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N−BUNDLES FOR N AN EXTENSION OF A FINITE

GROUP BY AN ABELIAN GROUP

YASHONIDHI PANDEY

Abstract. Let W be a finite group and T be an abelian group.
Consider an extension 0 → T → N → W → 0. For a smooth
projective curve X , we give a precise description of the fiber of the
quotient by T map qT : MX(N) → MX(W ) as a torsor over an
abelian variety. We also prove a result on Mumford groups.

1. Introduction

Let T be an arbitrary abelian group and W be an arbitrary finite
group. We fix an action σ : W → Aut(T ).
Let π : Z → X be an étale Galois cover of smooth projective curves

of Galois group a finite group W . Let ET be a T−bundle on Z.
Combining the pull-back action of W on Z and the action σ on the
fibers, we have the twisted action of W on T−bundles on Z defined as
(w,E) 7→ w∗E ×w T where σ(w) : T → T is the understood extension
of structure group from T to itself. The action of W on Z does not in
general lift to ET , however on W−invariant principal T−bundles on Z,
we can define a Mumford group parametrising the 2-uples (w, γ) where
γ is an isomorphism between E and wE of T−bundles of Z.
The second main result of this paper is the Proposition 3.1 on Mum-

ford groups.

Proposition 1.1. Let π : Z → X be an étale Galois cover of smooth
projective curves with Galois group a finite group W . We have a ho-
momorphism of groups

c : H1(Z, T )W → H2(W,T )
ET 7→ [0 → T → Gσ(ET ) → W → 0]

Let η denote the class of an extension [0 → T → N → W → 0] ∈
H2(W,T ).
The main theorem 4.7 of this paper can be described as follows.

Theorem 1.2. The fiber of the quotient by T map qT : MX(N) →
MX(W ) over π : Z → X is H1(Z, T )Wη .
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We give applications of these results by taking N to be the dihedral
group, the Weyl group of type Bn, Cn and Dn to describe the set of
N−bundles MX(N) on a curve X .
Much of these results were obtained to study the Weyl group, the

torus and the Lie group in the context of abelianisation. We thus use
suggestively the notation W for an arbitrary finite group and T for a
finite abelian group.
I wish to thank my advisor Christian Pauly for his advices and help

in the preperation of this paper and my thesis.

2. Principal N−bundles: notation and known results

Let T be an arbitrary abelian group and W be an arbitrary finite
group. We fix an action σ : W → Aut(T ). Let N be an arbitrary
extension

0 → T → N → W → 0

inducing the action σ.

Definition 2.1. For w ∈ W and a T−bundle E we denote by E ×w T
the quotient of E × T by the relation

(et, t′) (e, w(t)t′).

and call it the extension of structure group of E by w. We call the
following map the evaluation morphism

νw : ET ×w T → ET

(e, t) 7→ ew−1(t)

Definition 2.2. We define the twisted action of W on T−bundles on
Z

W ×H1(Z, T ) → H1(Z, T )
(w,E) 7→ w∗E ×w T

Notice that pull-back by w and extension of structure group by w
commute with eachother. We shall denote the twisted action of w on
E as w.E.
For the rest of this section let ET denote a T−bundle on Z invariant

under the twisted action of W .

Definition 2.3. We define for ET the Mumford group as follows

Gσ(E) = {(w, γ)|γ : E → w.E}

We define the composition (w1, γ1)◦(w2, γ2) as (w1◦w2, w1(γ2)γ1) where
w1(γ2) = w∗

1γ2 ×w1
◦γ1.
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Since E and w.E are principal T−bundles and T is abelian, so the set
of isomorphisms between them is a torsor on T and we have AutT (E) =
T . Thus we can talk of a Mumford group (instead of a sheaf of groups).

