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EMBEDDED CMC HYPERSURFACES ON HYPERBOLIC SPACES

OSCAR M. PERDOMO

Abstrat. In this paper we will prove that for every integer n > 1, there exists a real number

H0 < −1 suh that every H ∈ (−∞,H0) an be realized as the mean urvature of a embedding

of Hn−1
× S1

in the n + 1-dimensional spaes Hn+1
. For n = 2 we expliitly ompute the value

H0. For a general value n, we provide funtion ξn de�ned on (−∞,−1), whih is easy to ompute

numerially, suh that, if ξn(H) > −2π, then, H an be realized as the mean urvature of a

embedding of Hn−1
× S1

in the n+ 1-dimensional spaes Hn+1
.

1. Introdution and preliminaries

Here we will be onsidering the following model of the hyperboli spae,

Hn+1 = {x ∈ R
n+2 : x21 + · · ·+ x2n+1 − x2n+2 = −1 }

where the spae R
n+2

is endowed with the following inner produt

〈v,w〉 = v1w1 + · · ·+ vn+1wn+1 − vn+2wn+2 for v = (v1, . . . , vn+2) and w = (w1, . . . , wn+2)

In [2℄ we proved the following theorem that shows that Sn−1×R an be embedded in the hyperboli

spae with onstant mean urvature.

Theorem 1.1. Let gC,H : R → R be a positive solution of the equation

(g′)2 + g2−2n + (H2 − 1)g2 + 2Hg2−n = C(1.1)

assoiated with a non negative H and a positive onstant C. If µ, λ, r, θ : R → R are de�ned by

r =
gC,H√

C
, λ = H + g−n

C,H , µ = nH − (n − 1)λ = H − (n− 1)g−n
C,H and θ(u) =

∫ u

0

r(s)λ(s)

1 + r2(s)
ds

then, the map φ : Sn−1 ×R → Hn+1
given by

φ(y, u) = ( r(u) y,
√

1 + r(u)2 sinh(θ(u)),
√

1 + r(u)2 cosh(θ(u)) )(1.2)

de�nes an embedded hypersurfae in Hn+1
with onstant mean urvature H. Moreover, if H2 > 1,

the embedded manifold de�ned by (1.2) admits the group O(n)×Z in its group of isometries, where

Z is the group of integers.
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The existene of the previous examples just as immersions were studied in [5℄ as Delaunay-type

hypersurfaes of the hyperboli spae and also in [4℄ as rotational hypersurfaes of spherial type.

In this paper we will prove that a subfamily of the family of immersions named as rotational

hypersurfaes of hyperboli type in [4℄ provides di�erent ways to embed the manifold Hn−1 × S1
in

the n+ 1-dimensional hyperboli spae.

2. Embedded hyperboli type rotational surfaes in H3

It is not di�ult to show that the funtion

ξ : (−∞,−1) → R given by ξ(H) =

∫ π

0

√
2H dt

√

2H2 + sin(2t)− 1

is dereasing, limH→−∞ ξ(H) = −π and ξ(H) < −2π for values of H lose to −1. The previous ob-
servations guarantee the existene of a unique H0 suh that ξ(H0) = −2π. A numerial omputation

shows that,

H0 ≃ −1.0158136657178574

In this setion we will show that every H < H0 an be realized as the mean urvature of a hyperboli

type rotational embedded onstant mean urvature surfae in the hyperboli three dimensional

spae. Let us state and prove the main and only theorem in this setion.

