z with the constant K.

Assumption 3.2. The process zt is uniformly nondegenerate: for any
λ, z ∈ R

d1 and t ∈ [0, T ] we have

ãijt (z)λ
iλj ≥ δ|λ|2,

where 2ãt(z) = 2(ãijt (z)) = θ(t, z)θ∗(t, z) + Θ(t, y)Θ∗(t, y).
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Traditionally, Assumption 3.2 is split into two following assumptions
the combination of which is equivalent to Assumption 3.2 and in which
some useful objects are introduced. These assumptions were also used
in the past to reduce system (1.2) to the so-called triangular form by
replacing wt with a different Brownian motion.

Assumption 3.3. The symmetric matrix ΘΘ∗ is invertible and

Ψ := (ΘΘ∗)−
1

2

is a bounded function of (t, y).

Assumption 3.4. For any ξ ∈ R
d, z = (x, y) ∈ R

d1 , and t > 0, we
have

|Q(t, y)θ∗(t, z)ξ|2 ≥ δ|ξ|2,

where Q is the orthogonal projector on KerΘ. In other words,

(θ(I −Θ∗Ψ2Θ)θ∗ξ, ξ) ≥ δ|ξ|2. (3.1)

Assumption 3.5. The random vectors x0 and y0 are independent of
the process wt. The conditional distribution of x0 given y0 has a density,

which we denote by π0(x) = π0(ω, x). We have π0 ∈ Lp(Ω,W
1−2/p
p ).

Next we introduce few more notation. Let

Ψt = Ψ(t, yt), Θt = Θ(t, yt), at(x) =
1

2
θθ∗(t, x, yt), bt(x) = b(t, x, yt),

σt(x) = θ(t, x, yt)Θ
∗
tΨt, βt(x) = ΨtB(t, x, yt).

In the remainder of the article we use the notation

Di =
∂

∂xi

only for i = 1, ..., d and set

Lt(x) = aijt (x)DiDj + bit(x)Di , (3.2)

L∗
t (x)ut(x) = DiDj(a

ij
t (x)ut(x))−Di(b

i
t(x)ut(x))

= Dj

(

aijt (x)Diut(x)− bjt (x)ut(x) + ut(x)Dia
ij
t (x)

)

, (3.3)

Λk
t (x)ut(x) = βk

t (x)ut(x) + σik
t (x)Diut(x), (3.4)

Λk∗
t (x)ut(x) = βk

t (x)ut(x)−Di(σ
ik
t (x)ut(x))

= −σik
t (x)Diut(x) + (βk

t (x)−Diσ
ik
t (x))ut(x), (3.5)

where t ∈ [0, T ], x ∈ R
d, k = 1, ..., d1 − d, and as above we use the

summation convention. Observe that Lipschitz continuous functions
have bounded generalized derivatives and by

Dia
ij
t , Diσ

ik
t
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we mean these derivatives. Obviously, the operator L defined by (3.2)
is uniformly elliptic with constant of ellipticity δ.
Finally, by Fy

t we denote the completion of σ{ys : s ≤ t} with respect
to P,F .
Let us consider the following initial value problem

dπ̄t(x) = L∗
t (x)π̄t(x) dt+ Λk∗

t (x)π̄t(x)Ψ
kr
t dyrt , (3.6)

π̄0(x) = π0(x),

where t ∈ [0, T ], x ∈ R
d, and π̄t(x) = π̄t(ω, x). Equation (3.6) is called

the Duncan-Mortensen-Zakai or just the Zakai equation.
We understand this equation and the initial condition in the following

sense. We are looking for a function π̄ = π̄t(x) = π̄t(ω, x), ω ∈ Ω,
t ∈ [0, T ], x ∈ R

d, such that
(i) For each (ω, t), π̄t(ω, x) is a generalized function on R

d,
(ii) We have π̄ ∈ Lp(Ω× [0, T ],P,W 1

p ),

(iii) For each ϕ ∈ C∞
0 (Rd) with probability one for all t ∈ [0, T ] it

holds that

(π̄t, ϕ) = (π0, ϕ)−

∫ t

0

(aijt Diπ̄t − bjt π̄t + π̄tDia
ij
t , Djϕ) dt

−

∫ t

0

(σik
t Diπ̄t + (Diσ

ik
t − βk

t )π̄t, ϕ)Ψ
kr
t

(

Br(t, zt) dt+Θrs(t, yt) dw
s
t

)

.

(3.7)
Observe that all expressions in (3.7) are well defined due to the fact

that the coefficients of π̄ and of Diπ̄ are bounded and appropriately
measurable and π̄, Diπ̄ ∈ Lp(Ω× [0, T ],P, Lp).
Hence, equation (3.6) has the same form as (1.1) and the existence

and uniqueness part of Lemma 3.1 below follow from Theorem 2.1. The
second assertion of the lemma follows from Theorem 2.3.

Lemma 3.1. There exists a unique solution π̄ of (3.6) with initial
condition π0 in the sense explained above. In addition, π̄t ≥ 0 for all
t ∈ [0, T ] (a.s.).

Here is a basic result of filtering theory for partially observable dif-
fusion processes. Its relation to the previously known ones is discussed
above.

Theorem 3.2. Let π̄ be the function from Lemma 3.1. Then

0 <

∫

Rd

π̄t(x) dx = (π̄t, 1) <∞ (3.8)
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for all t ∈ [0, T ] (a.s.) and for any t ∈ [0, T ] and real-valued, bounded
or nonnegative, (Borel) measurable function f given on R

d

E[f(xt)|F
y
t ] =

(π̄t, f)

(π̄t, 1)
(a.s.). (3.9)

Equation (3.9) shows (by definition) that

πt(x) :=
π̄t(x)

(π̄t, 1)

is a conditional density of distribution of xt given ys, s ≤ t. Since,
generally, (π̄t, 1) 6= 1, one calls π̄t an unnormalized conditional density
of distribution of xt given ys, s ≤ t.
We derive Theorem 3.2 from Theorem 2.2 and the result of [11] where

more regularity on the coefficients is assumed.
The following is a direct corollary of embedding theorems from [5].

Theorem 3.3. Let π0 be a nonrandom function and π0 ∈ W
1−2/p
p for

all p ≥ 2, which happens for instance, if π0 is a Lipschitz continuous
function with compact support. Then for any ε ∈ (0, 1/2) almost surely
π̄t(x) is 1/2− ε Hölder continuous in t with a constant independent of
x, π̄t(x) is 1 − ε Hölder continuous in x with a constant independent
of t, and the above mentioned (random) constants have all moments.
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