Definition 2.4. For ET ∈ H1(Z, T )W , we define a right action of
Gσ(E) on ET as follows: for (w, γ) = n ∈ Gσ(E), we define µn as the
composition of morphisms

(1) ET

γ // w∗ET ×w T //

��

ET ×w T
νw //

��

ET

Z
w // Z

For ease of notation we will denote the Mumford group Gσ(E) of ET

by N .

Remark 2.5. It follows directly (cf. [1] [Prop 6.3]) that this action
extends the action of T on ET and lifts the action of W on Z over X.

Consider the following action:

ΨET
: (E ×T N)×N −→ E ×T N

((e, n′), n) 7→ (µn(e), n−1n′)

Remark 2.6. It is proved in [1] Prop 6.6 that EN := ET ×T N admits
a canonical W−linearisation induced from ET for T a torus. But the
same proof works for T an arbitrary abelian group.

We denote the linearisation by ΦET
.

3. A result on Mumford group

Proposition 3.1. Let π : Z → X be an étale Galois cover of smooth
projective curves with Galois group a finite group W . We have a ho-
momorphism of groups

c : H1(Z, T )W → H2(W,T )
ET 7→ [0 → T → Gσ(ET ) → W → 0]

This Proposition is the Proposition 7.1 in [1].

Proof. We have two left exact functors

(1) ΓZ : {Sheaves of W -modules on Z} → {W -modules}

A → H0(Z,A)

(2) ΓW : {W -modules} → {abelian groups } M → MW



4 YASHONIDHI PANDEY

We denote the composite functor as ΓW
Z = ΓW ◦ ΓZ whose n−th de-

rived fonctor is calculated by the Grothendieck spectral sequence of
composite of two functors

Ep,q
2 = Hp(W,Hq(Z,A)) ⇒ Ep,q = Hp+q(Z;W ;A)

We have the following short exact sequence of low degree terms

0 → E1,0
2 → E1 → E0,1

2
c
→ E2,0

2 → E2

In the case when the group W acts upon T , this sequence becomes

0 → H1(W,T ) → H1(Z;W ;T ) → H1(Z, T )W
c
→ H2(W,T ) → H2(Z;W ;T )

Let us fix a principal T -bundle ET ∈ H1(Z, T )
W
. We associate to

the extension

(2) 0 → T → Gσ(ET )
p
→ W → 0

an element of H2(W,T ) by taking a set theoretic section α of p.
For each w ∈ W , we get an isomorphism α(w) : ET → wET . We

identify AutT (ET ) and T as T is abelian. To α we associate the 2-cocyle

(3)
fα : W ×W → T

(w1, w2) 7→ α(w2w1)
−1 ◦ w1α(w2) ◦ α(w1)

If we change α by β, we have fβ − fα = dθ, where θ is the map

θ : W → T

w 7→ β(w)−1 ◦ α(w).

Thus the class of fα in H2(W,T ) is well defined. It is equal to the classs
of (2) by the natural correspondance between extensions of groups by
abelian groups and 2−cocycles.
Let us explicit the map c. Let U be a W -invariant covering of Z by

affine open sets ,that is for U ∈ U, w.U ∈ U also. The Cech complexes
gives a resolution T → C.(U, T ) of the sheaf T on Z. We deduce from
the resolution two short exact sequences

(4) 0 → Z0(C.(U, T )) → C0(U, T ) → B1(C.(U, T )) → 0

(5) 0 → B1(C.(U, T )) → Z1(C.(U, T )) → H1(C.(U, T )) → 0

Let us abbreviate the above groups by Z0, C0, B1, Z1 et H1 respec-
tively.
By the twisted action

W × C i(U, T ) → C i(U, T )
(w, ak,..,l) 7→ w(aw−1k,..,w−1l)k,..,l
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we take the resolution by the complexes

(6) 0 // Z0 //

��

C0 //

��

B1 //

��

0

0 // C .(W,Z0) // C .(W,C0) // C .(W,B1) // 0

(7) 0 // B1 //

��

Z1 //

��

H1 //

��

0

0 // C .(W,B1) // C .(W,Z1) // C .(W,H1) // 0

By the definition of the spectral sequence, the map c is the compo-
sition of

H0(C .(W,H1)) → H1(C .(W,B1)) → H2(C .(W,Z0)),

where the morphisms between the groups are connection morphisms.