Theorem 2.1. For any H < −1 and C ∈ (C1, 0 ) where C1 = 2(H +
√
−1 +H2), let us de�ne

f : R → R by

f(t) =

√

C − 2H +
√
4 + C2 − 4CH sin( 2

√
H2 − 1 t )

2H2 − 2

If we de�ne,

r(t) =
f(t)√
−C

and λ(t) = H + (f(t))−2

then, the funtion

λ(t) r(t)
r2(t)−1

is a smooth funtion everywhere and if we de�ne

θ(t) =

∫ t

0

λ(s) r(s)

r2(s)− 1
ds

then, the map

φ(y, u) = (
√

r(u)2 − 1 cos(θ(u)),
√

r(u)2 − 1 sin(θ(u)), r(u) sinh(v), r(u) cosh(v))(2.1)

de�nes and immersion from R
2
to H3

. We also have that for every H < −1 there exist in�nitely

many hoies of C suh that the immersion φ is periodi in the variable u and therefore it de�nes

immersions from R× S1
to H3

. Moreover, we have that for every H < H0, there exists a value C

suh that φ de�nes an embedding from R× S1
to H3

.
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Proof. Sine H < −1 and C ∈ (C1, 0 ), we have that the funtion f is a real-value T -periodi

funtion, that osillates from t1 to t2 where,

t1, t2 =

√

C − 2H ±
√
4 + C2 − 4CH

2H2 − 2
and T =

π√
H2 − 1

A diret omputation shows that

(f ′)2 + f−2 + (H2 − 1)f2 + 2H = C

The equation above shows that the funtion r(t) satis�es the following identity

(r′)2 + λ2 r2 = r2 − 1(2.2)

This equation shows that r(t) ≥ 1, moreover, it shows that r(t⋆) = 1, if and only if λ(t⋆) = 0 and

r′(t⋆) = 0. These last two onditions imply that t⋆ is a zero with multipliity 2 of the funtion λ.

We an easily see that t⋆ is a zero with multipliity 2 of the funtion r2 − 1. Sine the funtion r is

analyti, we get that the funtion

λ(s) r(s)
r2(s)−1 is smooth near t⋆, therefore it is smooth everywhere. A

diret omputation shows that

∂φ

∂u
=

r r′√
r2 − 1

(cos(θ), sin(θ), 0, 0) +
r λ√
r2 − 1

(− sin(θ), cos(θ), 0, 0) + r′(0, 0, sinh(v), cosh(v))

and

∂φ

∂v
= r(u) (0, 0, cosh(v), sinh(v))

It is not di�ult to prove that the map

ν = −rλ (0, 0, sinh(v), cosh(v))− r2 λ√
r2 − 1

(cos(θ), sin(θ), 0, 0 ) +
r′√

r2 − 1
(− sin(θ), cos(θ), 0, 0 )

is a Gauss map of the immersion φ. It follows that the immersion φ has onstant mean urvature

H by notiing that

∂ν

∂v
= −λ

∂φ

∂v
and

∂ν

∂u
= −(2H − λ)

∂φ

∂u

Let us de�ne the funtion K that depends on H and C, by

K(C,H) =

∫ T

0

λ(s) r(s)

r2(s)− 1
ds

A diret omputation shows that for every �xed H we have,

lim
C→C1

K(C,H) = −π

√

2− 2H√
H2 − 1

= b2(H) and lim
C→0

K(C,H) = 0(2.3)
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Sine H < −1 we have that b2(H) < −2π. Using the limits in (2.3) we get that for any �xed value

H < −1 and for every positive integer m, there exists a real number C⋆
between C1 and 0 suh

that K(C⋆,H) = −2π
m
. Sine the funtion θ satis�es that

For any integer j and u ∈ [jT, (j + 1)T ] we have that θ(u) = jK + θ(u− jT )

we get that if we hoose the value C⋆
, we get that θ(mT ) = −2π and therefore the immersion φ(u, v)

will be mT -periodi in the variable u and it will de�ne an immersion from R × S1
to H3

. Let us

prove that for every H < H0 there exists an embedding from R×S1
to H3

. By using the de�nition

of the funtion λ and the expression for the bounds t1 and t2 of the funtion f , we have that for a

given H, the funtion λ < 0 if and only if C1 < C < 1
H
. Notie that if λ is always negative, then

the funtion θ is stritly dereasing, and in partiular it is one to one. A diret omputation shows

that

K(
1

H
,H) =

∫ T

0

H
√
2H2 − 2

√

2H2 − 1 + sin( 2
√
H2 − 1 s)

ds =

∫ π

0

H
√
2

√

2H2 − 1 + sin( 2t)