For ET ∈ H1(Z, T )
W

⊂ C0(W,H1), let a := (ai,j) ∈ Z1(C.(U, T ))
be a 1-cocycle antecedent of ET . Associated to a, there is a canonical
choice of a 1-cocycle wa antecedent of the principal wET bundle for
the twisted action of W on ET . Recall that by definition (wa)i,j :=
w(aw−1i,w−1j)i,j. We consider the first terms of 7 and denote the vertical

arrows by d
(8)

0

��

0

��

0

��

0 // B1(C.(U, T ))W //

��

Z1(C.(U, T ))W //

��

H1(C.(U, T ))W //

��

0

0 // C0(W,B1) //

��

C0(W,Z1) //

��

C0(W,H1) //

��

0

0 // C1(W,B1) //

��

C1(W,Z1) // C1(W,H1) // 0

0 // C2(W,B1)
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Let us denote d(a) by h. Since d(ET ) = 0, we have h ∈ C1(W,B1).
Explicitly h is given by

(9)
h = d(a) : W → Z1(C.(U, T ))

w 7→ w(a) ◦ a−1

where over u ∈ Ui∩Uj , we define w(a)◦a
−1(i, j)(u) := w(a)(i, j)(u)a(i, j)(u)−1.

We consider the first terms of (6) and let us denote the vertical arrows
by d
(10)

0

��

0

��

0

��

0 // Z0(C.(U, T ))W //

��

C0(C.(U, T ))W //

��

B1(C.(U, T ))W //

��

0

0 // C0(W,Z0) //

��

C0(W,C0) //

��

C0(W,B1) //

��

0

0 // C1(W,Z0) //

��

C1(W,C0) //

��

C1(W,B1) //

��

0

0 // C2(W,Z0) // C2(W,C0) // C2(W,B1) // 0

We denote by g ∈ C1(W,C0) an antecedent of h. Then for all w ∈ W ,
we have

(11) g(w)(i)g(w)(j)−1 = h(w)(i, j)

Since AutT (ET ) = T is commutative, by (11) and (9) we deduce the
equality

w(a)(i, j) = g(w)(i)a(i, j)g(w)(j)−1

which means that g explicitly gives an isomorphism g(w) : ET → wET

in local coordinates for all w ∈ W . Thus g is a section of p of the short
exact sequence (2). Since 0 = d(d(a)) = d(h) so k := d(g) ∈ C2(W,Z0)
is a 2-cocycle. Now since H0(C.(U, T )) = T , we have

k : W ×W → T
(w1, w2) 7→ w1(g(w2))g(w1w2)

−1g(w1)

The map c sends ET to the class of k in H2(W,T ), by the definition
of the spectral sequence. This definition is independant of the choice
of the antecedant a and g of ET and h respectively. Since g(w) : ET →
wET is an isomorphism, fg (ref 3) is equal to k because the passage
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from g to k and to fg is the same. Thus a fortiori the image of k and
of fg- the class of Mumford group in H2(W,T ) coincide. �

4. The fiber of MX(N) → MX(W )

Fix an extension class η = [0 → T → N → W ] ∈ H2(W,T ).

Definition 4.1. One calls the abelianisation map, the map that for a
T−bundle ET ∈ H1(Z, T )Wη associates the quotient FN of EN by ΦET

.

Lemma 4.2. The principal bundle quotient of FNby T is canonically
isomorphic to Z.

Proof. To show that FN/T is canonically isomorphic to Z it suffices
to show that there is a canonical isomorphism of principal W -bundles
on Z between π∗(FN) and π∗(Z) which, moreover, respects the W -
linearisations induced by pull-back. To verify this condition, we shall
firstly describe a canonical isomorphism between each principal bundle
and Z × W , and then show that, by transport of structure via these
isomorphisms, we get the same W -linearisation on Z×W , namely, the
canonical W -linearisation.
Since π : Z → X is a Galois covering of Galois group W , we have

canonical isomorphisms

π∗Z ≃ Z ×X Z ≃ Z ×W.

The W -linearisation on π∗Z induces the canonical W -linearisation on
Z ×W , that is

φ : W × Z ×W → Z ×W
(w, (z, w′)) 7→ (zw, w−1w′).

We have the natural isomorphisms

π∗(FN/T ) → π∗(FN)/T → (ET ×T N)/T.

By the isomorphism ET ×T
w T/T ≃ Z we deduce the following commu-

tatif diagram where all arrows are isomorphisms

(12) (ET ×T N)/T // ET/T ×N/T // Z ×W

(ET ×T
w T ×T N)/T //

(νw×TN)/T

OO

(ET ×T
w T )/T ×N/T //

νw/T×Id

OO

Z ×W

Id

OO

If we extend the upper sequence of (1) by ×TN and then we quotient
by the group T , by the isomorphism

E ×w T/T ≃ Z
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and by (12) we obtain the following action of W on Z × W : for
(w, γ′) ∈ Gσ(Z ×W )

Z ×W
γ′

// (w∗Z ×W ) //

��

Z ×W
≃

Id
//

��

Z ×W

Z
w // Z

where γ′ : Z → w∗Z is an isomorphism. We remark that this action
is constant on the second factor W of Z × W . Thus the action in
propositon 2.6 by passing to quotient by T becomes

φ(ET )(w)(z, w
′) = (zw, w−1w′) :

which is the canonical W -linearisation.
�

Proposition 4.3. Let π : Z → X be a Galois cover with Galois group
W . Let E be a principal T−bundle on Z. Then E is a principal
Gσ(E)−bundle on X.

Proof. Let us denote the Mumford group Gσ(E) by N .
Consider the natural map of sheaves on Z

φ : E → E ×T N

e 7→ (e, 1)

The bundle E×T N admits a canonical W−linearisation by the propo-
sition 2.6 and we denote by p : E ×T N → E ×T N/W =: FN the
quotient by W . The lemma 4.2 implies that FN/T is isomorphic to
Z. Thus FN seen as a sheaf on Z is a principal T−bundle. Thus the
composition of arrows p ◦ φ : E → FN is a map of sheaves between
principal T−bundles on Z. Now p ◦φ is also T−linear, thus it is also a
map of principal T−bundles. So it is an isomorphism since in the cate-
gory of principal group bundles, morphisms are isomorphisms. Thus E
is a fortiori isomorphic to FN on X . Now FN is a principalN−bundle,
and therefore so is E. �

Lemma 4.4. Let N be an arbitrary extension of W by T and η ∈
H2(W,T ) denote its class. Let p : EN → X be a principal N−bundle
on X and we denote by π : Z → X its quotient by T . There exists
a canonical isomorphism between N and the Mumford group of the
principal bundle EN seen as a principal T−bundle on Z. Moreover via
these isomorphisms the natural actions of these groups on EN can also
be identified.
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Proof. For n ∈ N , let n denote the class of n in W . For all n ∈
N , for the action of N on the princiapl N−bundle EN and of W on
the principal W−bundle Z, we have the following cartesian diagram
preserving the fibers of EN → Z → X

EN
n //

��

EN

��
Z

n // Z.

Now EN is a principal T−bundle on Z. The commutation of the above
diagram is equivalent to the fact that EN is a W−invariant principal
T−bundle for the twisted action of the group W . Thus, we conclude
that the Mumford group of EN , seen as a principal T−bundle on Z,
is N . From this it also follows that the action of the Mumford group
upon EN gets identified with the usual multiplication action by N . �

Lemma 4.5. Let p : EN → X be a principal N−bundle on X. We
denote by π : Z → X the quotient by T . The bundle EN seen as a
principal T−bundle on Z is sent by the abelianisation map to EN seen
as a principal N−bundle on X.