As pointed out at the beginning of this setion, the funtion ξ(H) = K( 1
H
,H) is dereasing and the

limit when H → −∞ is −π. Therefore for any H < H0 there exists a C⋆
between C1 and

1
H

suh

thatK(C⋆,H) = −2π. By the way we piked C⋆
we get that the funtion θ is stritly dereasing and

θ(T ) = −2π, these two onditions guarantee that the immersion φ(u, v) is T -periodi and injetive

in R × (0, T ), therefore φ de�nes an embedding from R × S1
to H3

. This ompletes the proof of

the theorem. �

2.1. Graph of some pro�le urves. The examples desribed above are obtained by doing a

hyperboli rotation of the pro�le urve

α(t) = (
√

r2(t)− 1 cos(θ(t)),
√

r2(t)− 1 sin(θ(t)) )

We will show the graphs of a pro�le urve that orresponds to an embedded example and two pro�le

urves orresponding to immersed examples, all of them represent examples with onstant mean

urvature H = −1.1. To �nish the setion we will show one of the numerial di�ulties to do the

graph. This di�ulty is the fat that the angle funtion θ moves a lot in a small variation of the

parameter t, during this small variation of parameter t, the radius funtion
√

r2(t)− 1 is very lose

to zero. We will show this fat by graphing the funtion θ′(t), �rst by limiting the odomain to

some values lose to zero, and then by showing the whole graph of θ′.
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Figure 2.1. Pro�le urve for a surfae with CMC H = −1.1, in this ase the surfae
is embedded and C = −0.9091743461769703 and K = −2π
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Figure 2.2. Pro�le urve for a surfae with CMC H = −1.1, in this ase C =
−0.6835660909345689 and K = −2π
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Figure 2.3. Pro�le urve for a surfae with CMC H = −1.1, in this ase C =
−0.19607165524075582 and K = −2π
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Figure 2.4. Graph of the funtion θ′ assoiated with the embedded example whih

pro�le urve is shown above, in this ase just part of the graph is shown

1 2 3 4 5 6 7

-300

-250

-200

-150

-100

-50

Figure 2.5. Graph of the funtion θ′ example assoiated with the embedded whih

pro�le urve is shown above.
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3. Embedded solutions in hyperboli spaes.

It is well known that the existene of CMC hypersurfaes in hyperboli spaes relies on the existene

of solutions of the following di�erential equation,

(g′)2 + g2−2n + (H2 − 1)g2 + 2Hg2−n = C

It is not di�ult to hek that, when H < −1, it is possible to obtain solutions of this equation

assoiated with negative values of C. This CMC examples produed by these solutions when C < 0
orrespond to those named as rotational hyperboli type in [4℄. Similar arguments as those shown

in [2℄ will give us expliit immersions for suh a hoie of the onstant C. The following sequenes of

statements tell us how to pik the negative values of C to obtain solutions in the ase that H < −1
and several other properties that will be useful in the proof of the main theorem in this paper.

Remark 3.1. The funtion q : (0,∞) → R de�ned by q(v) = C − v2−2n + (1 −H2)v2 − 2Hv2−n
,

where H < −1 and C < 0, has the following properties:

(1) The positive real number v0 given by

v0 = (
H(n− 2) +

√
4− 4n +H2n2

2H2 − 2
)
1

n = (
2(n− 1)√

4− 4n+H2n2 −H(n− 2)
)
1

n

is the only positive ritial point of q.

(2) p(v) = v2n−2q(v) is a polynomial with even degree, negative leading oe�ient and p(0) =
−1.