Proof. By the lemma 4.4 we conclude that EN ∈ H1(Z, T )W and since
its Mumford group is N so EN ∈ H1(Z, T )Wη . Since EN is a principal
N−bundle on X , we have a canonical isomorphism

EN ×N → EN ×X EN

(e, n) 7→ (e, en).

When we quotient EN × N by T by putting the relation (et, n) =
(e, tn), the last isomorphism implies the relation (et, etn) = (e, etn) on
EN ×X EN and we obtain

α : EN ×T N → Z ×X EN

(e, n) 7→ (e, en)

where e is the image of e ∈ EN in Z. Recall the action of N on EN×TN
of abelianisation

N ×EN ×T N → EN ×T N
(n, (e, n′)) 7→ (e.n, n−1n′),

and consider the action of N on Z ×X EN

N × Z ×X EN → Z ×X EN

(n, (z, e)) → (zn, e).
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Now for these actions for all n ∈ N , we have the following commu-
tative diagram

EN ×T N

α

��

n // EN ×T N

α

��
Z ×X EN

n // Z ×W EN .

Thus, EN - the quotient of Z ×X EN by W is isomorphic on X to
the quotient of EN ×T N by W for the canonical W−linearisation of
abelianisation. This last quotient is the image of EN seen as a principal
T−bundle on Z by ∆θ. Now the assertion follows. �

Corollary 4.6. Let π : Z → X be a Galois étale covering. Let p :
E → Z be a principal T−bundle. The abelianisation map

∆θ : H
1(Z, T )Wη → MX(N)

is injective.

Proof. By the proposition 4.3, E is a principal N−bundle on X , where
N is the Mumford group. By the lemma 4.5, we have △θ(E) = E seen
as a principal N−bundle on X . If E and F are principal T−bundles
on Z such that △θ(E) = △θ(F ) then E = F as principal N−bundles
on X . By the lemma 4.2 we have E/T (resp. F/T ) is isomorphic to
Z. Thus E and F are isomorphic as principal T−bundles on Z. �

Theorem 4.7. The fiber of the quotient by T map qT : MX(N) →
MX(W ) over π : Z → X is H1(Z, T )Wη .

Proof. By the lemma 4.2 the map quotient by T maps H1(Z, T )Wη to
the fiber of qT . By the lemma 4.6, this map to the fiber of qT is injective
and by 4.5 it is surjective. �

5. Applications

Example 1. Let π : Z → X be a covering Galois group D2n the
dihedral group of order 2n. When we quotient Z by Z/nZ ⊂ D2n, we
obtain a double covering p : Y → X. We have the following exact
sequence

0 → Z/nZ → D2n → Z/2Z → 0

with the action of Z/2Z on Z/nZ by e(k) = k and σ(k) = −k. The
curve Z determines a primitive element, denoted as Z again, in Jac(Y )[n]
invariant under the action of Z/2Z switching the two sheets.
Let us suppose that n is odd. We denote by Prym(Y/X) the Prym

variety associated to the étale double cover p : Y → X. We have the
isogeny Jac(X) × Prym(Y/X) → Jac(Y ). Let us consider the points
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of n−torsion in Jac(Y ), denoted Jac(Y )[n]. Thus the isogeny gives an
isomorphism between abelian groups

Jac(X)[n]× Prym(Y/X)[n] → Jac(Y )[n],

since the kernel of the isogeny is consists of points of 2−torsion in
Jac(X). Now the involution σ : Y → Y above X operates as +Id on
Jac(X)[n] and −Id on Prym(Y/X)[n]. Let α = (β, γ) ∈ Jac(X)[n] ×
Prym(Y/X)[n].

(1) If σ(α) = α, then (β,−γ) = (β, γ), that is γ = 0. Thus α ∈
Jac(X)[n]. Thus the étale covering α is the pull-back on Y of a
cyclic étale covering of degree n on X and the associated total
covering α is Galois of Galois group Z/2Z× Z/nZ.

(2) If σ(α) = −α, then (β,−γ) = (−β,−γ), that is β = 0. Thus
α ∈ Prym(Y/X)[n]. Thus α is a cyclic étale covering of order
n on Y . The total covering

Z
n:1
→ Y

2:1
→ X

gives an étale Galois covering of Galois group D2n.

Proposition 5.1. The Weyl group W acts transitively on the fibers of
the map

MX(T ) → MX(N)

of extension of structure group from T to N(T ). The action is generi-
cally without fixed points.

Proof. For E ∈ H1(X, T ), let us denote E ×T N by EN . We consider
the short exact sequence of group schemes

(13) 0 → AutT (E) → AutN(EN) → W → 0

We have the associated long exact sequence (we omit the curve X in
the notation)

0 → H0(AutT (E)) → H0(AutN(EN)) → H0(W )
δ
→ H1(AutT (E)) → H1(AutN(EN)) → H1(W )

The distinguished elements of the setsH1(AutT (E)) andH1(AutN(EN ))
are E and EN respectively. Let σ : X → EN/T be the section cor-
responding to E. The group H0(W ) = W acts on E in the follow-
ing way: δ(w)E is the principal T -bundle obtained by the section
(σ, w) : X → EN ×N N/T ≃ EN/T . Thus we have

(14) δ(w)E = E ×w T.
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As the sequence gives the fiber on the distinguished element, we
deduce that the group W acts transitively on the fiber of EN , from
which the first assertion follows. For a generic E ∈ H1(X, T ) we have
Stab(E) = {e} which implies the second assertion.

�

Proposition 5.2. Let T be a torus of a Lie group. Let 0 → T → N →
W → 0 be an extension of W by T . The map extension of structure
group from N to W

MX(N(T )) → MX(W )

is surjective.

Proof. An element (π : Z → X) ∈ MX(W ) corresponds to an étale
Galois covering of curves on X . Since X is smooth and π is étale, so Z
is smooth. Since X is projective and π is finite, so Z is projective also.
By the lemma 7.2 of Lange-Pauly [1], we have that the set H1(Z, T )Wη
is non-empty where η denotes the extension class of [0 → T → N →
W → 0] = η ∈ H2(W,T ). By the lemma 4.2 π : Z → X is the image
of the composition of arrows

Prym(π,Λ)η = H1(Z, T )Wη → H1(X,N) → H1(X,W ).

�

Example 2. Let us consider a Weyl group W of type Bn or Cn. It is
isomorphic to (Z/2Z)n ⋉ Σn. By the theorem 4.7, we have

MX(W ) =
⊔

(π:Z→X)∈MX(Σn)

H1(Z, T )Σn

η

where T = (Z/2Z)n and η is the extension class

[0 → (Z/2Z)n → W → Σn → 0] = η ∈ H2(Σn, (Z/2Z)
n).

Now a principal T−bundle on Z is a n−uple (L1, · · · , Ln) where Li ∈
Jac(Z)[2] are line bundles of order 2.By the equation 14 of the propo-
sition 5.1, we deduce that Σn operates by permuting factors. Thus, the
Li are isomorphic to eachother. Thus we have

H1(Z, T )Wη = {L ∈ Jac(Z)[2]|[Gσ((L, · · · , L))] = η}

Example 3. The Weyl group Dn is isomorphic to (Z/2Z)n−1
⋉ Σn

where Σn acts by permuting the factors on the subgroup of (Z/2Z)n

having an even number of ones. Reasoning as before in the example 2
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we find that

MX(W ) =







MX(Σn) n odd
⊔

(π:Z→X)∈MX(Σn)

{L ∈ Jac(Z)[2]|[Gσ((L, · · · , L))] = η} n even
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