(3) Sine q′(v) > 0 if v < v0, q
′(v) < 0 if v > v0, and q(v0) = C − C0 where

C0 = n
H2n− 2 +H

√
4− 4n +H2n2

(H(n − 2) +
√
4− 4n+H2n2 )

2n−2

n

(2H2 − 2)
n−2

n
(3.1)

then, q has exatly 2 roots whenever 0 > C > C0.

(4) The funtions t1, t2 : (C0, 0)× (−∞,−1) → (0,∞) de�ned by the equations

q(t1(C,H)) = 0 q(t2(C,H)) = 0 with t1(C,H) < t2(C,H)(3.2)

are smooth, t1(C,H) is dereasing with respet to C, t2(C,H) is inreasing with respet

to C and the limit of both funtions when C → C0 is v0.

(5) Sine the roots of q when C = 0 are v1 = 1

(1−h)
1
n

and v2 = 1

(−1−h)
1
n

then for any �xed H

the derivative of the funtions t1 and t2 de�ned on (C0, 0) never vanish and

lim
C→0

t1(C) = v1, lim
C→0

t2(C) = v2 and lim
C→C0

t1(C) = lim
C→C0

t2(C) = v0

(6) The following identities are true,



EMBEDDED CMC HYPERSURFACES ON HYPERBOLIC SPACES 9

λ1 = H + v−n
0 =

nH +
√

H2n2 − 4(n − 1)

2(n − 1)
< 0 and λ2 = H + v−n

1 = 1

(7) For a �xed H < −1, the previous two items guarantee the existene of a unique C̃(H) ∈
(C0, 0) suh that t⋆1(H) = t1(C̃(H),H) satis�es that

H + (t⋆1(H))−n = 0

The equality above de�nes a smooth funtion C̃ : (−∞,−1) → (C0, 0)

(8) We an expliitly ompute the funtion C̃ by notiing �rst that for that speial value of C,

the number t1 = (−H)
−1

n
must be a root of the funtion q, therefore q((−H)

−1

n ) must be

zero, i.e,

q((−H)
−1

n ) = C + (−H)−
2

n = 0

Therefore, C̃(H) = −(−H)−
2

n

(9) The funtion q̃(v) = − 1
C
q(
√
−Cv) has the following expression

q̃(v) = −1− (−C)−nv2−2n + v2(1−H2 − 2H(
√
−Cv)−n)

Moreover, by the de�nition of q̃ and the properties of the funtion q we have that q̃, for

any C ∈ (C0, C), the only 2 positive roots of q̃ are

t̃1(C,H) =
t1(C,H)√

−C
and t̃2(C,H) =

t2(C,H)√
−C

Therefore, we have that t̃1(C̃,H) = (−H)−
1
n

q

(−H)−
2
n

= 1

(10) A diret omputation shows that when C = C̃, the polynomial q̃, redues to the polynomial

Q given by,

Q = −1 + v2 −H2v2 −H2v2−2n + 2H2v2−n

It is not di�ult to hek that, when n > 2, for any positive ǫ, limH→−∞Q(1+ ǫ) = −∞,

therefore we have that

t̃1(C̃,H) = 1 and lim
H→−∞

t̃2(C̃,H) = 1(3.3)

(11) Let us de�ne the funtion h : (0,∞) → R by

h(v) =
2Hv1−n(−1 + vn)

v2 − 1
= 2H v1−n 1 + v + · · ·+ vn−1

1 + v

and the funtion ξn : (−∞,−1) → R

ξn(H) =

∫ t̃2(C̃,H)

1

hn(v)
√

Q(v)
dv
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(12) A diret omputation shows that

ã = −1

2
Q′′(1) = n2H2 − 1(3.4)

Therefore using a small modi�ation of lemma 5.1 and its orollary in [2℄ we get that

lim
H→−∞

ξn(H) = −π(3.5)

Theorem 3.2. Let g : R → R be a positive solution of the equation

(g′)2 + g2−2n + (H2 − 1)g2 + 2Hg2−n = C(3.6)

assoiated with a negative onstant C. If µ, λ, r, θ : R → R are de�ned by

r =
g√
−C

, λ = H + g−n, µ = nH − (n− 1)λ = H − (n− 1)g−n
and θ(u) =

∫ u

0

r(s)λ(s)

r2(s)− 1
ds

then, the map φC,H : Hn−1 ×R → Hn+1
given by

φC,H(y, u) = (
√

r(u)2 − 1 cos(θ(u)),
√

r(u)2 − 1 sin(θ(u)), r(u) y)(3.7)

de�nes an immersed hypersurfae in Hn+1
with onstant mean urvature H. We also have that

when H < −1, the funtion g is periodi and if we denote its period by T , then, φC,H de�nes an

immersion from Hn−1 × S1
to Hn

whenever

K(C,H) =

∫ T

0

r(s)λ(s)

r2(s)− 1
ds = −2kπ

m
for some pair of positive integers k and m(3.8)

Moreover, we have that anytime ξn(H1) > −2π, where ξn is the funtion de�ned in item (11) in

Remark (3.1), then, there exists a onstant C suh that the immersion φC,H1
de�nes an embedding

from Hn−1 × S1
to Hn+1

.

Proof. A diret omputation shows the following identities,

(r′)2 + r2λ2 = r2 − 1, and λr′ + rλ′ = µr′

Let us de�ne

B2(u) = (cos(θ(u)), sin(θ(u)), 0, . . . , 0) and B3(u) = (− sin(θ(u)), cos(θ(u)), 0, . . . , 0)

Notie that 〈B2, B2〉 = 1, 〈B3, B3〉 = 1, 〈B2, B3〉 = 0, B′

2 = rλ
r2−1

B3 and B′

3 = − rλ
r2−1

B2, moreover,

we have that the map φ = φC,H an be written as

φ = r (0, 0, y) +
√

r2 − 1B2

A diret veri�ation shows that 〈φ, φ〉 = −1 and that
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∂φ

∂u
= r′ (0, 0, y) +

rr′√
r2 − 1

B2 +
rλ√
r2 − 1

B3

is a unit vetor, i.e, 〈∂φ
∂u

, ∂φ
∂u

〉 = 1. We have that the tangent spae of the immersion at (y, u) is

given by

Tφ(y,u) = {(v, 0, 0) + s
∂φ

∂u
: 〈v, y〉 = 0 and s ∈ R}

A diret veri�ation shows that the map

ν = −rλ (0, 0, y) − r2 λ√
r2 − 1

B2 +
r′√

r2 − 1
B3

satis�es that 〈ν, ν〉 = 1, 〈ν, ∂φ
∂u

〉 = 0 and, for any v ∈ R
n
with 〈v, y〉 = 0, we have that 〈ν, (v, 0, 0)〉 =

0. It then follows that ν is a Gauss map of the immersion φ. The fat that the immersion φ has

onstant mean urvature H follows beause, for any unit vetor v in R
n
perpendiular to y, we

have that

β(t) = ( 0, 0 , r cosh(t) y + r sinh(t) v ) +
√

r2 − 1B2 = φ(cosh(t)y + sinh(t)v, u)

satis�es that β(0) = φ(y, u), β′(0) = rv and

dν(β(t))

dt

∣

∣

t=0
= dν(rv) = −rλ v

Therefore, λ is a prinipal urvature with multipliity n− 1. Now, sine 〈∂ν
∂u

, (v, 0, 0)〉 = 0 for every

(v, 0, 0) ∈ Tφ(y,u), we have that

∂φ
∂u

de�nes a prinipal diretion, i.e. we must have that

∂φ
∂u

is a

multiple of

∂φ
∂u
. A diret veri�ation shows that,

〈∂ν
∂u

, y〉 = −λ′ r − λr′ = −µ r′ = −(nH − (n− 1)λ)r′

We also have that 〈∂φ
∂u

, y〉 = r′, therefore,

∂ν

∂u
= dν(

∂φ

∂u
) = −µ

∂φ

∂u
= −(nH − (n− 1)λ)

∂φ

∂u

It follows that the other prinipal urvature is nH − (n − 1)λ. Therefore φ de�nes an immersion

with onstant mean urvature H, this proves the �rst item in the Theorem. The fat that the

map de�nes an immersion from Hn−1 × S1
whenever K(C,H) = −2kπ

m
, follows from the following

property

For any integer j and u ∈ [jT, (j + 1)T ] we have that θ(u) = jK + θ(u− jT )

whih implies that the map φ is periodi in the variable u, with period mT . Let us prove the

embedding part of the theorem. In this part of the proof we will be using the funtions and

onstants

q, q̃, Q, ξn, t1, t2, t̃1, t̃2, C̃, C0, and v0
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de�ned in Remark (3.1). Let us start by notiing that the di�erential equations for the funtions g

and r an be written as

(g′) = q(g) and (r′)2 = q̃(r)

It follows that, in order to obtain a solution g of this di�erential equation, we need that C > C0

and, one we have the solution g assoiated with the number C and H, this solution g varies from

t1(C,H) to t2(C,H). Sine we know the maximum and the minimum of the funtion g in terms

of C and H, we an verify that anytime C < C̃ = −(−H)−
2

n
, the funtion λ is negative, we also

have that when C = C̃, 0 is the maximum of the funtion λ. The previous a�rmation guarantees

that anytime C ∈ (C0, C̃), the funtion θ is one to one. By doing the substitution v = g(s) in the

integral K(C,H), we get that

K(C,H) =

∫ t2(C,H)

t1(C,H)

2
√
−C (1 +Hvn) v1−n

(C + v2)
√

q(v)
dv

In the previous expression we have used the symmetry of the funtion g, and therefore the symme-

tries of the funtions r and λ, to express K as

K = 2

∫ T

2

0

r(s)λ(s)

r2(s)− 1
ds

When C = C0, we have that q(v0) = 0 = q′(v0), then, we an apply the lemma 5.1 in [2℄ and its

orollary, to obtain that

lim
C→C0

K(C,H) = −
√
2

√

1− nH
√

n2H2 − 4(n − 1)
π = lb

Notie that for any n ≥ 2 and any H < −1, the bound lb < −2π. By doing the substitution

v = r(s) in the integral K(C,H), we get that

K(C,H) =

∫ t̃2(C,H)

t̃1(C,H)

2v (H + (
√
−C v)−n)

(v2 − 1)
√

q̃(v)
dv

When we replae C by C̃ the integral above redues to,

K(C̃,H) = ξn(H)

Using the intermediate value theorem we onlude the theorem beause anytime ξn(H) > −2π there

exists a C⋆ ∈ (C0, C̃) suh that K(C⋆,H) = −2π, therefore the map φC⋆,H is periodi in the u

variable, and sine C < C̃ the funtion θ is injetive and therefore the map φC⋆,H is an embedding.

�

Corollary 3.3. For any integer n > 1 there exists an H0 ≤ −1 suh that for any H < H0 there

exists an embedding with onstant mean urvature H from Hn−1 × S1
to Hn+1

.

Proof. The orollary follows from the fat that limH→−∞ ξn(H) = −π. See item (12) in Remark

(3.1). �
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Remark 3.4. The integral ξn is easy to evaluate numerially, for example

ξ3(−1) = −5.97106763713693 ξ4(−1) = −4.599155062889069 ξ5(−1) = −4.13016242612799

The following graphs suggest that for n = 3, 4, 5, there exist embeddings for all H < −1.

-50 -40 -30 -20 -10
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-5.0

-4.5

-4.0

-3.5

Figure 3.1. Graph of the funtion ξ3 on [−50,−1]
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Figure 3.2. Graph of the funtion ξ4 on [−50,−1]
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Figure 3.3. Graph of the funtion ξ5 on [−50,−1]
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